Semi-automatic detection of the evolutionary forms of visceral leishmaniasis in microscopic blood smears

dc.contributor.authorSalazar, J
dc.contributor.authorVera, M
dc.contributor.authorHuérfano, Y
dc.contributor.authorVera, M I
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorValbuena, O
dc.date.accessioned2020-04-15T04:30:46Z
dc.date.available2020-04-15T04:30:46Z
dc.date.issued2019
dc.description.abstractLeishmaniasis is a complex group of diseases caused by obligate unicellular and intracellular eukaryotic protozoa of the leishmania genus. Leishmania species generate diverse syndromes ranging from skin ulcers of spontaneous resolution to fatal visceral disease. These syndromes belong to three categories: visceral leishmaniasis, cutaneous leishmaniasis and mucosal leishmaniasis. The visceral leishmaniasis is based on the reticuloendothelial system producing hepatomegaly, splenomegaly and lymphadenopathy. In the present article, a semiautomatic segmentation strategy is proposed to obtain the segmentations of the evolutionary shapes of visceral leishmaniasis called parasites, specifically of the type amastigote and promastigote. For this purpose, the optical microscopy images containing said evolutionary shapes, which are generated from a blood smear, are subjected to a process of transformation of the color intensity space into a space of intensity in gray levels that facilitate their subsequent preprocessing and adaptation. In the preprocessing stage, smoothing filters and edge detectors are used to enhance the optical microscopy images. In a complementary way, a segmentation technique that groups the pixels corresponding to each one of the parasites, presents in the considered images, is applied. The results reveal a high correspondence between the available manual segmentations and the semi-automatic segmentations which are useful for the characterization of the parasites. The obtained segmentations let us to calculate areas and perimeters associated with the parasites segmented. These results are very important in clinical context where both the area and perimeter calculated are vital for monitoring the development of visceral leishmaniasis.eng
dc.format.mimetypepdfeng
dc.identifier.issn17426596
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5112
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1386 (2019)eng
dc.source.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1386/1/012135eng
dc.titleSemi-automatic detection of the evolutionary forms of visceral leishmaniasis in microscopic blood smearseng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesLongo D, Fauci A, Kasper D, Hauser S, Jameson J and Loscalzo J 2018 Harrison’s principles of internal medicine (USA: McGraw-Hill)eng
dcterms.referencesFarahi M, Rabbani H, Talebi A, Sarrafzadeh O and Ensafi S 2015 Automatic segmentation of leishmania parasite in microscopic images using a modified cv level set method Proc. SPIE 9817 98170Keng
dcterms.referencesVera M, Huérfano Y, Gelvez E, Valbuena O, Salazar J, Molina V, Vera M I, Salazar W and Sáenz F 2019 Segmentation of brain tumors using a semi-automatic computational strategy J. Phys.: Conf. Ser. 1160 012002eng
dcterms.referencesTan H, Jiang H, Dong A, Yang B and Zhang L 2014 Cv level set based cell image segmentation using color filter and morphology Proc. Int. Conf. on Information Sci. Electronics and Electrical Eng. 3(1) 1073eng
dcterms.referencesYang L, Meer P and Foran D 2005 Unsupervised segmentation based on robust estimation and color active contour models IEEE Trans. on Inf. Tech. in Biomedicine 9(3) 475eng
dcterms.referencesSadeghian F, Seman Z, Ramli A, Kahar B and Saripan M 2009 A framework for wbc segmentation in microscopic images using digital image processing Biological procedures online 11 196eng
dcterms.referencesGórriz M, Aparicio A, Raventós B, Vilaplana V, Sayrol E and Lopez D 2018 Leishmaniasis parasite segmentation and classification using deep learning Proc. 10th International Conference: AMDO (Berlín Springer) 43956 53eng
dcterms.referencesFarahi M, Rabbani H and Talebi A 2014 Automatic boundary extraction of leishman bodies in bone marrow samples from patients with visceral leishmaniasis. J. Isfahan. Med. Sch. 32(286) 726eng
dcterms.referencesKoenderink J 1984 The structure of images Biol. Cybern. 50 363eng
dcterms.referencesZhigan N, Wenbin S and Xiong C 2015 Adhesion ore image separation method based on concave points matching Proc. International Conference on Information Technology and Intelligent Transportation Systems 2 (China: Springer)eng
dcterms.referencesIbañez L 2004 The ITK software guide (USA: Kitware Inc.)eng
dcterms.referencesVera M, Bravo A and Medina R 2011 Improving ventricle detection in 3d cardiac multislice computerized tomography images Proc. Computer Vision, Imaging and Computer Graphics. Theory and Applications. Communications in Computer and Information Science ed Richard P and Braz J 229. (Berlin: Springer Heidelberg)eng
dcterms.referencesVera M, Medina R, Del Mar A, Arellano J, Huérfano Y and Bravo A 2019 An automatic technique for left ventricle segmentation from msct cardiac volumes J. Phys.: Conf. Ser. 1160 012001eng
dcterms.referencesDice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones