Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia

dc.contributor.authorSagastume Gutiérrez, Alexis
dc.contributor.authorCabello Eras, Juan J.
dc.contributor.authorSousa Santos, Vladimir
dc.contributor.authorHernández Herrera, Hernán
dc.contributor.authorHens, Luc
dc.contributor.authorVandecasteele, Carlo
dc.date.accessioned2018-09-11T22:05:55Z
dc.date.available2018-09-11T22:05:55Z
dc.date.issued2018-10-10
dc.description.abstractElectricity stands as the main energy used for lead-acid battery (LAB) manufacturing. This study introduces an energy management methodology to address the electricity consumption in lead-acid battery plants, improving efficiency standards. The “equivalent battery production” is introduced to define the energy performance criteria to be met in the different production sections of the battery plant. The methodology combines the guidelines of the ISO 50001 standard with the energy management framework for manufacturing plants. The result is a structured approach for detecting inefficiencies and pinpointing their sources. The management methodology was implemented during 2016. In the formation area 222MWh were saved during 2016. This saving accounts for 3.9% less electricity than forecasted by the energy baseline of the area. Additionally, the emission of some 40 tCO2.eq. associated with the generation of the electricity production were saved. Moreover, at plant level 424MWh were saved, which account for 3.6% less electricity than forecasted by the energy baseline of the plant. In total, around 76 tCO2.eq. were saved as a result of the electricity savings in the plant.eng
dc.identifier.issn09596526
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2277
dc.language.isoengeng
dc.publisherElseviereng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceJournal of Cleaner Productioneng
dc.sourceVol. 198, (2018)spa
dc.source.urihttps://www.sciencedirect.com/science/article/pii/S0959652618320845eng
dc.subjectLead-acid batteryeng
dc.subjectEnergy efficiencyeng
dc.subjectEnergy managementeng
dc.subjectBattery productioneng
dc.titleElectricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombiaeng
dc.typearticleeng
dcterms.referencesAbdelaziz, E.A., Saidur, R., Mekhilef, S., 2011. A review on energy saving strategies in industrial sector. Renew. Sustain. Energy Rev. 15, 150e168.eng
dcterms.referencesAkbaba, M., 1999. Energy conservation by using energy efficient electric motors. Appl. Energy 64, 149e158.eng
dcterms.referencesANSI/NEMA MG 1-2011, 2011. American National Standard Motors and Generator. American National Standards Institute (NEMA), Virginia. US.eng
dcterms.referencesApostolos, F., Alexios, P., Georgios, P., Panagiotis, S., George, C., 2013. Energy efficiency of manufacturing processes: a critical review. Procedia CIRP 7, 628e633.eng
dcterms.referencesBenedetti, M., Cesarotti, V., Introna, V., 2016. From energy targets setting to energyaware operations control and back: an advanced methodology for energy efficient manufacturing. J. Clean. Prod. 167, 1518e1533.eng
dcterms.referencesBoharb, A., Allouhi, A., Saidur, R., Kousksou, T., Jamil, A., Mourad, Y., Benbassou, A., 2016. Auditing and analysis of energy consumption of an industrial site in Morocco. Energy 101, 332e342.eng
dcterms.referencesBohdanowicz, P., Martinac, I., 2007. Determinants and benchmarking of resource consumption in hotels. Case study of Hilton international and Scandic in Europe. Energy Build. 39, 82e95.eng
dcterms.referencesBrunke, J.C., Johansson, M., Thollander, P., 2014. Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. J. Clean. Prod. 84, 509e525.eng
dcterms.referencesBunse, K., Vodicka, M., Sch€onsleben, P., Brülhart, M., Ernst, F.O., 2011. Integrating energy efficiency performance in production managementegap analysis between industrial needs and scientific literature. J. Clean. Prod. 19, 667e679.eng
dcterms.referencesCabello, J.J., Sagastume, A., Hernández, D., Hens, L., Vandecasteele, C., 2013. Improving the environmental performance of an earthwork project using cleaner production strategies. J. Clean. Prod. 47, 368e376.eng
dcterms.referencesCabello, J.J., Santos, V., Sagastume, A., Álvarez Guerra, M., Haeseldonckx, D., Vandecasteele, C., 2016. Tools to improve forecasting and control of the electricity consumption in hotels. J. Clean. Prod. 137, 803e812.eng
dcterms.referencesCagno, E., Trianni, A., 2014. Evaluating the barriers to specific industrial energy efficiency measures: an exploratory study in small and medium-sized enterprises. J. Clean. Prod. 82, 70e83.eng
dcterms.referencesCai, W., Liu, F., Xie, J., Zhou, X., 2017a. An energy management approach for the mechanical manufacturing industry through developing a multi-objective energy benchmark. Energy Convers. Manag. 132, 361e371.eng
dcterms.referencesCai, W., Liu, F., Zhang, H., Liu, P., Tuo, J., 2017b. Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement. Appl. Energy 202, 715e725.eng
dcterms.referencesCarpenter, J., Woodbury, K.A., O'Neill, Z., 2018. Using change-point and Gaussian process models to create baseline energy models in industrial facilities: A comparison. Applied Energy 213, 415e425.eng
dcterms.referencesDahodwalla, H., Herat, S., 2000. Cleaner production options for lead-acid battery manufacturing industry. J. Clean. Prod. 8, 133e142.eng
dcterms.referencesDindorf, R., 2012. Estimating potential energy savings in compressed air systems. Procedia Eng. 39, 204e211.eng
dcterms.referencesDobes, V., 2013. New tool for promotion of energy management and cleaner production on no cure, no pay basis. J. Clean. Prod. 39, 255e264eng
dcterms.referencesDOE, 2008. Improving Motor and Drive System Performance: a Sourcebook for Industry. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Industrial Technologies Program. National Renewable Energy Laboratory, Colorado. USA.eng
dcterms.referencesDongellini, M., Marinosci, C., Morini, G.L., 2014. Energy audit of an industrial site: a case study. Energy Procedia 45, 424e433.eng
dcterms.referencesDuarte, M., Braido, B., Duchatsch, H., Rodrigues, M., Antoniassi, B., 2017. Automation benefits in the formation process of lead-acid batteries. Indepen. J. Manag. Prod. 8, 91e107.eng
dcterms.referencesEdgar, T.F., Pistikopoulos, E.N., 2017. Smart manufacturing and energy systems. Comput. Chem. Eng. https://doi.org/10.1016/j.compchemeng.2017.10.027.eng
dcterms.referencesElMaraghy, H.A., Youssef, A.M., Marzouk, A.M., ElMaraghy, W.H., 2016. Energy use analysis and local benchmarking of manufacturing lines. J. Clean. Prod. 163, 36e48.eng
dcterms.referencesFahad, M., Naqvi, S.A.A., Atir, M., Zubair, M., Shehzad, M.M., 2017. Energy management in a manufacturing industry through layout design. Procedia Manuf. 8, 168e174.eng
dcterms.referencesFawkes, S., 2016. Energy Efficiency: the Definitive Guide to the Cheapest, Cleanest, Fastest Source of Energy. Routledge, New York. US.eng
dcterms.referencesFernando, Y., Hor, W.L., 2017. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of malaysian manufacturing firms. Resour. Conserv. Recycl. 126, 62e73.eng
dcterms.referencesGopalakrishnan, B., Ramamoorthy, K., Crowe, E., Chaudhari, S., Latif, H., 2014. A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector. Sustain. Energy Technol. Assess. 7, 154e165.eng
dcterms.referencesGordić, D., Babić, M., Jovićić, N., Šušteršić, V., Konćalović, D., Jelić, D., 2010. Development of energy management systemeCase study of Serbian car manufacturer. Energy Convers. Manag. 51, 2783e2790.eng
dcterms.referencesHens, L., Block, C., Cabello, J.J., Sagastume, A., Garcia, D., Chamorro, C., Herrera, K., Haeseldonckx, D., Vandecasteele, C., 2018. On the evolution of “Cleaner Production” as a concept and a practice. J. Clean. Prod. 172, 3323e3333.eng
dcterms.referencesISO 50001:2011(E), 2011. International Standard, Energy Management Systems erequirements with Guidance for Use. International Organization for Standardization.eng
dcterms.referencesISO 50006:2014(E). Energy Management Systems e Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI) e General Principles and Guidance.eng
dcterms.referencesISO 50004:2014(E), 2014b. Energy Management Systems e Guidance for the Implementation, Maintenance and Improvement of an Energy Management System. International Organization for Standardization.eng
dcterms.referencesJavied, T., Rackow, T., Franke, J., 2015. Implementing energy management system to increase energy efficiency in manufacturing companies. Procedia CIRP 26, 156e161.eng
dcterms.referencesJohansson, M.T., Thollander, P., 2018. A review of barriers to and driving forces for improved energy efficiency in Swedish industryerecommendations for successful in-house energy management. Renew. Sustain. Energy Rev. 82, 618e628.eng
dcterms.referencesJovanović, B., Filipović, J., Bakić, V., 2017. Energy management system implementation in Serbian manufacturingePlan-Do-Check-Act cycle approach. J. Clean. Prod. 162, 1144e1156.eng
dcterms.referencesJung, J., Zhang, L., Zhang, J., 2016. Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. CRC Press. Taylor & Francis Group, New York.eng
dcterms.referencesKalair, A., Abas, N., Kalair, A.R., Saleem, Z., Khan, N., 2017. Review of harmonic analysis, modeling and mitigation techniques. Renew. Sustain. Energy Rev. 78, 1152e1187.eng
dcterms.referencesKanneganti, H., Gopalakrishnan, B., Crowe, E., Al-Shebeeb, O., Yelamanchi, T., Nimbarte, A., Currie, K., Abolhassani, A., 2017. Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustain. Energy Technol. Assessments 23, 121e135.eng
dcterms.referencesKaya, D., Phelan, P., Chau, D., Ibrahim Sarac, H., 2002. Energy conservation in compressed-air systems. Int. J. Energy Res. 26, 837e849.eng
dcterms.referencesKiessling, R., 1992. Lead acid Battery Formation Techniques. Digatron Firing Circuits, 15.08.16.. Available at: http://www.digatron.com/fileadmin/pdf/lead_acid.pdf.eng
dcterms.referencesKluczek, A., Olszewski, P., 2017. Energy audits in industrial processes. J. Clean. Prod. 142, 3437e3453.eng
dcterms.referencesLiu, W., Sang, J., Chen, L., Tian, J., Zhang, H., Palma, G.O., 2015. Life cycle assessment of lead-acid batteries used in electric bicycles in China. J. Clean. Prod. 108, 1149e1156.eng
dcterms.referencesLiu, W., Tian, J., Chen, L., Guo, Y., 2017. Temporal and spatial characteristics of lead emissions from the lead-acid battery manufacturing industry in China. Environ. Pollut. 220, 696e703.eng
dcterms.referencesMay, G., Stahl, B., Taisch, M., Kiritsis, D., 2017. Energy management in manufacturing: from literature review to a conceptual framework. J. Clean. Prod. 167, 1464e1489.eng
dcterms.referencesMay, G., Taisch, M., Stahl, B., Sadr, V., 2012. Toward energy efficient manufacturing: a study on practices and viewpoint of the industry (pp. 1e8). In: IFIP International Conference on Advances in Production Management Systems. Springer Berlin Heidelberg.eng
dcterms.referencesMousavi, S., Kara, S., Kornfeld, B., 2016. A hierarchical framework for concurrent assessment of energy and water efficiency in manufacturing systems. J. Clean. Prod. 133, 88e98.eng
dcterms.referencesMunguia, N., Vargas-Betancourt, N., Esquer, J., Giannetti, B.F., Liu, G., Velazquez, L.E., 2018. Driving competitive advantage through energy efficiency in Mexican maquiladoras. J. Clean. Prod. 172, 3379e3386.eng
dcterms.referencesParamonova, S., Thollander, P., Ottosson, M., 2015. Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries. Renew. Sustain. Energy Rev. 51, 472e483.eng
dcterms.referencesPavlov, D., 2017. Lead-acid Batteries: Science and Technology. A Handbook of Leadacid Battery Technology and its Influence on the Product, second ed. Elsevier, Amsterdam. The Netherlands.eng
dcterms.referencesPetkova, G., Pavlov, D., 2003. Influence of charge mode on the capacity and cycle life of leadeacid battery negative plates. J. Power Sources 113, 355e362.eng
dcterms.referencesPierce, L.W., 1996. Transformer design and application considerations for nonsinusoidal load currents. IEEE Trans. Ind. Appl. 32, 633e645.eng
dcterms.referencesRantik, M., 1999. Life Cycle Assessment of Five Batteries for Electric Vehicles under Different Charging Regimes. KFB e Kommunikations forsknings-beredningen, Stockholm.eng
dcterms.referencesRichert, M., 2017. An energy management framework tailor-made for SMEs: case study of a German car company. J. Clean. Prod. 164, 221e229.eng
dcterms.referencesRoche, M., Toyne, P., 2004. Green leaddoxymoron or sustainable development for the leadeacid battery industry? J. Power Sources 133, 3e7.eng
dcterms.referencesRossiter, A.P., Jones, B.P., 2015. Energy Management and Efficiency for the Process Industries. John Wiley & Sons, New Jersey. USA.eng
dcterms.referencesSa, A., Thollander, P., Cagno, E., 2017. Assessing the driving factors for energy management program adoption. Renew. Sustain. Energy Rev. 74, 538e547.eng
dcterms.referencesSagastume, A., Cabello, J.J., Hens, L., Vandecasteele, C., 2017. The biomass based electricity generation potential of the province of Cienfuegos, Cuba. Waste Biomass Valorization 8, 2075e2085.eng
dcterms.referencesSaidur, R., 2010. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 14, 877e898.eng
dcterms.referencesSauer, I.L., Tatizawa, H., Salotti, F.A., Mercedes, S.S., 2015. A comparative assessment of Brazilian electric motors performance with minimum efficiency standards. Renew. Sustain. Energy Rev. 41, 308e318.eng
dcterms.referencesSchulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy management in industryea systematic review of previous findings and an integrative conceptual framework. J. Clean. Prod. 112, 3692e3708.eng
dcterms.referencesSims, R.E.H., Schock, R.N., Adegbululgbe, A., Fenhann, J., Konstantinaviciute, I., Moomaw, W., Nimir, H.B., Schlamadinger, B., Torres-Martínez, J., Turner, C., Uchiyama, Y., Vuori, S.J.V., Wamukonya, N., Zhang, X., 2007. Energy supply. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.eng
dcterms.referencesSivakumar, A. and Selvan, N.M., Reduction of source current harmonics in ANN controlled induction motor, Alexandria Eng. J.. doi.org/10.1016/j.aej.2017.03.048eng
dcterms.referencesSullivan, J.L., Gaines, L., 2012. Status of life cycle inventories for batteries. Energy Convers. Manag. 58, 134e148.eng
dcterms.referencesSullivan, J.L., Gaines, L., 2010. A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10e17). Argonne National Laboratory (ANL), USA.eng
dcterms.referencesSunthornnapha, T., 2017. Utilization of MLP and linear regression methods to build a reliable energy baseline for self-benchmarking evaluation. Energy Proc. 141, 189e193.eng
dcterms.referencesTalaei, A., Ahiduzzaman, M., Kumar, A., 2018. Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector. Energy 153, 231e247.eng
dcterms.referencesUNEP, 2004. Cleaner Production-energy Efficiency (CP-ee) Manual, 1rst ed. United Nations Publications, Oxford. UK.eng
dcterms.referencesUnidad de Planeación Minero Energética (UPME), 2017. Informe mensual de variables de generación y del mercado eléctrico colombiano. Enero 2015 e Diciembre 2016. Ministerio de Energía y Minas, Colombia.spa
dcterms.referencesUNIDO, 2018. United Nations Industrial Development Organization. Resource Efficient and Cleaner Production (RECP). https://www.unido.org/our-focus/ safeguarding-environment/resource-efficient-and-low-carbon-industrialproduction/ resource-efficient-and-cleaner-production-recp .eng
dcterms.referencesWaide, P., Brunner, C.U., 2011. Energy-efficiency Policy Opportunities for Electric Motor-drive Systems. International Energy Agency, Paris, France, 24.01.2018. https://www.energiestiftung.ch/files/downloads/energiethemenenergieeffizienz- industriegewerbe/ee_for_electricsystems-2-.pdf.eng
dcterms.referencesWang, Q., Liu,W., Yuan, X., Tang, H., Tang, Y.,Wang, M., Zuo, J., Song, Z., Sun, J., 2018. Environmental impact analysis and process optimization of batteries based on life cycle assessment. J. Clean. Prod. 174, 1262e1273.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones