Un algoritmo novedoso para la detección de tareas repetitivas con secuencia lógica en el teclado
dc.contributor.author | Londoño González, Bairon | |
dc.date.accessioned | 2018-05-25T16:29:11Z | |
dc.date.available | 2018-05-25T16:29:11Z | |
dc.date.issued | 2014 | |
dc.description.abstract | En este trabajo se desarrolla una herramienta para la detección de tareas repetitivas con secuencias lógicas realizadas a través de comandos del teclado, mediante el diseño e implementación de un algoritmo basado en el uso de autómatas finitos determinísticos y agentes de búsqueda de patrones. La novedad del algoritmo desarrollado radica en que está orientado a la detección de tareas repetitivas cuyas actividades tienen una secuencia lógica y que actualmente no se encuentran automatizadas por lo complejo que es esta labor. El diseño del algoritmo partió de la clasificación de todos los comandos de Windows, luego de clasificar los comandos de Windows y tomar los que aplican a tareas repetitivas simples o de secuencia lógica en sus actividades se representaron en un autómata finito determinista con el fin de obtener una base de conocimiento de actividades que construyan tareas repetitivas, finalmente se construyó un Keylogger que capture los comandos del teclado y un Agente que se encarga de filtrar los comandos recibidos por el Keylogger, evaluar los comandos en el AFD y detectar tareas repetitivas. El algoritmo diseñado se validó mediante un conjunto de pruebas realizadas sobre dos casos artificiales y dos casos reales, las cuales manifestaron un excelente desempeño del algoritmo dado que en todas las pruebas se detectó la tarea repetitiva en ejecución con un máximo de cinco actividades reales y una duración menor a un minuto. | spa |
dc.description.abstract | In this thesis develops a tool for the detection of repetitive tasks with logical sequence performed through keyboard commands, through the design and implementation of an algorithm based on deterministic finite state machines using agents for search patterns. The novelty of the algorithm developed is that it is aimed at the detection of repetitive tasks whose activities have a logical sequence and that are not currently automated by how complex this work. The design of the algorithm was based on the classification of all Windows command after qualifying Windows commands and take that apply to simple repetitive tasks or logical sequence in their activities were represented in a deterministic finite automaton in order to obtain a knowledge base of activities that build repetitive tasks, finally a keylogger that captures keyboard commands and an Agent who is responsible for filtering the commands received by the keylogger, evaluate the commands in the AFD and detect repetitive tasks built. The proposed algorithm was validated by a set of tests on two artificial cases and two real cases, which showed an excellent performance of the algorithm since all tests repetitive running task was detected with a maximum of five actual activities and lasting less than a minute. | eng |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2115 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ingenierías | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.subject | Automatización de tareas repetitivas | spa |
dc.subject | Algoritmos para la detección de patrones | spa |
dc.subject | Comandos de teclado | spa |
dc.subject | Autómatas | spa |
dc.subject | Árboles de decisión | spa |
dc.subject | Automation of repetitive tasks | eng |
dc.subject | Algorithms for detecting patterns | eng |
dc.subject | Keyboard commands | eng |
dc.subject | Automata | eng |
dc.subject | Tree decision | eng |
dc.title | Un algoritmo novedoso para la detección de tareas repetitivas con secuencia lógica en el teclado | spa |
dc.type | Other | eng |
dcterms.references | Alonso, D., Pastor, J., Sánchez, P., Álvarez, B., & Vicente-Chicote, C. (2012). Generación Automática de Software para Sistemas de Tiempo Real: Un Enfoque basado en Componentes, Modelos y Frameworks. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 170-181. | spa |
dcterms.references | Alshalabi, H., Tiun, S., Omar, N., & Albared, M. (2013). Experiments on the Use of Feature Selection and Machine Learning Methods in Automatic Malay Text Categorization. Procedia Technology, 11, 748-754. | eng |
dcterms.references | Arcuri, A. (2011). Evolutionary repair of faulty software. Applied Soft Computing, 11(4), 3494-3514. | eng |
dcterms.references | Arcuri, A., & Yao, X. (2008). Search based software testing of object-oriented container. Information Sciences, 178(15), 3075-3095. | eng |
dcterms.references | Argall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robot. Auton. Syst., 469-483. | eng |
dcterms.references | Armstrong, R., Freitag, D., Joachims, T., & Mitchell, T. (1995). WebWatcher: A learning apprentice for the World Wide Web. AAAI spring symposium on information gathering. | eng |
dcterms.references | Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370-7389. | eng |
dcterms.references | Caglayan, A., Snorrason, M., Jacoby, J., Mazzu, J., Jones, R., & Kumar, K. (1997). Learn sesame: a learning agent engine. Applied Artificial Intelligence, 11, 393-412. | eng |
dcterms.references | Chen, T., Zhang, X.-S., Guo, S.-Z., Li, H.-Y., & Wu, Y. (2013). State of the art: Dynamic symbolic execution for automated test generation. Future Generation Computer Systems, 29(7), 1758-1773. | eng |
dcterms.references | Christl, A., Koschke, R., & Storey, M. (2007). Automated clustering to support the reflexion method. Information and Software Technology, 49(3), 255-274. | eng |
dcterms.references | Cobo, L., Subramanian, K., Isbell, C., Lanterman, A., & Thomaz, A. (2014). Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains. Artificial Intelligence, 103-128. | eng |
dcterms.references | Coronato, A., d'Acierno, A., & De Pietro, G. (2005). Automatic implementation of constraints in component based applications. Information and Software Technology, 47(7), 497-509. | eng |
dcterms.references | Cypher, A. (1993). Watch what I do: Programming by demonstration. Cambridge, Mass.: MIT Press. | eng |
dcterms.references | Darragh, J., & Witten, I. (1991). Adaptive predictive text generation and the reactive keyboard. Interacting with Computers, 3(1), 27-50. | eng |
dcterms.references | Debroy, V., & Wong, W. (2014). Combining mutation and fault localization for automated program debugging. Journal of Systems and Software, 90, 45-60. | eng |
dcterms.references | Dehua, W., Pan, L., Bo, L., & Zeng, G. (2012). Water Quality Automatic Monitoring System Based on GPRS Data Communications. Procedia Engineering, 28, 840-843. | eng |
dcterms.references | Derrode, S., & Pieczynski, W. (2013). Unsupervised data classification using pairwise Markov chains with automatic copulas selection. Computational Statistics & Data Analysis, 63, 81-98. | eng |
dcterms.references | Dominguez, A., Tojo, J., & Castier, M. (2002). Automatic implementation of thermodynamic models for reliable parameter estimation using computer algebra. Computers & Chemical Engineering, 26(10), 1473-1479. | eng |
dcterms.references | Dunn, k. (2004). Automatic update risks: can patching let a hacker in? Network Security, 2004(7), 5-8. | eng |
dcterms.references | Farjoodi, J., & Soroushian, A. (2001). Efficient Automatic Selection of Tolerances in Nonlinear Dynamic Analysis. En A. Zingoni, Structural Engineering, Mechanics and Computation (págs. 853-859). Oxford: Elsevier Science. | eng |
dcterms.references | Fernández, A., Gómez, A., Lecumberry, F., Pardo, A., & Ramírez, I. (2014). Pattern Recognition in Latin America in the “Big Data” Era. Pattern Recognition, In press. | eng |
dcterms.references | Flanagan, C. (2004). Automatic software model checking via constraint logic. Science of Computer Programming, 50(1-3), 253-270. | eng |
dcterms.references | Gómez, A., Penadés, C., Canós, J., Borges, M., & Llavador, M. (2014). A framework for variable content document generation with multiple actors. Information and Software Technology, 56(9), 1101-1121. | eng |
dcterms.references | Guevara, C. (2012). Reconocimiento de patrones para identificación de usuarios en accesos informáticos. Madrid, España: Universidad Complutense de Madrid, Tesis de Maestría. | spa |
dcterms.references | Guo, Y., Wang, Y., & Liu, X. (2014). Real-time optical detection system for monitoring roller condition with automatic error compensation. Optics and Lasers in Engineering, 53, 69-78. | eng |
dcterms.references | Holling, H., Bertling, J., & Zeuch, N. (2009). Automatic item generation of probability word problems. Studies in Educational Evaluation, 35(2-3), 71-76. | eng |
dcterms.references | Hopcroft, J., Motwani, R., & Ullman, J. (2001). Introduction to Automata Theory, Languages, and Computation. Massachusetts, USA: Addison-Wesley. | eng |
dcterms.references | Joo, M., & Zhou, Y. (2008). A novel framework for automatic generation of fuzzy neural networks. Neurocomputing, 71(4-6), 584-591. | eng |
dcterms.references | Kaber, D., & Prinzel, L. (2006). Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research. Hanover: NASA. | eng |
dcterms.references | Ku, N., Jo, A., Ha, S., Rho, M., & Lee, K.-Y. (2012). Automatic generation of equations of motion for multibody system in discrete event simulation framework. Procedia Technology, 1, 55-64. | eng |
dcterms.references | Kuo, R., Huang, Y., Lin, C., Wu, Y., & Zulvia, F. (2014). Automatic kernel clustering with bee colony optimization algorithm. Information Sciences, 283(1), 107-122. | eng |
dcterms.references | Les, T., Kruk, M., & Osowski, S. (2013). Automatic recognition of industrial tools using artificial intelligence approach. Expert Systems with Applications, 40(12), 4777-4784. | eng |
dcterms.references | Li, G., Lian, H., Feng, S., & Zhu, L. (2013). Automatic variable selection for longitudinal generalized linear models. Computational Statistics & Data Analysis, 61, 174-186. | eng |
dcterms.references | Lieberman, H. (1993). Mondrian: A teachable graphical editor. En D. Cypher, In Watch what I do: Programming by demonstration. Cambridge, Mass.: MIT Press. | eng |
dcterms.references | Liu, D., Cui, B., Liu, Y., & Zhong, D. (2013). Automatic control and real-time monitoring system for earth–rock dam material truck watering. Automation in Construction, 30, 70-80. | eng |
dcterms.references | Liu, D., Yang, Z., Tang, C., Wang, J., & Liu, Y. (2004). An automatic monitoring system for the shiplock slope of Wuqiangxi Hydropower Station. Engineering Geology, 76(1-2), 79-91. | eng |
dcterms.references | Lu, C., & Lu, Z. (2008). Local feature extraction for iris recognition with automatic scale selection. Image and Vision Computing, 26(7), 935-940. | eng |
dcterms.references | Lucey, P., Cohn, J., Prkachin, K., Solomon, P., Chew, S., & Matthews, I. (2012). Painful monitoring: Automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database. Image and Vision Computing, 30(3), 197-205. | eng |
dcterms.references | Maes, P. (1994). Agents that reduce workand information overload. Communications of the ACM, 37(7), 31-40. | eng |
dcterms.references | Maes, P., & Kozierok, R. (1993). Learning: Interface Agents. AAAI-93 Proceedings, (págs. 459-465). | eng |
dcterms.references | Messelis, T., & De Causmaecker, P. (2014). An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 233(3), 511-528. | eng |
dcterms.references | Mitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D. (1994). Experience with a learning personal assistant. Communications of the ACM, 37(7), 81-91. | eng |
dcterms.references | Mokhtarian, F., & Abbasi, S. (2005). Robust automatic selection of optimal views in multi-view free-form object recognition. Pattern Recognition, 38(7), 1021-1031. | eng |
dcterms.references | Moral, S. (2006). Modelos de Computación I. Granada, España: Guias de asignatura. Universidad de Granada. | spa |
dcterms.references | Motoda, H. (1997). Machine learning techniques to make computers easier to use. Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97). San Francisco: Morgan Kaufmann. | eng |
dcterms.references | Myer, T. (2009). Apple Automator with AppleScript Bible. Indianapolis: Jhon Wiley & Sons. | eng |
dcterms.references | Osasan, K., & Stacey, T. (2014). Automatic prediction of time to failure of open pit mine slopes based on radar monitoring and inverse velocity method. International Journal of Mining Science and Technology, 24(2), 275-280. | eng |
dcterms.references | Palomo-Duarte, M., García-Domínguez, A., & Medina-Bulo, I. (2014). Automatic dynamic generation of likely invariants for WS-BPEL compositions. Expert Systems with Applications, 41(11), 5014-5055. | eng |
dcterms.references | Parasuraman, R., Sheridan, T., & Wickens, C. (2000). A Model for Types and Levels of Human Interaction. IEEE Transactions on systems, man, and cybernetics - Part A: Systems and Humans, 286-297. | eng |
dcterms.references | Pérez, B., & Polo, M. (2009). Generación automática de casos de prueba para Líneas de Producto de Software. Revista Española de Innovación, Calidad e Ingeniería del Software, 5(2), 17-27. | spa |
dcterms.references | Ruvini, J., & Dony, C. (2000). APE: Learning User’s Habits to Automate Repetitive Tasks. Proceedings of the 2000 Conference on Intelligent User Interfaces. | eng |
dcterms.references | Sagarna, R., Mendiburu, A., Inza, I., & Lozano, J. (2014). Assisting in search heuristics selection through multidimensional supervised classification: A case study on software testing. Information Sciences, 258, 122-139. | eng |
dcterms.references | Sah, M., & Wade, V. (2012). Automatic metadata mining from multilingual enterprise content. Web Semantics: Science, Services and Agents on the World Wide Web, 11, 41-62. | eng |
dcterms.references | Sarter, N., Woods, D., & Billings, C. (1997). Automation Surprises. En G. Salvendry, Handbook of Human Factors & Ergonomics. Wiley. | eng |
dcterms.references | Seok, J., & Seong, H. (2015). Automatic generation algorithm of expected results for testing of component-based software system. Information and Software Technology, 57, 1-20. | eng |
dcterms.references | Shahriar, H., & Zulkernine, M. (2011). Taxonomy and classification of automatic monitoring of program security vulnerability exploitations. Journal of Systems and Software, 84(2), 250-269. | eng |
dcterms.references | Sheridan, T., & Verplank, W. (1987). Human and computer control of undersea teleoperators. Cambridge, MA: MIT Man-Machine Laboratory. | eng |
dcterms.references | Shih, H. (2014). A robust occupancy detection and tracking algorithm for the automatic monitoring and commissioning of a building. Energy and Buildings, 77, 270-280. | eng |
dcterms.references | Superalumnos. (07 de 11 de 2007). Superalumnos.net. Recuperado el 11 de 08 de 2014, de Base de datos de ejemplo: Inmobiliaria: http://superalumnos.net/base-de-datos-de-ejemplo-inmobiliaria | spa |
dcterms.references | Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. Cambridge: Cambridge University Press. | eng |
dcterms.references | Van Royen, K., Poels, K., Daelema, W., & Vandebosch, H. (2014). Kathleen Van Royen, Karolien Poels, Walter Daelemans, Heidi Vandebosch, Automatic monitoring of cyberbullying on social networking sites: From technological feasibility to desirability. Telematics and Informatics, in Press. | eng |
dcterms.references | Varela-Vaca, A., & Gasca, R. (2013). Towards the automatic and optimal selection of risk treatments for business processes using a constraint programming approach. Information and Software Technology, 55(11), 1948-1973. | eng |
dcterms.references | Villanueva Polanco, R. (2014). Algoritmos Basicos Para La Multiplicacion De Puntos En Una Curva Eliptica. Investigacion e Innovación en Ingenierias, 2, (1). DOI: 10.17081/invinno.2.1.2057 | spa |
dcterms.references | Wang, Q., & Yu, X. (2014). Ontology based automatic feature recognition framework. Computers in Industry, 65(7), 1041-1052. | eng |
dcterms.references | Wang, Y., Wang, D., & Fang, W. (2014). Automatic node selection and target tracking in wireless camera sensor networks. Computers & Electrical Engineering, 40(2), 484-493. | eng |
dcterms.references | Xu, J. (2012). Rule-based automatic software performance diagnosis and improvement. Performance Evaluation, 69(11), 525-550. | eng |
dcterms.references | Yajun, Z., & Qian, Q. (2012). A New Type of Automatic Monitoring System of Static and Dynamic Displacement on Dam and Slope. Procedia Engineering, 43, 387-392. | eng |
dcterms.references | Yigit, T., Isik, A., & Ince, M. (2014). Multi Criteria Decision Making System for Learning Object Repository. Procedia - Social and Behavioral Sciences, 141, 813-816. | eng |
dcterms.references | Zhan, Y., & Clark, J. (2008). A search-based framework for automatic testing of MATLAB/Simulink models. Journal of Systems and Software, 81(2), 262-285. | eng |
dcterms.references | Zhang, Y., Dang, Y., Chen, H., Thurmond, M., & Larson, C. (2009). Automatic online news monitoring and classification for syndromic surveillance. Decision Support Systems, 47(4), 508-517. | eng |
dcterms.references | Zhang, Y., Li, Y., & Zheng, W. (2013). Automatic software deployment using user-level virtualization for cloud-computing. Future Generation Computer Systems, 29(1), 323-329. | eng |
dcterms.references | Zhang, Y., Zhang, L., & Alamgir, M. (2014). Adaptive 3D Facial Action Intensity Estimation and Emotion Recognition. Expert Systems with Applications, In press. | eng |
dcterms.references | Zhou, P., Li, D., Wu, H., & Cheng, F. (2011). The automatic model selection and variable kernel width for RBF neural networks. Neurocomputing, 74(17), 3628-3637. | eng |
dcterms.references | Zienkiewicz, O., Taylor, R., & Zhu, J. (2013). Automatic Mesh Generation. En O. Zienkiewicz, R. Taylor, & J. Zhu, The Finite Element Method: its Basis and Fundamentals (Septima edición ed., págs. 573-640). Oxford: Butterworth-Heinemann. | eng |
sb.programa | Maestría en Ingeniería de Sistemas y Computación | spa |
sb.sede | Sede Barranquilla | spa |