Un algoritmo novedoso para la detección de tareas repetitivas con secuencia lógica en el teclado

dc.contributor.authorLondoño González, Bairon
dc.date.accessioned2018-05-25T16:29:11Z
dc.date.available2018-05-25T16:29:11Z
dc.date.issued2014
dc.description.abstractEn este trabajo se desarrolla una herramienta para la detección de tareas repetitivas con secuencias lógicas realizadas a través de comandos del teclado, mediante el diseño e implementación de un algoritmo basado en el uso de autómatas finitos determinísticos y agentes de búsqueda de patrones. La novedad del algoritmo desarrollado radica en que está orientado a la detección de tareas repetitivas cuyas actividades tienen una secuencia lógica y que actualmente no se encuentran automatizadas por lo complejo que es esta labor. El diseño del algoritmo partió de la clasificación de todos los comandos de Windows, luego de clasificar los comandos de Windows y tomar los que aplican a tareas repetitivas simples o de secuencia lógica en sus actividades se representaron en un autómata finito determinista con el fin de obtener una base de conocimiento de actividades que construyan tareas repetitivas, finalmente se construyó un Keylogger que capture los comandos del teclado y un Agente que se encarga de filtrar los comandos recibidos por el Keylogger, evaluar los comandos en el AFD y detectar tareas repetitivas. El algoritmo diseñado se validó mediante un conjunto de pruebas realizadas sobre dos casos artificiales y dos casos reales, las cuales manifestaron un excelente desempeño del algoritmo dado que en todas las pruebas se detectó la tarea repetitiva en ejecución con un máximo de cinco actividades reales y una duración menor a un minuto.spa
dc.description.abstractIn this thesis develops a tool for the detection of repetitive tasks with logical sequence performed through keyboard commands, through the design and implementation of an algorithm based on deterministic finite state machines using agents for search patterns. The novelty of the algorithm developed is that it is aimed at the detection of repetitive tasks whose activities have a logical sequence and that are not currently automated by how complex this work. The design of the algorithm was based on the classification of all Windows command after qualifying Windows commands and take that apply to simple repetitive tasks or logical sequence in their activities were represented in a deterministic finite automaton in order to obtain a knowledge base of activities that build repetitive tasks, finally a keylogger that captures keyboard commands and an Agent who is responsible for filtering the commands received by the keylogger, evaluate the commands in the AFD and detect repetitive tasks built. The proposed algorithm was validated by a set of tests on two artificial cases and two real cases, which showed an excellent performance of the algorithm since all tests repetitive running task was detected with a maximum of five actual activities and lasting less than a minute.eng
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2115
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ingenieríasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.subjectAutomatización de tareas repetitivasspa
dc.subjectAlgoritmos para la detección de patronesspa
dc.subjectComandos de tecladospa
dc.subjectAutómatasspa
dc.subjectÁrboles de decisiónspa
dc.subjectAutomation of repetitive taskseng
dc.subjectAlgorithms for detecting patternseng
dc.subjectKeyboard commandseng
dc.subjectAutomataeng
dc.subjectTree decisioneng
dc.titleUn algoritmo novedoso para la detección de tareas repetitivas con secuencia lógica en el tecladospa
dc.typeOthereng
dcterms.referencesAlonso, D., Pastor, J., Sánchez, P., Álvarez, B., & Vicente-Chicote, C. (2012). Generación Automática de Software para Sistemas de Tiempo Real: Un Enfoque basado en Componentes, Modelos y Frameworks. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 170-181.spa
dcterms.referencesAlshalabi, H., Tiun, S., Omar, N., & Albared, M. (2013). Experiments on the Use of Feature Selection and Machine Learning Methods in Automatic Malay Text Categorization. Procedia Technology, 11, 748-754.eng
dcterms.referencesArcuri, A. (2011). Evolutionary repair of faulty software. Applied Soft Computing, 11(4), 3494-3514.eng
dcterms.referencesArcuri, A., & Yao, X. (2008). Search based software testing of object-oriented container. Information Sciences, 178(15), 3075-3095.eng
dcterms.referencesArgall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robot. Auton. Syst., 469-483.eng
dcterms.referencesArmstrong, R., Freitag, D., Joachims, T., & Mitchell, T. (1995). WebWatcher: A learning apprentice for the World Wide Web. AAAI spring symposium on information gathering.eng
dcterms.referencesBorràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications, 41(16), 7370-7389.eng
dcterms.referencesCaglayan, A., Snorrason, M., Jacoby, J., Mazzu, J., Jones, R., & Kumar, K. (1997). Learn sesame: a learning agent engine. Applied Artificial Intelligence, 11, 393-412.eng
dcterms.referencesChen, T., Zhang, X.-S., Guo, S.-Z., Li, H.-Y., & Wu, Y. (2013). State of the art: Dynamic symbolic execution for automated test generation. Future Generation Computer Systems, 29(7), 1758-1773.eng
dcterms.referencesChristl, A., Koschke, R., & Storey, M. (2007). Automated clustering to support the reflexion method. Information and Software Technology, 49(3), 255-274.eng
dcterms.referencesCobo, L., Subramanian, K., Isbell, C., Lanterman, A., & Thomaz, A. (2014). Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains. Artificial Intelligence, 103-128.eng
dcterms.referencesCoronato, A., d'Acierno, A., & De Pietro, G. (2005). Automatic implementation of constraints in component based applications. Information and Software Technology, 47(7), 497-509.eng
dcterms.referencesCypher, A. (1993). Watch what I do: Programming by demonstration. Cambridge, Mass.: MIT Press.eng
dcterms.referencesDarragh, J., & Witten, I. (1991). Adaptive predictive text generation and the reactive keyboard. Interacting with Computers, 3(1), 27-50.eng
dcterms.referencesDebroy, V., & Wong, W. (2014). Combining mutation and fault localization for automated program debugging. Journal of Systems and Software, 90, 45-60.eng
dcterms.referencesDehua, W., Pan, L., Bo, L., & Zeng, G. (2012). Water Quality Automatic Monitoring System Based on GPRS Data Communications. Procedia Engineering, 28, 840-843.eng
dcterms.referencesDerrode, S., & Pieczynski, W. (2013). Unsupervised data classification using pairwise Markov chains with automatic copulas selection. Computational Statistics & Data Analysis, 63, 81-98.eng
dcterms.referencesDominguez, A., Tojo, J., & Castier, M. (2002). Automatic implementation of thermodynamic models for reliable parameter estimation using computer algebra. Computers & Chemical Engineering, 26(10), 1473-1479.eng
dcterms.referencesDunn, k. (2004). Automatic update risks: can patching let a hacker in? Network Security, 2004(7), 5-8.eng
dcterms.referencesFarjoodi, J., & Soroushian, A. (2001). Efficient Automatic Selection of Tolerances in Nonlinear Dynamic Analysis. En A. Zingoni, Structural Engineering, Mechanics and Computation (págs. 853-859). Oxford: Elsevier Science.eng
dcterms.referencesFernández, A., Gómez, A., Lecumberry, F., Pardo, A., & Ramírez, I. (2014). Pattern Recognition in Latin America in the “Big Data” Era. Pattern Recognition, In press.eng
dcterms.referencesFlanagan, C. (2004). Automatic software model checking via constraint logic. Science of Computer Programming, 50(1-3), 253-270.eng
dcterms.referencesGómez, A., Penadés, C., Canós, J., Borges, M., & Llavador, M. (2014). A framework for variable content document generation with multiple actors. Information and Software Technology, 56(9), 1101-1121.eng
dcterms.referencesGuevara, C. (2012). Reconocimiento de patrones para identificación de usuarios en accesos informáticos. Madrid, España: Universidad Complutense de Madrid, Tesis de Maestría.spa
dcterms.referencesGuo, Y., Wang, Y., & Liu, X. (2014). Real-time optical detection system for monitoring roller condition with automatic error compensation. Optics and Lasers in Engineering, 53, 69-78.eng
dcterms.referencesHolling, H., Bertling, J., & Zeuch, N. (2009). Automatic item generation of probability word problems. Studies in Educational Evaluation, 35(2-3), 71-76.eng
dcterms.referencesHopcroft, J., Motwani, R., & Ullman, J. (2001). Introduction to Automata Theory, Languages, and Computation. Massachusetts, USA: Addison-Wesley.eng
dcterms.referencesJoo, M., & Zhou, Y. (2008). A novel framework for automatic generation of fuzzy neural networks. Neurocomputing, 71(4-6), 584-591.eng
dcterms.referencesKaber, D., & Prinzel, L. (2006). Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research. Hanover: NASA.eng
dcterms.referencesKu, N., Jo, A., Ha, S., Rho, M., & Lee, K.-Y. (2012). Automatic generation of equations of motion for multibody system in discrete event simulation framework. Procedia Technology, 1, 55-64.eng
dcterms.referencesKuo, R., Huang, Y., Lin, C., Wu, Y., & Zulvia, F. (2014). Automatic kernel clustering with bee colony optimization algorithm. Information Sciences, 283(1), 107-122.eng
dcterms.referencesLes, T., Kruk, M., & Osowski, S. (2013). Automatic recognition of industrial tools using artificial intelligence approach. Expert Systems with Applications, 40(12), 4777-4784.eng
dcterms.referencesLi, G., Lian, H., Feng, S., & Zhu, L. (2013). Automatic variable selection for longitudinal generalized linear models. Computational Statistics & Data Analysis, 61, 174-186.eng
dcterms.referencesLieberman, H. (1993). Mondrian: A teachable graphical editor. En D. Cypher, In Watch what I do: Programming by demonstration. Cambridge, Mass.: MIT Press.eng
dcterms.referencesLiu, D., Cui, B., Liu, Y., & Zhong, D. (2013). Automatic control and real-time monitoring system for earth–rock dam material truck watering. Automation in Construction, 30, 70-80.eng
dcterms.referencesLiu, D., Yang, Z., Tang, C., Wang, J., & Liu, Y. (2004). An automatic monitoring system for the shiplock slope of Wuqiangxi Hydropower Station. Engineering Geology, 76(1-2), 79-91.eng
dcterms.referencesLu, C., & Lu, Z. (2008). Local feature extraction for iris recognition with automatic scale selection. Image and Vision Computing, 26(7), 935-940.eng
dcterms.referencesLucey, P., Cohn, J., Prkachin, K., Solomon, P., Chew, S., & Matthews, I. (2012). Painful monitoring: Automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database. Image and Vision Computing, 30(3), 197-205.eng
dcterms.referencesMaes, P. (1994). Agents that reduce workand information overload. Communications of the ACM, 37(7), 31-40.eng
dcterms.referencesMaes, P., & Kozierok, R. (1993). Learning: Interface Agents. AAAI-93 Proceedings, (págs. 459-465).eng
dcterms.referencesMesselis, T., & De Causmaecker, P. (2014). An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 233(3), 511-528.eng
dcterms.referencesMitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D. (1994). Experience with a learning personal assistant. Communications of the ACM, 37(7), 81-91.eng
dcterms.referencesMokhtarian, F., & Abbasi, S. (2005). Robust automatic selection of optimal views in multi-view free-form object recognition. Pattern Recognition, 38(7), 1021-1031.eng
dcterms.referencesMoral, S. (2006). Modelos de Computación I. Granada, España: Guias de asignatura. Universidad de Granada.spa
dcterms.referencesMotoda, H. (1997). Machine learning techniques to make computers easier to use. Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97). San Francisco: Morgan Kaufmann.eng
dcterms.referencesMyer, T. (2009). Apple Automator with AppleScript Bible. Indianapolis: Jhon Wiley & Sons.eng
dcterms.referencesOsasan, K., & Stacey, T. (2014). Automatic prediction of time to failure of open pit mine slopes based on radar monitoring and inverse velocity method. International Journal of Mining Science and Technology, 24(2), 275-280.eng
dcterms.referencesPalomo-Duarte, M., García-Domínguez, A., & Medina-Bulo, I. (2014). Automatic dynamic generation of likely invariants for WS-BPEL compositions. Expert Systems with Applications, 41(11), 5014-5055.eng
dcterms.referencesParasuraman, R., Sheridan, T., & Wickens, C. (2000). A Model for Types and Levels of Human Interaction. IEEE Transactions on systems, man, and cybernetics - Part A: Systems and Humans, 286-297.eng
dcterms.referencesPérez, B., & Polo, M. (2009). Generación automática de casos de prueba para Líneas de Producto de Software. Revista Española de Innovación, Calidad e Ingeniería del Software, 5(2), 17-27.spa
dcterms.referencesRuvini, J., & Dony, C. (2000). APE: Learning User’s Habits to Automate Repetitive Tasks. Proceedings of the 2000 Conference on Intelligent User Interfaces.eng
dcterms.referencesSagarna, R., Mendiburu, A., Inza, I., & Lozano, J. (2014). Assisting in search heuristics selection through multidimensional supervised classification: A case study on software testing. Information Sciences, 258, 122-139.eng
dcterms.referencesSah, M., & Wade, V. (2012). Automatic metadata mining from multilingual enterprise content. Web Semantics: Science, Services and Agents on the World Wide Web, 11, 41-62.eng
dcterms.referencesSarter, N., Woods, D., & Billings, C. (1997). Automation Surprises. En G. Salvendry, Handbook of Human Factors & Ergonomics. Wiley.eng
dcterms.referencesSeok, J., & Seong, H. (2015). Automatic generation algorithm of expected results for testing of component-based software system. Information and Software Technology, 57, 1-20.eng
dcterms.referencesShahriar, H., & Zulkernine, M. (2011). Taxonomy and classification of automatic monitoring of program security vulnerability exploitations. Journal of Systems and Software, 84(2), 250-269.eng
dcterms.referencesSheridan, T., & Verplank, W. (1987). Human and computer control of undersea teleoperators. Cambridge, MA: MIT Man-Machine Laboratory.eng
dcterms.referencesShih, H. (2014). A robust occupancy detection and tracking algorithm for the automatic monitoring and commissioning of a building. Energy and Buildings, 77, 270-280.eng
dcterms.referencesSuperalumnos. (07 de 11 de 2007). Superalumnos.net. Recuperado el 11 de 08 de 2014, de Base de datos de ejemplo: Inmobiliaria: http://superalumnos.net/base-de-datos-de-ejemplo-inmobiliariaspa
dcterms.referencesSutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. Cambridge: Cambridge University Press.eng
dcterms.referencesVan Royen, K., Poels, K., Daelema, W., & Vandebosch, H. (2014). Kathleen Van Royen, Karolien Poels, Walter Daelemans, Heidi Vandebosch, Automatic monitoring of cyberbullying on social networking sites: From technological feasibility to desirability. Telematics and Informatics, in Press.eng
dcterms.referencesVarela-Vaca, A., & Gasca, R. (2013). Towards the automatic and optimal selection of risk treatments for business processes using a constraint programming approach. Information and Software Technology, 55(11), 1948-1973.eng
dcterms.referencesVillanueva Polanco, R. (2014). Algoritmos Basicos Para La Multiplicacion De Puntos En Una Curva Eliptica. Investigacion e Innovación en Ingenierias, 2, (1). DOI: 10.17081/invinno.2.1.2057spa
dcterms.referencesWang, Q., & Yu, X. (2014). Ontology based automatic feature recognition framework. Computers in Industry, 65(7), 1041-1052.eng
dcterms.referencesWang, Y., Wang, D., & Fang, W. (2014). Automatic node selection and target tracking in wireless camera sensor networks. Computers & Electrical Engineering, 40(2), 484-493.eng
dcterms.referencesXu, J. (2012). Rule-based automatic software performance diagnosis and improvement. Performance Evaluation, 69(11), 525-550.eng
dcterms.referencesYajun, Z., & Qian, Q. (2012). A New Type of Automatic Monitoring System of Static and Dynamic Displacement on Dam and Slope. Procedia Engineering, 43, 387-392.eng
dcterms.referencesYigit, T., Isik, A., & Ince, M. (2014). Multi Criteria Decision Making System for Learning Object Repository. Procedia - Social and Behavioral Sciences, 141, 813-816.eng
dcterms.referencesZhan, Y., & Clark, J. (2008). A search-based framework for automatic testing of MATLAB/Simulink models. Journal of Systems and Software, 81(2), 262-285.eng
dcterms.referencesZhang, Y., Dang, Y., Chen, H., Thurmond, M., & Larson, C. (2009). Automatic online news monitoring and classification for syndromic surveillance. Decision Support Systems, 47(4), 508-517.eng
dcterms.referencesZhang, Y., Li, Y., & Zheng, W. (2013). Automatic software deployment using user-level virtualization for cloud-computing. Future Generation Computer Systems, 29(1), 323-329.eng
dcterms.referencesZhang, Y., Zhang, L., & Alamgir, M. (2014). Adaptive 3D Facial Action Intensity Estimation and Emotion Recognition. Expert Systems with Applications, In press.eng
dcterms.referencesZhou, P., Li, D., Wu, H., & Cheng, F. (2011). The automatic model selection and variable kernel width for RBF neural networks. Neurocomputing, 74(17), 3628-3637.eng
dcterms.referencesZienkiewicz, O., Taylor, R., & Zhu, J. (2013). Automatic Mesh Generation. En O. Zienkiewicz, R. Taylor, & J. Zhu, The Finite Element Method: its Basis and Fundamentals (Septima edición ed., págs. 573-640). Oxford: Butterworth-Heinemann.eng
sb.programaMaestría en Ingeniería de Sistemas y Computaciónspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
1.52 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones