Analysis of energy consumption in colombia using the holt method
datacite.rights | http://purl.org/coar/access_right/c_abf2 | eng |
dc.contributor.author | Contreras Salinas, Jheison | |
dc.contributor.author | López, Fernando | |
dc.contributor.author | Rondon Rodriguez, Carlos Andres | |
dc.contributor.author | Hernández palma4, Hugo G. | |
dc.contributor.author | De-la-Hoz-Hernández, Juan-David | |
dc.date.accessioned | 2020-10-14T16:03:35Z | |
dc.date.available | 2020-10-14T16:03:35Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Energy production is constantly facing major challenges today, because despite initiatives to promote the insertion of renewable energy, electricity consumption has shown considerable growth in recent years. In order to use an instrument that facilitates forecasts and predictive processes for the design of strategic plans associated with energy management, the application of the Holt Method is proposed using data on electricity demand in Colombia, GDP per capita and industrial value added, making an analysis of the last 10 years, based on figures from the World Bank. The final results predict that energy consumption for the period 2018-2020 will be between 66,231 GWk and 66,885 GWk. | eng |
dc.format.mimetype | spa | |
dc.identifier.doi | https://doi.org/10.32479/ijeep.8221 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6683 | |
dc.identifier.url | http://www.econjournals.com/index.php/ijeep/article/view/8221 | |
dc.language.iso | eng | eng |
dc.publisher | Econjournals | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | International Journal of Energy Economics and Policy | eng |
dc.source | Vol. 10, N° 6 (2020) | |
dc.subject | Energy Consumption | eng |
dc.subject | Holt Method | eng |
dc.subject | Energy Efficiency | eng |
dc.subject | Colombia | eng |
dc.title | Analysis of energy consumption in colombia using the holt method | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Barassi, M.R., Yuqian, Z. (2017), Combination Forecasting of Energy Demand in the UK. Available from: https://www.ssrn.com/ abstract=2907296. | eng |
dcterms.references | Contreras, D. (2016), El impacto de El Niño en Colombia. Revista Fasecolda, 163, 42-46. | spa |
dcterms.references | Delgadillo-Ruiz, O., Ramírez-Moreno, P.P., Leos-Rodríguez, J.A., Salas González, J.M., Valdez-Cepeda, R.D. (2016), Pronósticos y series de tiempo de rendimientos de granos básicos en México. Acta Universitaria, 26(3), 23-32. | spa |
dcterms.references | Farhani, S., Ozturk, I. (2015), Causal relationship between CO2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environmental Science and Pollution Research, 22(20), 15663-15676. | eng |
dcterms.references | Ghalehkhondabi, I., Ardjmand, E., Weckman, G.R., Young, W.A. (2017), An overview of energy demand forecasting methods published in 2005-2015. Energy Systems, 8(2), 411-447. | eng |
dcterms.references | Haiges, R., Wang, Y.D., Ghoshray, A., Roskilly, A.P. (2017), Forecasting electricity generation capacity in Malaysia: An auto regressive integrated moving average approach. Energy Procedia, 105, 3471- 3478. | eng |
dcterms.references | Hu, Y., Guo, D., Wang, M., Zhang, X., Wang, S. (2015), The relationship between energy consumption and economic growth: Evidence from china’s industrial sectors. Energies, 8(9), 9392-9406. | eng |
dcterms.references | Hyndman, R.J., Athanasopoulos, G. (2018), Forecasting: Principles and Practice. Melbourne, Australia: Monash University. | eng |
dcterms.references | Jalil, N.A.A., Ahmad, M.H., Mohamed, N. (2013), Electricity load demand forecasting using exponential smoothing methods. World Applied Sciences Journal, 22(11), 1540-1543. | eng |
dcterms.references | Lesaca, J.M.L., Guerrero, E.Z., Ubis, F.E., Bernardo, J.A. (2014), Memetic Algorithms in Operational Research Problems. Revista de Dirección y Administración de Empresas, 1(18), 1-19. | eng |
dcterms.references | Martínez, R., Zambrano, E., Nieto, J.J., Hernández, J., Costa, F. (2017), Evolución, vulnerabilidad e impactos económicos y sociales de El Niño 2015-2016 en América Latina. Investigaciones Geográficas, 68, 65-78. | eng |
dcterms.references | Mojica, D.J.D., Domínguez, A.B., Acosta, L.R., Montenegro, M.F., Palma, H.H., Cardona, S.A. (2015), Administrative function in the era of ICTs. Revista Lasallista de Investigación, 12(2), 139-151. | eng |
dcterms.references | Salcedo, D., Melo, L., Parra, D. (2016), Impactos de los fenómenos climáticos sobre el precio de los alimentos en Colombia. Ensayos Sobre Política Económica, 1, (34). | spa |
dcterms.references | Sant’Ana, P.H.M., Nebra, S., Simão, N.M., Dalmo, F.C. (2017), Energetic recovery of municipal solid waste scenario in São Paulo State, Brazil. In: WASTES-Solutions, Treatments and Opportunities. 2nd ed. Boca Raton, Florida: CRC Press. p1-7. | eng |
dcterms.references | Stephanidis, C., editor. (2018), HCI International 2018-Posters’ Extended Abstracts: 20th International Conference, HCI International 2018. Vol. 852. Las Vegas, NV, USA: Springer. | eng |
dcterms.references | Tovio, A.C., Alfaro, A.C. (2016), Análisis del comportamiento de las variables que determinan el circuito económico en Colombia. Aglala, 7(1), 94-121. | spa |
dcterms.references | Tratar, L.F., Strmčnik, E. (2016), The comparison of Holt-Winters method and multiple regression method: A case study. Energy, 109, 266-276. | eng |
dcterms.references | Ünal, Y.Z., Al-Turki, U.M., Zaim, S., Demirel, Ö.F., Görener, R. (2015), Developing Spreadsheet Models of Holt-Winter Methods and Solving with Microsoft Excel Solver and Differential Evaluation Technique: An Application to Tourism Sector. In: Industrial Engineering and Operations Management, 2015 International Conference. p1-8. | eng |
dcterms.references | Villada, F., Cadavid, D.R., Molina, J.D. (2014), Pronóstico del precio de la energía eléctrica usando redes neuronales artificiales. Revista Facultad de Ingeniería, 44, 111-118. | spa |
oaire.version | info:eu-repo/semantics/publishedVersion | eng |