Aislamiento y caracterización de bacterias endófitas del manglar (Avicennia germinans) con capacidad de tolerar altas concentraciones de NaCl
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Bolívar Anillo, Hernando José | |
dc.contributor.author | Rolong Orozco, Dani Alexander | |
dc.date.accessioned | 2022-12-09T14:33:55Z | |
dc.date.available | 2022-12-09T14:33:55Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Los bosques de manglar son ecosistemas que se desarrollan en zonas mareales, intermales y ribereñas de las costas tropicales y subtropicales, poseen una gran biodiversidad de fauna, flora y de microorganismos. Gracias a su particular fisiología y reproducción, los manglares pueden adaptarse a condiciones extremas, como medios acuáticos de alta salinidad (Vera & Martínez, 2013). Los mangles son altamente relevantes, ya que proporcionan las fuentes primarias de la red trófica, dado que, al generar hojarasca, benefician a varios peces y moluscos durante la fase sexual de su ciclo de vida, convirtiéndose en un sitio apto de reproducción de peces y de crustáceos tales como camarones, jaibas, bagres, pargos, entre otros (Ezcurra et al., 2009). Esto último, genera que la economía de gran parte de la población asentada en estos territorios de la costa se beneficie, puesto que su economía está basada en la pesca artesanal, recolección de moluscos, recolección y venta de crustáceos, acuicultura y el turismo (Von Prahl et al., 1990). Los manglares son considerados por la ONU como uno de los mayores captadores de gases de efecto invernadero como lo es el CO2 (Lee et al., 2014; Polidoro et al., 2010) convirtiéndolos en un ecosistema indispensable para afrontar los efectos del cambio climático. Además, al ser ricos en microorganismos y compuestos bioactivos, se emplean en la industria farmacéutica, biotecnológica, agrícola, etc (Bolívar-anillo et al., 2020; Castro et al., 2014; Wu et al., 2008; Xu, 2015). No obstante, a pesar de todos los beneficios que brindan, se encuentran en constante amenaza tanto por impactos antrópicos y naturales, ocasionando graves efectos desde el punto de vista ambiental, social y económico. La Ciénaga de Balboa ubicado en el municipio de Puerto Colombia, presenta características ambientales las cuales permiten el desarrollo de los manglares. Dichos manglares son un ecosistema representativo y poseen un gran valor ecológico y económico para el municipio, lamentablemente dicho ecosistema en los últimos años se ha venido viendo afectados por factores antrópicos y naturales dentro del cual la alteración de la hidrología del bosque, debido a la falta de aportes de agua dulce causada por el encausamiento de los arroyos ha generado un progresivo aumento de la salinidad de los suelos y por ende limita desde hace 10 a 20 años, el crecimiento de plántulas y árboles de mangle (Sánchez et al; 2019). Recientemente se ha documentado sobre el papel fundamental de los microorganismos asociados a la rizosfera del manglar, como los responsables de la adaptación y sobrevivencia de las plantas de mangle, a condiciones extremas de los sedimentos estuarinos en el cual se desarrollan, esto último gracias a la interacción dada por la liberación de exudados ricos en vitaminas y azúcares de las raíces del mangle (Bashan & Holguín; 2002). Por lo tanto, el objetivo de este estudio fue aislar y caracterizar bacterias endófitas del manglar con capacidad de tolerar altas concentraciones de NaCl y evaluar su capacidad de promoción de crecimiento vegetal, para proponerlas como alternativa para la reforestación de los bosques de manglar. La evaluación de tolerancia a diferentes concentraciones de NaCl reveló que todas las bacterias toleran de 0% a 15% y solo una fue capaz de soportar hasta 20% de sal. Igualmente, se detectó que el 42.8% de las cepas aisladas presentan actividad proteolítica, el 57.1% posee actividad amilolítica, ninguna de las cepas posee la capacidad de solubilizar fosfato ni potasio y el 71.4% de las bacterias son capaces de fijar nitrógeno atmosférico. Esta investigación preliminar demuestra que las bacterias endófitas del manglar de la Ciénaga de Balboa pueden ser empleadas para aumentar la tolerancia de las plántulas y árboles de mangle a estrés salino y en la promoción de crecimiento vegetal y proponerlas como una posible estrategia de reforestación de dicho ecosistema. Sin embargo, es necesario que se exploren aún más los manglares y de esta manera conocer el potencial uso que tiene el microbiota endófita de este y la contribución directa en la conservación y recuperación del mismo. | spa |
dc.description.abstract | Mangrove forests are ecosystems that develop in tidal, intertidal and riparian zones of the tropical and subtropical coasts, they possess a great biodiversity of fauna, flora and microorganisms. Thanks to their particular physiology and reproduction, mangroves can adapt to extreme conditions, such as high salinity aquatic environments (Vera & Martínez, 2013). Mangroves are highly relevant because they provide the primary sources of the food web, since, by generating litter, they benefit several fish and molluscs during the sexual phase of their life cycle, becoming a suitable breeding site for fish and crustaceans such as shrimps, crabs, catfish, snappers, among others (Ezcurra et al., 2009). The latter, generates that the economy of a large part of the population settled in these coastal territories benefits, since its economy is based on artisanal fishing, shellfish collection, crustacean collection and sale, aquaculture and tourism (Von Prahl et al., 1990). Mangroves are considered by the UN as one of the largest collectors of greenhouse gases such as CO2 (Lee et al., 2014; Polidoro et al., 2010) making them an indispensable ecosystem to face the effects of climate change. In addition, being rich in microorganisms and bioactive compounds, they are used in the pharmaceutical, biotechnology, agricultural, etc (Bolivar-anillo et al., 2020; Castro et al., 2014; Wu et al., 2008; Xu, 2015). However, despite all the benefits they provide, they are constantly threatened by both anthropic and natural impacts, causing serious environmental, social and economic effects. The Ciénaga de Balboa located in the municipality of Puerto Colombia, presents environmental characteristics that allow the development of mangroves. These mangroves are a representative ecosystem and have great ecological and economic value for the municipality, unfortunately this ecosystem in recent years has been affected by anthropogenic and natural factors within which the alteration of the hydrology of the forest, due to the lack of freshwater inputs caused by the channeling of streams has generated a progressive increase in soil salinity and therefore limited for 10 to 20 years, the growth of seedlings and mangrove trees (Sánchez et al; 2019). It has recently been documented the fundamental role of microorganisms associated with the rhizosphere of the mangrove, as those responsible for the adaptation and survival of mangrove plants, to extreme conditions of the estuarine sediments in which they develop, The latter thanks to the interaction given by the release of exudates rich in vitamins and sugars from the roots of the mangrove (Bashan & Holguín; 2002). Therefore, the aim of this study was to isolate and characterize endophytic mangrove bacteria with the ability to tolerate high concentrations of NaCl and evaluate their ability to promote plant growth, to propose them as an alternative for the reforestation of mangrove forests. Tolerance assessment at different concentrations of NaCl revealed that all bacteria tolerate 0% to 15% and only one was able to support up to 20% salt. Likewise, it was detected that 42.8% of the isolated strains have proteolytic activity, 57.1% have amylolytic activity, none of the strains has the ability to solubilize phosphate or potassium and 71.4% of the bacteria are able to fix atmospheric nitrogen. This preliminary research shows that endophytic bacteria from the mangrove of Balboa Swamp can be used to increase the tolerance of saplings and mangrove trees to saline stress and to promote plant growth and propose them as a possible Reforestation strategy for this ecosystem. However, it is necessary to further explore the mangroves and in this way know the potential use that the endophyte microbiota has of this and the direct contribution in its conservation and recovery | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/11668 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Avicennia germinans | spa |
dc.subject | Bacterias endófitas | spa |
dc.subject | Puerto Colombia | spa |
dc.subject | Manglares | spa |
dc.subject | Ciénaga de Balboa | spa |
dc.subject | Avicennia germinans | eng |
dc.subject | Endophytic bacteria | eng |
dc.subject | mangroves | eng |
dc.title | Aislamiento y caracterización de bacterias endófitas del manglar (Avicennia germinans) con capacidad de tolerar altas concentraciones de NaCl | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Agudelo, C., Bolívar, J., Polanía, J., Urrego, L., Yepes, A. y Sierra, A., 2015. Estructura y composición florística de los manglares de la bahía de Cispatá, Caribe colombiano. Revista de Biología Tropical 63: 1137-1147. https://www.redalyc.org/journal/449/44942283021/html/ | spa |
dcterms.references | Alongi, D.M. 1988. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb.Ecol. 15:59-79 https://doi.org/10.1007/BF02012952 | eng |
dcterms.references | Álvarez León, R., (2003). Los manglares de Colombia y la recuperación de sus áreas degradadas: revisión bibliografica y nuevas experiencias. Madera y Bosques, 9 (1),3-25.[fecha de Consulta 26 de Octubre de 2022]. ISSN: 1405-0471. Recuperado de: https://www.redalyc.org/articulo.oa?id=61790101 | spa |
dcterms.references | Amador, A., G. Holguin y Y. Bashan. 1999. Isolation of sulfate reducing bacteria and anoxygenic photosynthetic bacteria from mangrove aerial roots and sediments (resultados no publicados). | eng |
dcterms.references | Andreote, F., Jiménez, D., Chaves, D., Dias, A., Luvizotto, D., Dini-Andreote, F., de Melo, I. (2012). The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE, 7(6). http://doi.org/10.1371/journal.pone.0038600 | eng |
dcterms.references | Archana, G., Buch, A., & Naresh, K. (2012). Microorganisms in sustainable agriculture and biotechnology. Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion, (3)1–829. Springer, India. https://doi.org/10.1007/978-94-007-2214-9 | eng |
dcterms.references | Bashan, Y. y Holguín, G. (2002). Bacterias promotoras del crecimiento vegetal: una herramienta potencial para la reforestación de manglares áridos. Árboles , 16 (2), 159-166 | spa |
dcterms.references | Bayona, FE (2016). Análisis multitemporal de los ecosistemas de manglar presentes en la ciénaga de mallorquín, departamento del Atlántico. Recuperado de: http://hdl.handle.net/10654/15799 | spa |
dcterms.references | Berger, U., Rivera-Monroy, V. H., Doyle, T. W., Dahdouh-Guebas, F., Duke, N. C., Fontalvo-Herazo, M. L., Hildenbrandt, H., Koedam, N., Mehlig, U., Piou, C., & Twilley, R. R. (2008). Advances and limitations of individual-based models to analyze and predict dynamics of mangrove forests: A review. Aquatic Botany, 89(2), 260–274. https://doi.org/10.1016/j.aquabot.2007.12.015 | eng |
dcterms.references | Bibi, F., Ullah, I., Alvi, S., Bakhsh, S., Yasir, M., Al-Ghamdi, A., & Azhar, E. (2017). Diversity and bioprospecting potential of rhizo and endophytic bacteria from two mangrove plants in Saudi Arabia. Genetics and Molecular Research, 16(2), 1–12. http://doi.org/10.5897/AJMR2017.8552 | eng |
dcterms.references | Bolívar-Anillo, H. J.,. Anfuso, G., Chacón Abarca, S., Badillo Romero, M. D., Villate Daza, D. A., Serrano, M. C.. Sánchez Moreno, H. 2020. Natural processes and human actuations: impacts on mangrove forests of South America. Revista Costas, 2(1): 211-232. doi: 10.26359/costas.1802 | eng |
dcterms.references | Bolívar-Anillo, H.J., Sánchez, H., Fernandez, R., Villate, D., Anfuso, G., 2019. An Overview on Mangrove Forests Distribution in Colombia : an Ecosystem at Risk. J. Aquat. Sci. Mar. Biol. 2: 16–18. | eng |
dcterms.references | Castro, R.A., Quecine, M.C., Lacava, P.T. et al. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. SpringerPlus 3, 382 (2014). https://doi.org/10.1186/2193-1801-3-382 | eng |
dcterms.references | Chacón Abarca, S., Serrano, M. C., Bolívar-Anillo, H. J., Villate Daza, D. A., Sánchez Moreno, H., & Anfuso, G. (2020). Bosques de manglar del Caribe Norte Colombiano: Análisis, evolución y herramientas de gestión. Revista Latinoamericana De Recursos Naturales, 16(1), 31-54. Recuperado a partir de https://revista.itson.edu.mx/index.php/rlrn/article/view/289 | eng |
dcterms.references | Dias, A., Andreote, F., Andreote, F., Lacava, P., Sá, A., Melo, I., & Azevedo, J. (2009). Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World Journal of Microbiology and Biotechnology, 25(7), 1305–1311. http://doi.org/10.1007/s11274-009-0013-7 | eng |
dcterms.references | Dourado, M. N., Ferreira, A., Araújo, W. L., Azevedo, J. L., & Lacava, P. T. (2012). The Diversity of Endophytic Methylotrophic Bacteria in an Oil-Contaminated and an Oil-Free Mangrove Ecosystem and Their Tolerance to Heavy Metals. Biotechnology Research International, 2012, 1–8. http://doi.org/10.1155/2012/759865 | eng |
dcterms.references | Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., ... & Dahdouh-Guebas, F. (2007). A world without mangroves?. Science, 317(5834), 41-42. DOI: 10.1126/ciencia.317.5834.41b | eng |
dcterms.references | Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 23(2), 115–137. https://doi.org/10.1007/s11273-014-9397-8 | eng |
dcterms.references | Etesami, H., & Alikhani, H. A. (2019). Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants. In Saline Soil-based Agriculture by Halotolerant Microorganisms. https://doi.org/10.1007/978-981-13-8335-9_5 | eng |
dcterms.references | Ezcurra, E., O. Aburto y L. Rosenzweig. 2009. Los riñones del mundo: ¿Por qué debemos proteger los manglares de México? Investigación Ambiental. Volumen 1. Número 2. 202-206 pp. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/DOFsr/INVEAMB000018.pdf | spa |
dcterms.references | Galindo, T., Polanía, J., Sánchez, J., Moreno, N., Vanegas, J., & Holgín, G. (2006). Efecto de inoculantes microbianos sobre la promoción de crecimiento de plántilas de mangle y plantas de Citrullus vulgaris -San Andrés Isla, Colombia. Acta Biológica Colombiana, 11(1), 83–97. http://www.scielo.org.co/scielo.php?pid=S0120548X2006000100007&script=sci_arttext | spa |
dcterms.references | García, S.C. (2011). Bacterias simbióticas fijadoras de nitrógeno. Cuadernos de Tomás, (3), 173-186.https://dialnet.unirioja.es/servlet/articulo?codigo=3761553 | spa |
dcterms.references | Gómez Osorio, L. M. (2017). Aislamiento de bacterias solubilizadoras de fosfato nativas de la ciénaga de Mallorquín en el departamento del Atlántico, Colombia. https://hdl.handle.net/10901/17616 | spa |
dcterms.references | Haldar, S., & Nazareth, S. W. (2018). Taxonomic diversity of bacteria from mangrove 56 sediments of Goa: metagenomic and functional analysis. 3 Biotech, 8(10), 0. http://doi.org/10.1007/s13205-018-1441-6 | eng |
dcterms.references | Herrera, L. (2015). Microorganismos productores de enzimas hidrolíticas provenientes del oligoqueto antártico , Grania sp . http://www.iau.gub.uy/wp-content/uploads/2018/11/Herrera-2015.pdf | spa |
dcterms.references | Holguin, G., Bashan, Y., Puente, E., Carrillo, A., Bethlenfalvay, G., Rojas, A., ... & Hernández, J. P. (2003). Promoción Del Crecimiento En Plantas Por Bacterias De La Rizosfera Plant Growth Promotion By Rhizosphere Bacteria. Agricultura Técnica en México, 29(2). https://www.redalyc.org/pdf/608/60829210.pdf | spa |
dcterms.references | Holguin, G., M.A. Guzman y Y. Bashan. 1992. Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: Their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol. Ecol. 101:207-216. https://doi.org/10.1111/j.1574-6968.1992.tb05777.x | eng |
dcterms.references | Holguin, G., Vazquez, P., & Bashan, Y. (2001). The role of sediment microorganisms in the productivity , conservation , and rehabilitation of mangrove ecosystems : an overview, 265–278. http://doi.org/10.1007/s003740000319 | eng |
dcterms.references | Khianngam, S., Techakriengkrai, T., Raksasiri, B., Kanjanamaneesathian, M., & Tanasupawat, S. (2013). Isolation and screening of endophytic bacteria for hydrolytic 57 enzymes from plant in mangrove forest at Pranburi, Prachuap Khiri Khan, Thailand. In Endophytes for plant protection: the state of the art (pp. 279–284). Retrieved from http://dpg.phytomedizin.org/fileadmin/daten/04_Verlag/02_SP/11_PPPHE_2013/0294- sp-2013-ppphe-2.pdf | eng |
dcterms.references | Lee, S. Y., Primavera, J. H., Dahdouh-Guebas, F., McKee, K., Bosire, J. O., Cannicci, S., Diele, K., Fromard, F., Koedam, N., Marchand, C., Mendelssohn, I., Mukherjee, N., & Record, S. (2014). Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography, 23(7), 726–743. https://doi.org/https://doi.org/10.1111/geb.12155 | eng |
dcterms.references | Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., Mckee, K., Bosire, J., Cannicci, S., et al., 2014. Ecological role and services of tropical mangrove ecosystems: A reassessment. Global Ecology and Biogeography 23: 726–743. https://doi.org/10.1111/geb.12155 | eng |
dcterms.references | Martins, N. (2004). Os fosfatos na cana-de-açúca. Escola Superior de agricultura Luiz de Queiroz, Piracicaba, 87. https://www.teses.usp.br/teses/disponiveis/11/11141/tde-23112004-163145/publico/nilo.pdf | eng |
dcterms.references | Matondkar, S.G.P., S. Mahtani y S. Mavinkurve. 1981. Studies on mangrove swamps of Goa: I. Heterotrophic bacterial flora from mangrove swamps. Mahasagar-Bulletin of the National Institute of Oceanography 14:325-327. http://ijs.nio.org/index.php/msagar/article/view/2387 | eng |
dcterms.references | Miles, DH, Kokpol, U., Chittawong, V., Tip-Pyang, S., Tunsuwan, K. y Nguyen, C. (1998). Bosques de manglares: la importancia de la conservación como recurso biológico para la diversidad de ecosistemas y la utilización como fuente de constituyentes químicos con valor medicinal y agrícola potencial. IUPAC , 70 (11), 1-9. URL: http://www.iupac.org/symposia/proceedings/phuket97/miles.html | spa |
dcterms.references | Morita R. Y. (1975). Psychrophilic bacteria. Bacteriological reviews, 39(2), 144–167. https://doi.org/10.1128/br.39.2.144-167.1975 | eng |
dcterms.references | Nosrati, R., Owlia, P., Saderi, H., Rasooli, I., & Malboobi, M.A. (2014). Phosphate solubilization characteristics of efficient nitrogen fixing soil Azotobacter strains. Iranian journal of microbiology, 6(4), 285 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367947/ | eng |
dcterms.references | Odum, W.E. y E.J. Heald. 1975a. Mangrove forests and aquatic productivity. pp. 129-136. In: A.D. Hasler (ed.).Coupling of land and water systems; Ecological studies., New York: Springer Verlag. https://doi.org/10.1007/978-3-642-86011-9_5 | eng |
dcterms.references | Pérez, E., Sulbaran, M., Ball, M.M. & Yarzabal, L.A. (2007). Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biol Biochem. 39:2905-2914 https://doi.org/10.1016/j.soilbio.2007.06.017 | eng |
dcterms.references | Reyes, M., Aguilar, C., Prado, L., & Martínez, J. (2011). Residuos agroindustriales para la producción de proteasas fúngicas. Cienciacierta, 27. | spa |
dcterms.references | Saghafi, D., Delangiz, N., Lajayer, B. A., & Ghorbanpour, M. (2019). An overview on improvement of crop productivity in saline soils by halotolerant and halophilic PGPRs. 3 Biotech, 9(7), 1–14. https://doi.org/10.1007/s13205-019-1799-0 | eng |
dcterms.references | Sánchez-Moreno, H., Bolívar-Anillo, H. J., Villate-Daza, D. A., Escobar-Olaya, G., & Anfuso, G. (2019). Influencia de los impactos antrópicos sobre la evolución del bosque de manglar en Puerto Colombia (Mar Caribe colombiano). Revista Latinoamericana de Recursos Naturales, 15(1), 01-16. https://doi.org/10.3390/w12041113 | spa |
dcterms.references | Sánchez-Moreno, H., Bolívar-Anillo, H., Villate-Daza, D., Escobar-Olaya, G., & Anfuso, G. (2019). Influencia de los impactos antrópicos sobre la evolución del bosque de manglar en Puerto Colombia (Mar Caribe colombiano). Revista Latinoamericana De Recursos Naturales, 15(1), 01-16. Recuperado a partir de https://revista.itson.edu.mx/index.php/rlrn/article/view/275 | spa |
dcterms.references | Sandilyan, S. y Kathiresan, K. (2015). Los manglares como bioescudo: un hecho indiscutible. Gestión costera y oceánica, 103, 94-96.https://doi.org/10.1016/j.ocecoaman.2014.11.011 | spa |
dcterms.references | Schmidt, H. 1981. Avances en ciencias y tecnología de los alimentos. Alfabeta Impresora, Santiago de Chile. | spa |
dcterms.references | Teutli Hernández, C., Herrera-Silveira, J. A., Cisneros-de la Cruz, D. J., & Roman-Cuesta, R. M. (2020). Guía para la restauración ecológica de manglares: lecciones aprendidas. CIFOR | spa |
dcterms.references | Torres Salamanca, MG, & Ruíz Vivas, AF (2017). Identificación del cambio de la cobertura de manglar frente al desarrollo de la industria camaronera en la Costa Caribe colombiana, a partir de la interpretación de imágenes de satélite. Obtenido de https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/735 | spa |
dcterms.references | Valero, N. O., Barraza, B., & Medína, A. M. (2011). Un escenario para el uso de microorganismos del manglar como inoculantes microbianos en Colombia. Biociencias, 6(1), 97–103. https://doi.org/10.18041/2390-0512/bioc..1.2767 | spa |
dcterms.references | Vera, A. y Martínez, M. (2013). Bosque de manglar: ambiente para la enseñanza y aprendizaje de la Ecología. Multiciencias, 13 (1),46-52.[fecha de Consulta 26 de Octubre de 2022]. ISSN: 1317-2255. Recuperado de: https://www.redalyc.org/articulo.oa?id=90428348009 | spa |
dcterms.references | Vera, A., & Martínez, M. (2013). Bosque de manglar: ambiente para la enseñanza y aprendizaje de la Ecología. Multiciencias, 13(1), 46–52. https://www.redalyc.org/articulo.oa?id=90428348009 | spa |
dcterms.references | Yáñez-Arancibia, A., Twilley, R. R., & Lara-Domínguez, A. L. (1998). Los ecosistemas de manglar frente al cambio climático global. Madera y bosques, 4(2), 3-19. https://doi.org/10.21829/myb.1998.421356 | spa |
dcterms.references | Zahedi, H. (2016). Growth-Promoting Effect of Potassium-Solubilizing Microorganisms on Some Crop Species. Potassium Solubilizing Microorganisms for Sustainable Agriculture (pp. 1–331). https://doi.org/10.1007/978-81-322-2776-2 | eng |
dcterms.references | Zaldívar-Jiménez, A., Ladrón-de-Guevara-Porras, P., Pérez-Ceballos, R., Díaz-Mondragón, S., & Rosado-Solórzano, R. (2017). US-Mexico joint Gulf of Mexico large marine ecosystem based assessment and management: Experience in community involvement and mangrove wetland restoration in Términos lagoon, Mexico. Environmental Development, 22, 206-213. https://doi.org/10.1016/j.envdev.2017.02.007 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Microbiología | spa |
sb.sede | Sede Barranquilla | spa |