Estrategia para la optimización del sistema de recolección de residuos sólidos no aprovechables

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorMessino Sosa, Alexis
dc.contributor.advisorBlanco Ariza, Ana Beatriz
dc.contributor.authorVargas De la Hoz, Néstor Alfonso
dc.contributor.authorPalacio Cantillo, Mónica Sofía
dc.date.accessioned2023-11-29T19:50:38Z
dc.date.available2023-11-29T19:50:38Z
dc.date.issued2023
dc.description.abstractEn el municipio de Soledad estos últimos años ha tenido un acelerado desarrollo urbanístico, lo que ha resultado en un aumento significativo en la producción de residuos sólidos (RS). Este crecimiento ha generado desafíos relacionados con la capacidad instalada y la falta de infraestructura flexible para hacer frente a esta creciente demanda. Por lo tanto, se vuelve imprescindible llevar a cabo un análisis de la actual Gestión de Residuos Sólidos (GRS) en el municipio. Esta investigación desarrolla los siguientes objetivos: (1) un análisis de la actual gestión de residuos sólidos del municipio, (2) identificación de la herramienta de optimización que más se adapta al sistema y (3) la propuesta de un diseño de optimización al sistema de recolección. Se realizó una revisión sistemática de la literatura relacionada con las herramientas de optimización en este ámbito, destacando que el problema de enrutamiento de vehículos (VRP) y los Sistemas de Información Geográfico ofrecen una combinación poderosa. Durante el periodo de estudio (2022 y 2023) se recopilaron datos mediante encuestas dirigidas a los operarios del servicio. Estas encuestas manifestaron que existían deficiencias en la planeación del ruteo del sistema, lo que obtuvo como resultado la creación de una guía estructurada para el diseño de optimización del GRS y se aplicó el análisis de redes del VRP de ArcGIS a un sector del municipio, lo que resultó con una disminución del 20% en el recorrido para la recolección, aumentando así su eficiencia.spa
dc.description.abstractIn the municipality of Soledad in recent years there has been accelerated urban development, which has resulted in a significant increase in the production of solid waste (SR). This growth has generated challenges related to installed capacity and the lack of flexible infrastructure to meet this growing demand. Therefore, it becomes essential to carry out an analysis of the current Solid Waste Management (SWM) in the municipality. This research develops the following objectives: (1) an analysis of the current solid waste management of the municipality, (2) identification of the optimization tool that best adapts to the system and (3) the proposal of an optimization design for the system. collection. A systematic review of the literature related to optimization tools in this area was carried out, highlighting that the vehicle routing problem (VRP) and Geographic Information Systems offer a powerful combination. During the study period (2022 and 2023), data was collected through surveys directed at service operators. These surveys revealed that there were deficiencies in the system's routing planning, which resulted in the creation of a structured guide for the SWM optimization design and ArcGIS VRP network analysis was applied to a sector of the municipality, which resulted in a 20% decrease in the collection route, thus increasing its efficiencyeng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13496
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Administración y Negociosspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectOptimización del sistema de recolecciónspa
dc.subjectProblema de enrutamiento de vehículosspa
dc.subjectSistemas de información geográficaspa
dc.subjectCollection system optimizationeng
dc.subjectVehicle routing problemeng
dc.subjectGeographic information systemseng
dc.titleEstrategia para la optimización del sistema de recolección de residuos sólidos no aprovechablesspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.spaTrabajo de grado másterspa
dcterms.referencesAkdas, H., Demir, O., Dogan, B., & Bas, A. (2021). Vehicle Route Optimization for Solid Waste Management: A Case Study of Maltepe, Istanbulspa
dcterms.referencesPlan de Gestión Integral de Residuos Sólidos de Soledad, (2021). https://soledadatlantico.micolombiadigital.gov.co/sites/soledadatlantico/cont ent/files/001088/54363_52155_pgirssoledadcompiladodic2920211.pdfspa
dcterms.referencesAlcaldía de Soledad. (2021, August 30). PGIRS Soledad 2021. Alcaldía de Soledad. https://soledadatlantico.micolombiadigital.gov.co/sites/soledadatlantico/cont ent/files/001088/54363_52155_pgirssoledadcompiladodic2920211.pdfspa
dcterms.referencesAl-Jubori, K., & Gazder, U. (2018). Framework for Route Optimization of Solid Waste Collection. https://doi.org/10.1049/cp.2018.1407eng
dcterms.referencesAlsobky, A., Ahmed, M., Al Agroudy, S., & El Araby, K. (2023). A smart framework for municipal solid waste collection management: A case study in Greater Cairo Region. Ain Shams Engineering Journal, 14(6), 102183. https://doi.org/https://doi.org/10.1016/j.asej.2023.102183eng
dcterms.referencesAmal, L., Son, L. H., & Chabchoub, H. (2018). SGA: spatial GIS-based genetic algorithm for route optimization of municipal solid waste collection. Environmental Science and Pollution Research, 25(27), 27569–27582. https://doi.org/10.1007/s11356-018-2826-0eng
dcterms.referencesAmal, L., Son, L. H., Chabchoub, H., & Lahiani, H. (2020). Analysis of municipal solid waste collection using GIS and multi-criteria decision aid. Applied Geomatics, 12(2), 193–208. https://doi.org/10.1007/s12518-019- 00291-6eng
dcterms.referencesAnwar, T. M. K. (2021). Optimization of Vehicle Routes, Location of Transfer Stations and Landfills Based on Geographic Information Systems in Depok City. ACM International Conference Proceeding Series, 510–515. https://doi.org/10.1145/3468013.3468650eng
dcterms.referencesBanco Mundial. (2018). What a Waste 2.0. https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f559b-b14f-28552410e90aeng
dcterms.referencesBányai, T., Tamás, P., Illés, B., Stankeviciute, Z., & Bányai, Á. (2019). Optimization of Municipal Waste Collection Routing: Impact of Industry 4.0 Technologies on Environmental Awareness and Sustainability. International Journal of Environmental Research and Public Health, 16, 634. https://doi.org/10.3390/ijerph16040634eng
dcterms.referencesBenitez, R., Gomez, R., Rivas, P., Botello, J., Huerta, O., García, A., & Rueda, J. (2021). Optimization of municipal solid waste collection routes in a LatinAmerican context. Journal of the Air & Waste Management Association, 71(11), 1415–1427. https://doi.org/10.1080/10962247.2021.1957040eng
dcterms.referencesBi, W., Lu, W., Zhao, Z., & Webster, C. J. (2022). Combinatorial optimization of construction waste collection and transportation: A case study of Hong Kong. Resources, Conservation and Recycling, 179, 106043. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.106043eng
dcterms.referencesCavallin, A., Rossit, D. G., Herrán Symonds, V., Rossit, D. A., & Frutos, M. (2020). Application of a methodology to design a municipal waste precollection network in real scenarios. Waste Management & Research, 38(1_suppl), 117–129. https://doi.org/10.1177/0734242X19894630eng
dcterms.referencesChalkias, C., & Lasaridi, K. (2011). Benefits from GIS based modelling for municipal solid waste management.eng
dcterms.referencesClarke, & Wright. (1964). Scheduling of Vehicle Routing Problem from a Central Depot to a Number of Delivery Points.eng
dcterms.referencesColque, A., Valdivia, R., Navarrete, M., & Aracena, S. (2021). Un sistema de información geográfico para el transporte público basado en el estandar GTFS realtime. Ingeniare. Revista Chilena de Ingeniería, 29, 51–62. https://doi.org/10.4067/S0718-33052021000100051spa
dcterms.referencesDANE. (2018). Proyecciones de Población. DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacionspa
dcterms.referencesDantzig, G., & Ramser, J. (1959). The Truck Dispatching Problem.eng
dcterms.referencesDecreto 1077 de 2015 Sector Vivienda, Ciudad y Territorio, (2015).spa
dcterms.referencesDecreto 2981 de 2013, Ministerio de Vivienda, Ciudad y Territorio (2013).spa
dcterms.referencesDegli, A., Magrini, C., & Bonoli, A. (2023). Door-to-door waste collection: A framework for the socio – Economic evaluation and ergonomics optimisation. 156, 130–138. https://doi.org/10.1016/j.wasman.2022.11.024eng
dcterms.referencesDel Carmen, V., Herrera, R., Juárez, A. L., Sampedro, M., & Reyes, M. (2023). Municipal Solid Waste Collection: Challenges, Strategies and Perspectives in the Optimization of a Municipal Route in a Southern Mexican Town. Sustainability, 15(2), 1083. https://doi.org/10.3390/su15021083eng
dcterms.referencesDereci, U., & Karabekmez, M. E. (2022). The applications of multiple route optimization heuristics and meta-heuristic algorithms to solid waste transportation: A case study in Turkey. Decision Analytics Journal, 4, 100113. https://doi.org/https://doi.org/10.1016/j.dajour.2022.100113eng
dcterms.referencesEsri. (2022). ¿Qué es ArcGIS? https://resources.arcgis.com/es/help/gettingstarted/articles/026n00000014000000.htmeng
dcterms.references.Fasano, F., Addante, A., Valenzano, B., & Scannicchio, G. (2021). Variables Influencing per Capita Production, Separate Collection, and Costs of Municipal Solid Waste in the Apulia Region (Italy): An Experience of Deep Learning. International Journal of Environmental Research and Public Health, 18, 752. https://doi.org/10.3390/ijerph18020752spa
dcterms.referencesFerronato, N., Portugal Alarcón, G. P., Guisbert Lizarazu, E. G., & Torretta, V. (2021). Assessment of municipal solid waste collection in Bolivia: Perspectives for avoiding uncontrolled disposal and boosting waste recycling options. Resources, Conservation and Recycling, 167, 105234. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105234eng
dcterms.referencesGreco, S., Rossit, D., Frutos, M., & Cavallin, A. (2022). Optimization of waste collection through the sequencing of micro-routes and transfer station convenience analysis: an Argentinian case study. https://doi.org/10.48550/arXiv.2211.06509eng
dcterms.referencesHaddad, A., Harb, A., Abujeish, F., Manaseer, N., & Shalash, O. (2022). Quantifying odour impacts from aged organic waste to be considered as a priority constraint in route optimization for waste collection trucks. Waste Management & Research, 41(2), 401–406. https://doi.org/10.1177/0734242X221122574eng
dcterms.referencesHailin, W., Fengming, T., & Bo, Y. (2020). Optimization of Vehicle Routing for Waste Collection and Transportation. International Journal of Environmental Research and Public Health.eng
dcterms.referencesHaleem, A. M. (2021). The zero-waste design for the municipal solid waste management in Baghdad city. IOP Conference Series: Earth and Environmental Science, 779(1), 012090. https://doi.org/10.1088/1755- 1315/779/1/012090eng
dcterms.referencesHatamleh, R. I., Jamhawi, M. M., Al-Kofahi, S. D., & Hijazi, H. (2020). The Use of a GIS System as a Decision Support Tool for Municipal Solid Waste Management Planning: The Case Study of Al Nuzha District, Irbid, Jordan. Procedia Manufacturing, 44, 189–196. https://doi.org/https://doi.org/10.1016/j.promfg.2020.02.221eng
dcterms.referencesHernández, R., Fernández, C., & Baptista, P. (2018). Metodología de la Investigación (Sexta Edición). McGraw Hill.spa
dcterms.referencesHöke, M., & Yalçınkaya, S. (2020). Municipal solid waste transfer station planning through vehicle routing problem-based scenario analysis. Waste Management & Research : The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 39. https://doi.org/10.1177/0734242X20966643eng
dcterms.referencesHontoria, E., & Zamorano, M. (2000). Fundamentos del manejo de los residuos urbanos. Colegio De Ingenieros De Caminos, Canales Y Puertosspa
dcterms.referencesKarimi, N., Ng, K. T. W., & Richter, A. (2022). Development of a regional solid waste management framework and its application to a prairie province in central Canada. Sustainable Cities and Society, 82, 103904. https://doi.org/10.1016/J.SCS.2022.103904eng
dcterms.referencesKAYA, S. (2023). A hybrid firefly and particle swarm optimization algorithm with local search for the problem of municipal solid waste collection: a reallife example. Neural Computing and Applications, 35(9), 7107–7124. https://doi.org/10.1007/s00521-022-08173-6eng
dcterms.referencesKhan, R., Kumar, S., Srivastava, A. K., Dhingra, N., Gupta, M., Bhati, N., & Kumari, P. (2021). Machine Learning and IoT-Based Waste Management Model. Computational Intelligence and Neuroscience, 2021, 5942574. https://doi.org/10.1155/2021/5942574eng
dcterms.referencesLeón, J., Herrera, I., Lorente, L., Montero, Y., Herrera, E., Imbaquingo, D., & Jacome, J. (2020). Optimización de la recolección de residuos sólidos urbanos bajo un enfoque de Sistemas de Información Geográfica, un estudio de caso. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, E29, 479.spa
dcterms.referencesLi, N., & Chen, Y. (2023). Municipal solid waste classification and real-time detection using deep learning methods. Urban Climate, 49, 101462. https://doi.org/https://doi.org/10.1016/j.uclim.2023.101462eng
dcterms.referencesLouati, A., Son, L. H., & Chabchoub, H. (2019). Smart routing for municipal solid waste collection: a heuristic approach. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1865–1884. https://doi.org/10.1007/s12652-018-0778-3eng
dcterms.referencesLüer, A., Benavente, M., Bustos, J., & Venegas, B. (2009). El problema de rutas de vehículos: Extensiones y métodos de resolución, estado del arte.spa
dcterms.referencesMaheo, A., Rossit, D., & Kilby, P. (2022). Solving the integrated bin allocation and collection routing problem for municipal solid waste: a Benders decomposition approach. Annals of Operations Research, 322. https://doi.org/10.1007/s10479-022-04918-7eng
dcterms.referencesMalakahmad, A., Bakri, P. M., Mokhtar, M. R., & Khalil, N. (2014). Solid Waste Collection Routes Optimization via GIS Techniques in Ipoh City, Malaysia.eng
dcterms.referencesManoharam, G., Ismail, M. T., Abir, I., & Khan, M. (2021). Efficient Solid Waste Management in Prai Industrial Area through GIS using Dijkstra and Travelling Salesman Problem Algorithms. Pertanika Journal of Science and Technology, 29. https://doi.org/10.47836/pjst.29.3.02eng
dcterms.referencesMartikkala, A., Mayanti, B., Helo, P., Lobov, A., & Ituarte, I. F. (2023). Smart textile waste collection system – Dynamic route optimization with IoT. Journal of Environmental Management, 335, 117548. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117548eng
dcterms.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2022). Hoy no se habla de basura, sino de residuos que son insumos para productos: Minambiente. Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/asuntos-ambientales-sectorial-yurbana/hoy-no-se-habla-de-basura-sino-de-residuos-que-son-insumospara-productos-minambiente/spa
dcterms.referencesResolución 1096 de 2000 - Titulo F (RAS), (2000)spa
dcterms.referencesNamoun, A., Hussein, B., Tufail, A., Alrehaili, A., Syed, T., & Benrhouma, O. (2022). An Ensemble Learning Based Classification Approach for the Prediction of Household Solid Waste Generation. Sensors, 22, 3506. https://doi.org/10.3390/s22093506eng
dcterms.referencesNegreiros, M., de Castro, A., & Rodrigues, E. (2022). Sector arc routingbased spatial decision support system for waste collection in Brazil. Waste Management & Research, 41(1), 214–221. https://doi.org/10.1177/0734242X221104366eng
dcterms.referencesNguyen, K., Nguyen, A., Nguyen, D., & Dinh, V. (2017). Optimization of municipal solid waste transportation by integrating GIS analysis, equationbased, and agent-based model.eng
dcterms.referencesParada, J., & Escalante, L. (2020). La recolección lateral como alternativa para la optimización del proceso de recolección de residuos sólidos en la ciudad de Barranquillaspa
dcterms.referencesPérez, A. (2011). Introducción a los sistemas de información geográfica y geotelemática. Editorial UOCspa
dcterms.referencesRambandara, R., Prabodanie, R., Karunarathne, E., & Rajapaksha, D. (2022). Improving the Efficiency of Urban Waste Collection Using Optimization: a Case Study. Process Integration and Optimization for Sustainability, 6. https://doi.org/10.1007/s41660-022-00232-8eng
dcterms.referencesRızvanoğlu, O., Kaya, S., Ulukavak, M., & Yesilnacar, M. (2019). Optimization of municipal solid waste collection and transportation routes, through linear programming and geographic information system: a case study from Şanlıurfa, Turkey. Environmental Monitoring and Assessment, 192. https://doi.org/10.1007/s10661-019-7975-1eng
dcterms.referencesRodriguez, D. (2022). Colombia genera 12 millones de toneladas de basura al año. Portafolio. https://www.portafolio.co/economia/finanzas/colombiagenera-12-millones-de-toneladas-de-basura-al-ano-565581spa
dcterms.referencesSanchez, J. (2021). Diseño de rutas para la recolección de residuos sólidos implementando herramientas computacionales del sistema de información geográfica (SIG) ArcGIS en un municipio colombiano. In Universidad de los Andes. Universidad de los Andesspa
dcterms.referencesSarmah, S. P., Yadav, R., & Rathore, P. (2019). Development of Vehicle Routing model in urban Solid Waste Management system under periodic variation: A case study. IFAC-PapersOnLine, 52(13), 1961–1965. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.11.490eng
dcterms.referencesSecretaría de Hacienda Departamental. (2021). Viabilidad Fiscal Territorial 2021. MinHacienda. https://www.minhacienda.gov.co/webcenter/ShowProperty?nodeId=%2FCo nexionContent%2FWCC_CLUSTER181131%2F%2FidcPrimaryFile&revision=latestreleased#:~:text=Tiene%20u na%20superficie%20de%2067,de%209.926%20habitantes%20por%20km2.spa
dcterms.references.Shadbahr, J., Ebadian, M., Gonzales-Calienes, G., Kannangara, M., Ahmadi, L., & Bensebaa, F. (2022). Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities. Renewable and Sustainable Energy Reviews, 168, 112872. https://doi.org/https://doi.org/10.1016/j.rser.2022.112872eng
dcterms.referencesSolano, J., Orjuela, D., Rodrigo, J., & Cassiraga, E. (2019). Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon, 5(11), e02810. https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e02810eng
dcterms.referencesSolano, J., Yepes, D., Rodrigo-Ilarri, J., & Rodrigo-Clavero, M. E. (2023). Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. International Journal of Environmental Research and Public Health, 20. https://doi.org/10.3390/ijerph20054256eng
dcterms.referencesSulemana, A., Donkor, E., Forkuo, E. K., & Oduro-Kwarteng, S. (2019). Effect of optimal routing on travel distance, travel time and fuel consumption of waste collection trucks. Management of Environmental Qualityeng
dcterms.referencesTchobanoglous, G., Thiesen, H., & Vigil, S. (1998). Gestión Integral de Residuos Sólidos (Mc Graw Hill).spa
dcterms.referencesToth, P., & Vigo, D. (2002). The vehicle routing problem.eng
dcterms.referencesTuck, L. (2018). Informe del Banco Mundial: Los desechos a nivel mundial crecerán un 70 % para 2050, a menos que se adopten medidas urgentes. Banco Mundial. https://www.bancomundial.org/es/news/pressrelease/2018/09/20/global-waste-to-grow-by-70-percent-by-2050-unlessurgent-action-is-taken-world-bank-reportspa
dcterms.referencesVu, H. L., Ng, K. T. W., & Bolingbroke, D. (2018). Parameter interrelationships in a dual phase GIS-based municipal solid waste collection model. Waste Management, 78, 258–270. https://doi.org/https://doi.org/10.1016/j.wasman.2018.05.050eng
dcterms.referencesWu, H., Tao, F., & Yang, B. (2020). Optimization of Vehicle Routing for Waste Collection and Transportation. International Journal of Environmental Research and Public Health, 17, 4963. https://doi.org/10.3390/ijerph17144963eng
dcterms.referencesXia, W., Jiang, Y., Chen, X., & Zhao, R. (2021). Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Management & Research, 40(6), 609–624. https://doi.org/10.1177/0734242X211033716eng
dcterms.referencesYalcinkaya, S., & Uzer, S. (2021). A GIS-based multi-criteria decision support model for planning municipal solid waste collection points: A case study of Çağdaş Neighbourhood, Çiğli District, Izmir, Turkey. Waste Management & Research, 40(8), 1297–1310. https://doi.org/10.1177/0734242X211063733eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMaestría en Administración de Empresas e Innovaciónspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
169.02 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
2.92 MB
Formato:
Adobe Portable Document Format

Colecciones