Influencia del capital intelectual en la producción y difusión de conocimiento científico de los investigadores en Instituciones de Educación Superior Públicas de la región de los Santanderes de Colombia
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.advisor | Blanco Ariza, Ana Beatriz | |
dc.contributor.advisor | Garzón Castrillón, Manuel Alfonso | |
dc.contributor.author | Quintero Quintero, Wilder | |
dc.date.accessioned | 2023-06-08T19:38:34Z | |
dc.date.available | 2023-06-08T19:38:34Z | |
dc.date.issued | 2023 | |
dc.description.abstract | El estudio del capital intelectual (CI) actualmente reviste mucha importancia para las organizaciones, por tanto, son activos que generan ventaja competitiva y beneficios futuros. En cuanto a la producción y difusión de conocimiento científico surgen gracias al aumento del capital intelectual y al avance vertiginoso de las tecnologías de la información que hacen más eficientes estos procesos. Según la revisión bibliográfica de literatura no existen investigaciones que relacionen estas tres variables de estudio, por lo tanto, este estudio tiene como objetivo analizar cómo influye el CI en la producción y difusión de conocimiento científico en Instituciones de Educación Superior (IES) Públicas de la región de los Santanderes de Colombia. Teóricamente se desarrolló un marco y revisión de literatura que da cuenta de los autores clásicos, contemporáneos y actuales más importantes de las tres variables de estudio, y se determinó la importancia de la Teoría de los Recursos y Capacidades para relacionar las tres variables de estudio. Metodológicamente se utilizó la investigación explicativa con un enfoque cuantitativo, la recolección de la información de fuentes primarias para medir el capital intelectual, se utilizó una encuesta tipo Likert dirigida a 371 investigadores para medir el CI, la cual paso por un proceso validez de contenido a través de evaluación de cinco expertos, validez de criterio por medio de Alfa de Cronbach, y validez de constructo mediante la prueba de Barlett, y KMO, y posteriormente se aplicó el Análisis Factorial Exploratorio para la selección de los ítems; para analizar la producción científica se utilizó información de fuentes secundarias suministrada por Minciencias; de igual manera para la difusión de conocimiento científico se tomó la información del índice h y la participación en conference proceedings en Scopus y Web of Science (WoS). Los resultados se obtuvieron mediante la modelación de ecuaciones estructurales (SEM) confirmado que la influencia del capital humano en la producción y difusión del conocimiento científico es estadísticamente significativa, mientras que la influencia del capital estructural y del capital relacional en la producción científica y difusión del conocimiento no es estadísticamente significativas. Las conclusiones del estudio demostraron que el capital humano es adecuado y pertinente para la producción y difusión de conocimiento, mientras que el capital estructural requiere de redireccionar los procesos y recursos tanto físicos como tecnológicos y financieros para impactar positivamente en la producción y difusión de conocimiento, de igual manera en el capital relacional se necesita que los convenios y redes de colaboración se establezcan y ejecuten de manera adecuada para contribuir positiva y significativamente en la toma de decisiones, para fortalecer el capital intelectual y por consiguiente se incremente la producción científica y su difusión en dichas instituciones. Este estudio es nuevo, por lo tanto, aporta en aspectos teóricos, metodológicos y prácticos para el direccionamiento estratégico de las IES en su misión de investigación que impacta tanto en los procesos académicos como en su relación con el sector externo, a través de estrategias que permitan aportar científicamente a la creación o mejoramiento de los procesos administrativos, técnicos, industriales, o de cualquier otra naturaleza. | spa |
dc.description.abstract | The study of intellectual capital (IC) is currently very important for organizations, therefore they are assets that generate competitive advantage and future benefits. As for the production and diffusion of scientific knowledge, they arise thanks to the increase in intellectual capital and the rapid advance of information technologies that make these processes more efficient. According to the bibliographic review of literature, there are no investigations that relate these three study variables, therefore, this study aims to analyze how IC influences the production and diffusion of scientific knowledge in Public Higher Education Institutions (HEIs) of the Santanderes region of Colombia. Theoretically, a framework and literature review were developed those accounts for the most important classical, contemporary, and current authors of the three study variables, and the importance of the Theory of Resources and Capacities was determined to relate the three study variables. Methodologically, explanatory research was used with a quantitative approach, the collection of information from primary sources to measure intellectual capital, a Likert-type survey directed at 371 researchers was used to measure IC, which went through a content validity process through the evaluation of five experts, criterion validity through Cronbach's Alpha, and construct validity through the Barlett test, and KMO, and later the Exploratory Factor Analysis was applied for the selection of the items; To analyze the scientific production, information from secondary sources provided by Minciencias was used; In the same way, for the diffusion of scientific knowledge, the information of the h index and the participation in conference proceedings in Scopus and Web of Science (WoS) were taken. The results were obtained through structural equation modeling (SEM), confirming that the influence of human capital on the production and diffusion of scientific knowledge is statistically significant, while the influence of structural capital and relational capital on the scientific production and diffusion of knowledge is not statistically significant. The conclusions of the study showed that human capital is adequate and relevant for the production and diffusion of knowledge, while structural capital requires redirecting physical, technological and financial processes, and resources to positively impact the production and diffusion of knowledge. In the same way, in relational capital, collaboration agreements and networks need to be established and executed adequately to contribute positively and significantly in decisionmaking, to strengthen intellectual capital and consequently increase scientific production and its diffusion in these institutions. This study is new, therefore, it contributes in theoretical, methodological and practical aspects for the strategic direction of HEIs in their research mission that impacts both academic processes and their relationship with the external sector, through strategies that allow scientifically contribute to the creation or improvement of administrative, technical, industrial, or any other type of processes. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/12589 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Administración y Negocios | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Capital Intelectual | spa |
dc.subject | Producción Científica | spa |
dc.subject | Difusión del conocimiento | spa |
dc.subject | Instituciones de Educación Superior | spa |
dc.subject | Intellectual Capital | eng |
dc.subject | Scientific Production | eng |
dc.subject | Knowledge Diffusion | eng |
dc.subject | Higher Education Institutions | eng |
dc.title | Influencia del capital intelectual en la producción y difusión de conocimiento científico de los investigadores en Instituciones de Educación Superior Públicas de la región de los Santanderes de Colombia | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.spa | Tesis de doctorado | spa |
dcterms.references | Abramo, G., D’Angelo, C. A., & Di Costac, F. (2020). The role of geographical proximity in knowledge diffusion, measured by citations to scientific literature. Journal of Informetrics, 14(1), 1-9. https://doi.org/10.1016/j.joi.2020.101010 | eng |
dcterms.references | Arechavala, R. (2011). Las universidades y el desarrollo de la investigación científica y tecnológica en México: Una agenda de investigación. Revista de la Educación Superior, 40(158), 41-57. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185- 27602011000200003 | spa |
dcterms.references | Arias, J., Lozada, N., & Henao, E. (2019). Gestión del Capital Intelectual y Desempeño de Grupos de Investigación Universitarios en un País Emergente. El caso de Colombia. Información Tecnológica, 30(4), 181-188. http://dx.doi.org/10.4067/S0718-07642019000400181 | spa |
dcterms.references | Barnacle, R., Cuthbert, D., & Laurie, R. (2016). Exploring Researcher Motivation: Implications for PhD Education. International and Development Education, 199 - 215. https://doi.org/10.1057/978-1-137-54783-5_12 | eng |
dcterms.references | Barros, C., & Turpo, O. (2020). La formación en investigación y su incidencia en la producción científica del profesorado de educación de una universidad pública de Ecuador. Publicaciones de la Facultad de Educacion y Humanidades del Campus de Melilla, 50(2), 167 - 185. https://dialnet.unirioja.es/servlet/articulo?codigo=7355761 | spa |
dcterms.references | Bastidas, M., & Benites, R. (2016). Incidencia de la motivación en la producción científica institucional. Revista Retos, 11(1), 65-87. https://doi.org/10.17163/ret.n11.2016.05 | spa |
dcterms.references | Bercovitz, J. E., & Tyler, B. B. (2014). Who i am and how i contract: The effect of contractors' roles on the evolution of contract structure in universityindustry research agreements. Organization Science, 25(6), 1840 - 1859. https://doi.org/10.1287/orsc.2014.0917 | eng |
dcterms.references | Bisogno, M., Dumay, J., Manes-Rossi, F., & Tartaglia Polcini, P. (2017). Identifying future directions for IC research in education: a literature review. Journal of Intellectual Capital, 1, 1-33. https://doi.org/10.1108/JIC-10-2017- 0133 | eng |
dcterms.references | Bontis, N. (1998). Intellectual capital: an exploratory study that develops measures and models. Management Decision, Vol. 36 No. 2., 63-76. https://doi.org/10.1108/00251749810204142 | eng |
dcterms.references | Boschma, R., & Frenken, K. (2011). The Emerging Empirics of Evolutionary Economic Geography. Journal of Economic Geography, 11(2), 295-307. https://doi.org/10.1093/jeg/lbq053 | eng |
dcterms.references | Bratianu, C. (2018). A critical analysis of intellectual capital research in universities. Proceedings of the International Conference on Business Excellence, 12(1), 151-160. https://doi.org/10.2478/picbe-2018-0015 | eng |
dcterms.references | Bueno, E., Del Real, H., Fernández, P., Longo, M., Merino, C., Murcia, C., & Salmador, M. P. (2011). Modelo Intellectus de Medición, gestión e información del capital intelectual. Madrid: Edition: 2aEditor: IADE-UAM. | spa |
dcterms.references | Bueno, E., Salmador, M. P., & Merino, C. (2008). Génesis, concepto y desarrollo del capital intelectual en la economía del conocimiento: Una reflexión sobre el Modelo Intellectus y sus aplicaciones. Estudios de Economía Aplicada, 26(2), 43-63. https://www.redalyc.org/pdf/301/30113187003.pdf | spa |
dcterms.references | Cangur, S., & Ercan, I. (2015). Comparison of Model Fit Indices Used in Structural Equation Modeling Under Multivariate Normality. Journal of Modern Applied Statistical Methods, 14(1). https://doi.org/10.22237/jmasm/1430453580 | eng |
dcterms.references | Carayol, N., & Matt, M. (2004). The exploitation of complementarities in scientific production process at the laboratory level. Technovation, 24(6), 455 - 465. https://doi.org/10.1016/j.technovation.2004.03.007 | eng |
dcterms.references | Castillo, J. A., & Powell, M. A. (2019). Análisis de la producción científica del Ecuador e impacto de la colaboración internacional en el periodo 2006-2015. Revista Espanola de Documentacion Cientifica, 42(1), 1-16. https://doi.org/10.3989/redc.2019.1.1567 | spa |
dcterms.references | Chen, C., & Hicks, D. (2004). Tracing knowledge diffusion. Scientometrics, 59(2), 199-211. https://doi.org/10.1023/B:SCIE.0000018528.59913.48 | eng |
dcterms.references | Cheng, W., & Zhang, G. (2012). Empirical research on the competency model of senior researchers., Article number 6382663, págs. 832 - 835. China. | eng |
dcterms.references | Cheng-Hsien, L. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior Research Methods, 48(3), 936–949. https://doi.org/10.3758/S13428-015-0619-7 | eng |
dcterms.references | Comrey, A. L., & Lee, H. B. (1992). A First Course in Factor Analysis (2nd Edition ed.). Psychology Press. https://doi.org/10.4324/9781315827506 | eng |
dcterms.references | Cortés-Sánchez, J. D. (2016). Eficiencia en el uso de bases de datos digitales para la producción científica en universidades de Colombia. Revista Espanola de Documentacion Cientifica, 39(2), 1-15. http://dx.doi.org/10.3989/redc.2016.2.1320 | spa |
dcterms.references | Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78(1)., 98–104. https://doi.org/10.1037/0021-9010.78.1.98 | eng |
dcterms.references | Crompton, S., Neylon, C., Matthews, B., Yang, E., & Coles, S. (2012). Collaborative information management in scientific research processes. IEEE 8th International Conference on E-Science, e-Science. Code 95430 (págs. 1- 7). IEEE. https://ieeexplore.ieee.org/document/6404478/footnotes#footnotes | eng |
dcterms.references | Dalati, S. (2021). Factors affecting syrian female researchers’ experience during crisis: Inductive approach. Business, Management and Economics Engineering, 19(1), 91 - 110. https://doi.org/10.3846/bmee.2021.13232 | eng |
dcterms.references | Dávila, R. C., Martin, M. M., García, A., García, E., & Alfaro, G. B. (2022). Caracterización de la formación investigativa y la producción científica en docentes de una universidad privada de Lima. Universidad y Sociedad, 14(55), 618 - 627. https://rus.ucf.edu.cu/index.php/rus/article/view/3331/3271 | spa |
dcterms.references | De Frutos-Belizón, J., Martín-Alcázar, F., & Sánchez-Gardey, G. (2019). Conceptualizing academic intellectual capital: definition and proposal of a measurement scale. Journal of Intellectual Capital, 20(3), 306-334. https://doi.org/10.1108/JIC-09-2018-0152 | eng |
dcterms.references | Del Carpio, H. A., Del Carpio, P. A., & Garcia, F. J. (2018). A system of indicators for assessing scientific and technological capacity at local universities. Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (Teem'18), 221-227. https://doi.org/10.1145/3284179.3284219 | eng |
dcterms.references | Díaz, L. (2012). Missions-oriented R&D institutions in energy between 2000 and 2010: A comparative. Research Policy, 41(10), 1742-1756. https://doi.org/10.1016/j.respol.2012.02.015 | eng |
dcterms.references | Dumay, J. (2013). The third stage of IC: towards a new IC future and beyond. Journal of Intellectual Capital, 14(1), 5-9. https://doi.org/10.1108/14691931311288986 | eng |
dcterms.references | Dumay, J. (2016). A critical reflection on the future of intellectual capital: from reporting to disclosure. Journal of Intellectual Capital, 17(1), 168-184. https://doi.org/10.1108/MD-08-2017-0807 | eng |
dcterms.references | Edvinsson, L., & Malone, M. (1997). El capital Intelectual. Norma. | spa |
dcterms.references | Elango, B. (2018). Growth of Scientific Publications: An Analysis of Top Ten Countries. Library Philosophy and Practice (e-journal). Library, IFET College of Engineering, Villupuram. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=5313&context=lib philprac | eng |
dcterms.references | Euroforum Escorial, (1998). Medición del Capital Intelectual. Modelo Intelect. Editorial I.U. | spa |
dcterms.references | European Commission. (2006). Ricardis: Reporting intellectual capital to augment research, development and innovation in SMEs. Report to the Commission of the High Level Expert Group on Ricardis. https://ec.europa.eu/invest-in-research/pdf/download_en/2006- 2977_web1.pdf | eng |
dcterms.references | Farahani, A. F. (2022). Prioritizing the Researchers' Important Competencies in Research Centres. Tehnicki Glasnik, 4, 557 - 565. https://doi.org/10.31803/tg-20200219135754 | eng |
dcterms.references | Flamholtz, E. (1971). A model for human resource valuation: a stochastic process with service rewards. The Accounting Review, 46(2), 253-267. https://www.jstor.org/stable/244333 | eng |
dcterms.references | Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(2), 39-50. https://doi.org/10.2307/3151312 | eng |
dcterms.references | Franco, M., & Haase, H. (2015). University-industry cooperation: Researchers' motivations and interaction channels. Journal of Engineering and Technology Management, 36, 41 - 51. https://doi.org/10.1016/j.jengtecman.2015.05.002 | eng |
dcterms.references | Friedkin, N. (1991). Theoretical foundations for centrality measures. American Journal of Sociology, 96(6), 1478–1504. https://doi.org/10.1086/229694 | eng |
dcterms.references | Galbraith, J. K. (1967). The New Industrial State. Princeton University Press. | eng |
dcterms.references | Gao, X., & Guan, J. (2012). Network model of knowledge diffusion. Scientometrics, 90, 749–762. https://doi.org/10.1007/s11192-011-0554-z | eng |
dcterms.references | Garcia, M., Simo, P., & Sallan, J. M. (2006). La evolución del capital intelectual y las nuevas corrientes. Intangible Capital, 2(3), 277-307. Obtenido de https://www.redalyc.org/articulo.oa?id=54920301 | spa |
dcterms.references | Ghimisi, S., & Nicula, D. (2019). Study to increase the quality of the scientific research process. IOP Conference Series: Materials Science and Engineering. Code 155186, 564, págs. 1-7. http://10.1088/1757- 899X/564/1/012084 | eng |
dcterms.references | Giraldo-Marín, L. M., Arroyave-Cataño, E. T., Galeano-Ospino, S., RojasMora, J. M., Londoño-Montoya, E. M., & Bedoya-Villa, M. A. (2021). Metodología de flujo de conocimiento (Primera fase) aplicada el proceso de investigación científica con fines de visibilidad nacional e internacional en la universidad de medellín. RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, 114 - 126. http://www.risti.xyz/issues/ristie41.pdf | spa |
dcterms.references | Glantz, S. A., & Slinker, B. (1990). Primer of Applied Regression and Analysis of Variance. McGraw-Hill. | eng |
dcterms.references | Gómez, L., Moreno, G., Becerra, M. A., & Londoño, E. (2016). The teacher as manager of relational capital: A review. Espacios., 33, 1-17. | eng |
dcterms.references | Guthrie, J. (2001). The management, measurement and the reporting of intellectual capital. Journal of Intellectual Capital, 2(1), 27-41. https://doi.org/10.1108/14691930110380473 | eng |
dcterms.references | Guthrie, J., & Dumay, J. (2015). New frontiers in the use of intellectual capital in the public sector. Journal of Intellectual Capital, 16(2), 258-266. https://doi.org/10.1108/JIC-02-2015-0017 | eng |
dcterms.references | Guthrie, J., Dumay, J., Ricceri, F., & Nielsen, C. (2017). The Routledge Companion to Intellectual Capital. London: Taylor and Francis | eng |
dcterms.references | Guthrie, J., Ricceri, F., & Dumay, J. (2012). Reflections and projections: A decade of Intellectual Capital Accounting Research. The British Accounting Review, 44(2), 68-82. https://doi.org/10.1016/j.bar.2012.03.004 | spa |
dcterms.references | Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Análisis Multivariante. (Quinta edición ed.). Madrid: Prentice Hall | spa |
dcterms.references | Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis. 7th Edition. Pearson Education, Upper Saddle River. https://www.pdfdrive.com/multivariate-data-analysis-7th-editiond156708931.html | eng |
dcterms.references | Hanssen, T.-E. S., Jørgensen, F., & Larsen, B. (2018). The relation between the quality of research, researchers’ experience, and their academic environment. Scientometrics, 114(3), 933 - 950. https://doi.org/10.1007/s11192-017-2580-y | eng |
dcterms.references | Hermanson, R. (1963). method for recording all assets and the resulting accounting and economic Implications. Ph. D. dissertation. Michigan State University. In Roslender, R., Stevenson, J & Fincham, R. (2005). International Critical Management Studies (CMS) 2005 Conference. Waikato Management School | eng |
dcterms.references | Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599–653. https://doi.org/10.1137/S003614450037190 | eng |
dcterms.references | Heyat, A., Piroozan, A., Zade, A. N., Mohebi, S., Shekouhiyan, S., Salimi, M., . . . Fallahi, S. (2013). Researchers' attitude about ethics in research at Hormozgan University of medical sciences, Bandar-e-Abbas, Iran. Advances in Environmental Biology, 7(1), 56 - 60. https://go.gale.com/ps/i.do?p=AONE&u=googlescholar&id=GALE|A3361759 04&v=2.1&it=r&sid=AONE&asid=da9a941d | eng |
dcterms.references | Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural Equation Modeling: Guidelines for Determining Model Fit. ElectronicJournal of Business Research Methods, 1, 53-60. | eng |
dcterms.references | Hu, L.‐t., & Bentler, P. M. (2009). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118 | eng |
dcterms.references | Hussain, N., Ur Rehman, S., Ameen, K., & Safdar, M. (2022). Training needs assessment of postgraduate researchers of Pakistan. Global Knowledge, Memory and Communication, 71(4-5), 322 - 341. https://doi.org/10.1108/GKMC-09-2020-0145 | eng |
dcterms.references | Jarolímková, A., Drobíková, B., & Souček, M. (2018). Attitudes of Charles University academic staff to data sharing. Grey Journal, 14, 37 - 43. http://nrgl.techlib.cz/conference/conference-proceedings | eng |
dcterms.references | Katoh, S., Aalbers, R. H., & Sengoku, S. (2021). Effects and interactions of researcher’s motivation and personality in promoting interdisciplinary and transdisciplinary research. Sustainability (Switzerland), 13(22), 1-19. https://doi.org/10.3390/su132212502 | eng |
dcterms.references | Lambovska, M., & Yordanov, K. (2020). Motivation of researchers to publish in high-quality journals: A theoretical framework. TEM Journal, 9(1), 188 - 197. https://doi.org/10.18421/TEM91-27 | eng |
dcterms.references | Larzillière, P. (2010). Research in context: Scientific production and researchers' experience in Jordan. Science, Technology and Society, 15(2), 309 - 338. https://doi.org/10.1177/097172181001500206 | eng |
dcterms.references | Lei, J., & Jiang, T. (2019). Chinese university faculty’s motivation and language choice for scholarly publishing. Ibérica, 38, 51-74. https://revistaiberica.org/index.php/iberica/article/view/92 | eng |
dcterms.references | Leitner, K. H. (2004). Intellectual capital reporting for universities: Conceptual background and application for Austrian universities. Research Evaluation, 13(2), 129-140. https://doi.org/10.3152/147154404781776464 | eng |
dcterms.references | Lerner, J., & Malmendier, U. (2010). Contractibility and the design of research agreements. American Economic Review, 100(1), 214 - 246. https://ssrn.com/abstract=714064 | eng |
dcterms.references | López, I., Moreno, A. I., Burgess, S., Sachdev, I., & Rey, J. (2015). Why publish in English versus Spanish?: Towards a framework for the study of researchers' motivations. Revista Espanola de Documentacion Cientifica, 1, 1 - 16. http://dx.doi.org/10.3989/redc.2015.1.1148 | eng |
dcterms.references | .López, I., Moreno, A. I., Quintanilla, M. Á., & Rey, J. (2015). Why do I publish research articles in english instead of my own language? Differences in spanish researchers’ motivations across scientific domains. Scientometrics, 103(3), 939 - 976. https://doi.org/10.1007/s11192-015-1570-1 | eng |
dcterms.references | López, V., & Amado, A. (2021). Repercusión de la formación investigadora en la producción científica de Expresión Gráfica Arquitectónica indexada en SJR. Revista Española de Documentación Científica, 44(4), 1-13. https://doi.org/ 10.3989/redc.2021.4.1814 | spa |
dcterms.references | Luukkonen, T., Persson, O., & Sivertsen, G. (1992). Understanding patterns of international scientific collaboration. Science, Technology, & Human Values, 17(1), 101–126. https://doi.org/10.1177/016224399201700106 | eng |
dcterms.references | Mabe, M., & Amin, M. (2001). Growth dynamics of scholarly and scientific journals. Scientometrics, 51(1), 147–162. https://doi.org/10.1023/A:1010520913124 | eng |
dcterms.references | Maurseth, P. B., & Verspagen, B. (2002). Knowledge Spillovers in Europe: A Patent Citations Analysis. Scandinavian Journal of Economics, 100(4), 531– 545. https://doi.org/10.1111/1467-9442.00300 | eng |
dcterms.references | Melero, R., & Navarro, C. (2021). Researchers' attitudes and perceptions towards data sharing and data reuse in the field of food science and technology. Learned Publishing, 33(2), 163 - 179. https://doi.org/10.1002/leap.1287 | eng |
dcterms.references | Minciencias. (2021). Modelo de medición de grupos de investigación, desarrollo tecnológico o de innovación y de reconocimiento de investigadores del sistema nacional de ciencia, tecnología e innovación. https://minciencias.gov.co/sites/default/files/upload/convocatoria/anexo_1_- _documento_conceptual_2021.pdf | spa |
dcterms.references | Monroy, S. E., & Díaz, H. (2018). Time series-based bibliometric analysis of the dynamics of scientific production. Scientometrics., 115(3), 1139-1159. https://doi.org/10.1007/s11192-018-2728-4 | eng |
dcterms.references | Montoya-Suárez, O. (2007). Aplicación del Análisis Factorial a la Investigación de Mercados. Scientia et Technica, 35, 281-286. https://www.redalyc.org/pdf/849/84903549.pdf | spa |
dcterms.references | Msomphora, M. R. (2019). UiT-Researchers' Attitudes and Practices Towards Open Access Publication: Lessons Learnt for Improving SelfArchiving in Institutional Repository. Libres, 1, 14 - 36. https://doi.org/10.32655/LIBRES.2019.1.2 | eng |
dcterms.references | Muhammad, R., Zheng, J., & Khurshid, A. (2018). Evaluating the impact of digital library database resources on the productivity of academic research. Information Discovery and Delivery, 47(1), 42-52. https://doi.org/10.1108/IDD-07-2018-0025 | eng |
dcterms.references | Mulligan, A., & Mabe, M. (2011). The effect of the internet on researcher motivations, behaviour and attitudes. Journal of Documentation, 67(2), 290 - 311. https://doi.org/10.1108/00220411111109485 | eng |
dcterms.references | Murguía, L. P., Tarango, J., Romo, J. R., & Ascencio, G. (2013). Influencia de la infraestructura bibliotecaria en el desarrollo de producción científica en universidades mexicanas inmersas en procesos de acreditación. Revista General de Informacion y Documentacion, 23(2), 333 - 367. http://dx.doi.org/10.5209/rev_RGID.2013.v23.n2.43134 | spa |
dcterms.references | Niebel, T. (2018). ICT and economic growth: Comparing developing, emerging and developed countries. World Development, 104, 197–211. https://doi.org/10.1016/j.worlddev.2017.11.024 | eng |
dcterms.references | Norton, D. P., & Kaplan, R. S. (1992). Intangible Assets Monitor. http://www.scielo.org.co/pdf/cuadm/n43/n43a9.pdf | eng |
dcterms.references | Nunes, L., Malacarne, A., Macedo, R. F., & De Bortoli, R. (2019). Generation of intangible assets in higher education institutions. Scientometrics, 121(2), 957 - 975. https://doi.org/10.1007/s11192-019-03226-5 | eng |
dcterms.references | Nunnally, J. C. (1978). Psychometric Theory. Editorial McGraw-Hill | eng |
dcterms.references | OCDE. (2007). Globalisation and structural adjustment—summary report of the study on globalisation and innovation in the business services sector. https://www.oecd.org/sti/38619867.pdf | eng |
dcterms.references | OCDE. (2016). Economic and Social Benefits of Internet Openness. Directorate for Science, Technology and Innovation Committee on Digital Economic Policy. https://doi.org/10.1787/5jlwqf2r97g5-en | eng |
dcterms.references | Ortega, D., García, G. A., & Ortiz, F. M. (2019). Determinantes que influyen en la producción científica de las Universidades y Escuelas Politécnicas Ecuatorianas en el año 2014. Guayaquil - Ecuador: Espol. Obtenido de http://www.dspace.espol.edu.ec/xmlui/handle/123456789/46148 | spa |
dcterms.references | Osborne, J. W. (2014). Best Practices in Exploratory Factor Analysis. ISBN13: 978-1500594343, ISBN-10:1500594342. Scotts Valley, California:: CreateSpace Independent Publishing | eng |
dcterms.references | Osborne, J. W., & Costello, A. B. (2004). Sample size and subject to item ratio in principal components analysis. Practical Assessment, Research, and Evaluation, 9, 1-10. https://doi.org/10.7275/ktzq-jq66 | eng |
dcterms.references | Pagani, R., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio : a proposed methodology to select and rank relevant scientific. Scientometrics | eng |
dcterms.references | Prieto, W. O., & Tejedor, J. M. (2020). La generación de nuevo conocimiento en economía: un modelo de crecimiento endógeno. Revista Finanzas y Política Económica, 12(2), 553-588. https://doi.org/10.14718/revfinanzpolitecon.vl2.n2.2020.3729 | spa |
dcterms.references | Primo, E., & Estrada, J.-M. (2009). Las bases de datos bibliográficas españolas, un instrumento para el conocimiento y la difusión de la producción científica. Seminarios de la Fundacion Espanola de Reumatologia, 10(4), 132–141. https://doi.org/10.1016/j.semreu.2009.09.004 | spa |
dcterms.references | Ramírez, M. S. (2015). Acceso abierto y su repercusión en la Sociedad del Conocimiento: Reflexiones de casos prácticos en Latinoamérica. Education in the Knowledge Society, 16(1), 103-118. https://www.redalyc.org/pdf/5355/535554757007.pdf | spa |
dcterms.references | Ramírez, Y. (2013). Intellectual capital management and reporting in European higher education institutions. Intangible Capital, 9(1), 1-19. http://dx.doi.org/10.3926/ic.201 | eng |
dcterms.references | Rantasaari, J. (2022). Multi-Stakeholder Research Data Management Training as a Tool to Improve the Quality, Integrity, Reliability and Reproducibility of Research. LIBER Quarterly, 32(1), 1-54. https://doi.org/10.53377/lq.11726 | eng |
dcterms.references | Rhoten, D. (2004). Interdisciplinary Research: Trend or Transition. En Social Science Research Council (Vol. 5, págs. 6 -11.). Items Issues. https://s3.amazonaws.com/ssrccdn1/crmuploads/new_publication_3/%7BEB384BDD-B870-DE11-BD80- 001CC477EC70%7D.pdf | eng |
dcterms.references | Romero, E. C., Ferreira, J. J., & Fernandes, C. (2018). A scientometric analysis of knowledge spillover research. The Journal of Technology Transfer, 45(3), 780-805. https://doi.org/10.1007/s10961-018-9698-9 | eng |
dcterms.references | Sanchez, P., Elena, S., & Castrillo, R. (2009). Intellectual capital dynamics in universities: a reporting model. Journal of Intellectual Capital, 10(2), 307-324. https://doi.org/10.1108/14691930910952687 | eng |
dcterms.references | .Secundo, G., Margherita, A., Elia, G., & Passiante, G. (2010). Intangible Assets in Higher Education and Research: Mission, Performance or Both? Journal of Intellectual Capital, 11(2), 140-157. https://doi.org/10.1108/14691931011039651 | eng |
dcterms.references | Shevlin, M., & Miles, J. (1998). Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Personality and Individual Differences, 25(1), 85-90. https://doi.org/10.1016/S0191-8869(98)00055-5 | eng |
dcterms.references | Shmatko, N. (2016). Researchers’ competencies in the coming decade: attitudes towards and expectations of the Russian innovation system. Foresight, 3, 340 - 354. https://doi.org/10.1108/FS-02-2014-0014 | eng |
dcterms.references | Streiner, D. L. (2003). Starting at the Beginning: An Introduction to Coefficient Alpha and Internal Consistency. Journal of Personality Assessment, 80(1), 99-103. http://dx.doi.org/10.1207/S15327752JPA8001_18 | eng |
dcterms.references | Suárez, W., Rodríguez, M., & Ganga, F. A. (2022). Estrategias para promover la producción científica universitaria en Chile. Revista De Ciencias Sociales, 28(2), 350-363. https://doi.org/10.31876/rcs.v28i2.37943 | spa |
dcterms.references | Sveiby, K. E. (1997). The Intangible Assets Monitor. Journal of Human Resource Costing and Accounting, 2(1), 73-97. https://www.sveiby.com/files/pdf/the-intangible-assets-monitor.pdf | eng |
dcterms.references | Ter Wal, A. L., & Boschma, R. (2009). Applying Social Network Analysis in Economic Geography: Framing Some Key Analytic Issues. The Annals of Regional Science, 43(3), 739-756. https://doi.org/10.1007/s00168- 008-0258-3 | eng |
dcterms.references | Thelwall, M., & Kousha, K. (2021). Researchers’ attitudes towards the h-index on Twitter 2007–2020: criticism and acceptance. Scientometrics, 126(6), 5361 - 5368. https://doi.org/10.1007/s11192-021-03961-8 | eng |
dcterms.references | Ullman, J. (1996). Structural Equation Modeling. En Using Multivariate Statistics (3rd ed.) (págs. 709-819). Harper Collins College Publishers. | eng |
dcterms.references | Velez-Cuartas, G., Gomez-Florez, H., Usuga-Ciro, A., & Velez-Trujillo, M. (2014). Diversidad y reconocimiento de la producción académica en los sistemas de valuación de la investigación en Colombia. Revista Espanola de Documentacion Cientifica, 3, 1-14. http://dx.doi.org/10.3989/redc.2014.3.1133 | spa |
dcterms.references | Veugelers, R. (2010). Towards a multipolar science world: Trends and impact. Scientometrics, 82(2), 439 - 456. https://doi.org/10.1007/s11192-009- 0045-7 | eng |
dcterms.references | Wang, J., & Zhao, R. (2017). 16th International Conference on Scientometrics and Informetrics, Conference Proceedings. Evaluating efficiency of digital databases used for scientific production in Chinese universities. Code 131757, (págs. 1095 - 1106). | eng |
dcterms.references | Wojick, D. E., Warnick, W. L., Carroll, B. C., & Crowe, J. (2006). The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? D-Lib Magazine, 12(6), 63-69. https://doi.org/10.1045/june2006-wojick | eng |
dcterms.references | Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. https://doi.org/10.3758/S13428-018-1055-2/TABLES/9 | eng |
dcterms.references | Yue, Z., Xu, H., Yuan, G., & Pang, H. (2019). Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field. Physica A: Statistical Mechanics and its Applications, 524, 375-391. https://doi.org/10.1016/j.physa.2019.04.201 | eng |
dcterms.references | Zhang, J. J., & Zhang, C. X. (2021). Ontological mingling and mapping: Chinese tourism researchers’ experiences at international conferences. Tourism Geographies, 23(4), 873 - 894. https://doi.org/10.1080/14616688.2020.1757745 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Doctorado en Administración | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: