Síndrome de Sjögren: identificación de nuevos biomarcadores y mecanismos moleculares implicados en su fisiopatogénesis
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Vergara Serpa, Oscar Vicente | |
dc.contributor.author | Ochoa Orlenis Sierra, Ochoa Orlenis Sierra | |
dc.contributor.author | Espitia Muñoz, Vianh Carlos | |
dc.contributor.author | Ordosgoitia Dickson, Luis Felipe | |
dc.contributor.author | García, Juan Pablo | |
dc.contributor.author | Diaz Suarez, Esteban David | |
dc.contributor.author | Daza Arnedo, Rodrigo | |
dc.contributor.author | Vázquez, Lourdes | |
dc.contributor.author | Rico Fontalvo, Jorge | |
dc.date.accessioned | 2024-07-03T22:51:56Z | |
dc.date.available | 2024-07-03T22:51:56Z | |
dc.date.issued | 2024 | |
dc.description.abstract | El Síndrome de Sjögren (SS) es una enfermedad autoinmune de carácter sistémico, que afecta principalmente al sistema glandular exocrino, generando un funcionamiento anormal de las glándulas lacrimales y salivales. Objetivo: proporcionar una actualización sobre la identificación de nuevos biomarcadores y mecanismos moleculares implicados en la fisiopatogénesis del SS. Método: Revisión narrativa de la literatura en diferentes bases de datos, mediante la búsqueda de términos descritos incluidos en los tesauros MESH y DeCs, para artículos publicados a partir del año 2018. Resultados: presentamos evidencia que destaca la identificación de nuevos biomarcadores y mecanismos implicados en la fisiopatogénesis del SS, describiendo las vías de: linfocitos B, catepsina S, cistatina C, quimioquina C-X3-C modificada de ligando 1, quimiocina regulada por activación del timo, células T, proteína morfogenética ósea 6, estimulación del receptor de oxitocina, receptor de zinc, calponina-3. Conclusión: los avances en la tecnología facilita el análisis detallado de la genética y fisiopatogénesis del SS, impulsando el desarrollo de terapias específicas. La búsqueda de biomarcadores no invasivos responde a las limitaciones de los métodos existentes y la invasividad de las biopsias salivales, prometiendo mejoras diagnósticas y terapéuticas. | spa |
dc.description.abstract | Sjögren's Syndrome (SS) is a systemic autoimmune disease that primarily affects the exocrine glandular system, leading to abnormal lacrimal and salivary gland function. Objective: To provide an update on identifying new biomarkers and molecular mechanisms involved in the pathogenesis of SS. Method: Narrative review of the literature in various databases, searching for terms included in the MESH and DeCs thesauri, for articles published since 2018. Results: We present evidence highlighting the identification of new biomarkers and mechanisms involved in the pathogenesis of SS, describing pathways of B lymphocytes, cathepsin S, cystatin C, modified C-X3-C chemokine ligand 1, thymus activation-regulated chemokine, T cells, bone morphogenetic protein 6, oxytocin receptor stimulation, zinc receptor, and calponin-3. Conclusion: Advances in technology facilitate detailed analysis of the genetics and pathogenesis of SS, driving the development of specific therapies. The search for non-invasive biomarkers is driven by the limitations of existing methods and the invasiveness of salivary gland biopsies, promising diagnostic and therapeutic improvements. | eng |
dc.format.mimetype | ||
dc.identifier.doi | https://doi.org/10.18004/rpr/2024.10.01.22 | |
dc.identifier.issn | 24134341 (En línea) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14802 | |
dc.identifier.url | http://scielo.iics.una.py/scielo.php?script=sci_arttext&pid=S2413-43412024000100022&lng=es&nrm=iso&tlng=es | |
dc.language.iso | spa | |
dc.publisher | Sociedad Paraguaya de Reumatología | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.source | Revista Paraguaya de Reumatología | spa |
dc.source | Rev. parag. reumatol. | spa |
dc.source | Vol. 10 No. 1, (2024) | |
dc.subject | Síndrome de Sjögren | spa |
dc.subject | Xerostomía | spa |
dc.subject | Biomarcadores | spa |
dc.subject | Fisiopatología | spa |
dc.subject | Genética | spa |
dc.subject | Linfocitos B | spa |
dc.subject | Autoanticuerpos | spa |
dc.subject | Autoinmunidad | spa |
dc.subject.keywords | Sjögren’s syndrome | eng |
dc.subject.keywords | Xerostomia | eng |
dc.subject.keywords | Biomarkers | eng |
dc.subject.keywords | Physiopathology | eng |
dc.subject.keywords | Genetic | eng |
dc.subject.keywords | B-Lymphocytes | eng |
dc.subject.keywords | Autoantibodies | eng |
dc.subject.keywords | Autoimmunity | eng |
dc.title | Síndrome de Sjögren: identificación de nuevos biomarcadores y mecanismos moleculares implicados en su fisiopatogénesis | spa |
dc.title.translated | Sjögren‘s syndrome: identification of new biomarkers and molecular mechanisms involved in its pathophysiology | eng |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | Mariette X, Criswell LA. Primary Sjögren’s Syndrome. N Engl J Med. 2018; 378(10):931-9. DOI: https://doi.org/10.1056/NEJM ra1704569. | eng |
dcterms.references | Rizzo C, Grasso G, Destro Castaniti GM, Ciccia F, Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines (Basel). 2020;8(2):272. DOI: https://doi. org/10.3390/vaccines8020272. | eng |
dcterms.references | Marshall LL, Stevens GA. Management of Primary Sjögren’s Syndrome. Consult Pharm J Am Soc Consult Pharm. 2018; 33(12):691-701. DOI: https://doi.org/10.4140/TCP.n.2018.691. | eng |
dcterms.references | Arvaniti P, Le Dantec C, Charras A, Arleevskaya MA, Hedrich CM, Zachou K, et al. Linking genetic variation with epigenetic profiles in Sjögren’s syndrome. Clin Immunol. 2020;210:108314. DOI: https:// doi.org/10.1016/j.clim.2019.108314. | eng |
dcterms.references | Ibrahem HM. B cell dysregulation in primary Sjögren’s syndrome: A review. Jpn Dent Sci Rev. 2019;55(1):139-44. DOI: https://doi. org/10.1016/j.jdsr.2019.07.001 | eng |
dcterms.references | Martín-Nares E, Hernández-Molina G. Novel autoantibodies in Sjögren’s syndrome: A comprehensive review. Autoimmun Rev. 2019;18(2):192-8. DOI: https://doi.org/10.1016/j.autrev.2018.10.002. | eng |
dcterms.references | Havnaer A, Han G. Autoinflammatory Disorders: A Review and Update on Pathogenesis and Treatment. Am J Clin Dermatol. 2019;20(4):539-64. DOI: https://doi.org/10.1007/s40257-019- 00447-2 | eng |
dcterms.references | Cho KH, Shim SH, Kim M. Clinical, biochemical, and genetic aspects of Sjögren-Larsson syndrome. Clin Genet. 2018;93(4):721- 30. DOI: https://doi.org/10.1111/cge.13186. | eng |
dcterms.references | Psianou K, Panagoulias I, Papanastasiou AD, de Lastic AL, Rodi M, Spantidea PI, et al. Clinical and immunological parameters of Sjögren’s syndrome. Autoimmun Rev. 2018;17(10):1053-64. DOI: https://doi.org/10.1016/j.autrev.2018.05.011. | eng |
dcterms.references | Ciccacci C, Latini A, Perricone C, Conigliaro P, Colafrancesco S, Ceccarelli F, et al. TNFAIP3 Gene Polymorphisms in Three Common Autoimmune Diseases: Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Primary Sjogren SyndromeAssociation with Disease Susceptibility and Clinical Phenotypes in Italian Patients. J Immunol Res. 2019;2019:6728694. DOI: https://doi.org/10.1155/2019/6728694. | eng |
dcterms.references | Lyngbakken MN, Myhre PL, Røsjø H, Omland T. Novel biomarkers of cardiovascular disease: Applications in clinical practice. Crit Rev Clin Lab Sci. 2019;56(1):33-60. DOI: https://doi.org/10.1080/10408 363.2018.1550690. | eng |
dcterms.references | Julián-Jiménez A, Yañez MC, González-del Castillo J, SalidoMota M, Mora-Ordoñez B, Arranz-Nieto MJ, et al. Prognostic power of biomarkers for short-term mortality in the elderly patients seen in Emergency Departments due to infections. Enfermedades Infecc Microbiol Clin Engl Ed. 2019;37(1):11-8. DOI: https:// doi.org/10.1016/j.eimc.2018.02.005 | eng |
dcterms.references | Cortés J, Hidalgo J, Aguilera S, Castro I, Brito M, Urra H, et al. Synaptotagmin-1 overexpression under inflammatory conditions affects secretion in salivary glands from Sjögren’s syndrome patients. J Autoimmun. 2019;97:88-99. DOI: https://doi. org/10.1016/j.jaut.2018.09.005. | eng |
dcterms.references | Trzeciak M, Bagavant H, Papinska J, Deshmukh US. Immune Response Targeting Sjögren’s Syndrome Antigen Ro52 Suppresses Tear Production in Female Mice. Int J Mol Sci. 2018;19(10):2935. DOI: https://doi.org/10.3390/ijms19102935 | eng |
dcterms.references | Moon J, Choi SH, Yoon CH, Kim MK. Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity. PloS One. 2020;15(2):e0229029. DOI: https://doi.org/10.1371/ journal.pone.0229029. | eng |
dcterms.references | Nocturne G, Mariette X. B cells in the pathogenesis of primary Sjögren syndrome. Nat Rev Rheumatol. 2018;14(3):133-45. DOI: https://doi.org/10.1038/nrrheum.2018.10 | eng |
dcterms.references | Chen X, Aqrawi LA, Utheim TP, Tashbayev B, Utheim ØA, Reppe S, et al. Elevated cytokine levels in tears and saliva of patients with primary Sjögren’s syndrome correlate with clinical ocular and oral manifestations. Sci Rep. 2019;9(1):7319. DOI: https://doi. org/10.1038/s41598-019-43891-w. | eng |
dcterms.references | Kazanietz MG, Durando M, Cooke M. CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond. Front Endocrinol. 2019;10:471. DOI: https://doi. org/10.3389/fendo.2019.00471 | eng |
dcterms.references | Wu H, Chen X, Gu F, Zhang P, Xu S, Liu Q, et al. CP-25 alleviates antigen-induced experimental Sjögren’s syndrome in mice by inhibiting JAK1-STAT1/2-CXCL13 signaling and interfering with B-cell migration. Lab Investig J Tech Methods Pathol. 2021;101(8):1084-97. DOI: https://doi.org/10.1038/s41374-021- 00618-5 | eng |
dcterms.references | Hargreaves P, Daoudlarian D, Theron M, Kolb FA, Manchester Young M, Reis B, et al. Differential effects of specific cathepsin S inhibition in biocompartments from patients with primary Sjögren syndrome. Arthritis Res Ther. 2019;21:175. DOI: https://doi. org/10.1186/s13075-019-1971-3 | eng |
dcterms.references | Flanagan-Steet H, Christian C, Lu PN, Aarnio-Peterson M, Sanman L, Archer-Hartmann S, et al. TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Rep. 2018;22(11):2964-77. DOI: 10.1016/j.celrep.2018.02.063. | eng |
dcterms.references | Edman MC, Janga SR, Meng Z, Bechtold M, Chen AF, Kim C, et al. Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjögren’s Syndrome patients. Sci Rep. 2018;8(1):11044. DOI: https://doi.org/10.1038/s41598-018-29054-5 | eng |
dcterms.references | Lee M, Lee Y, Song J, Lee J, Chang SY. Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018;18(1):e5. DOI: https://doi. org/10.4110/in.2018.18.e5. | eng |
dcterms.references | Fu R, Guo H, Janga S, Choi M, Klinngam W, Edman MC, et al. Cathepsin S activation contributes to elevated CX3CL1 (fractalkine) levels in tears of a Sjögren’s syndrome murine mo del. Sci Rep. 2020;10:1455. DOI: https://doi.org/10.1038/s41598- 020-58488-2. | eng |
dcterms.references | Yao Y, Ma JF, Chang C, Xu T, Gao CY, Gershwin ME, et al. Immunobiology of T Cells in Sjögren’s Syndrome. Clin Rev Allergy Immunol. 2021;60(1):111-31. DOI: https://doi.org/10.1007/s12016-021- 08834-3. | eng |
dcterms.references | Umeda M, Origuchi T, Kawashiri SY, Koga T, Ichinose K, Furukawa K, et al. Thymus and Activation-regulated Chemokine as a Biomarker for IgG4-related Disease. Sci Rep. 2020;10(1):6010. DOI: https://doi.org/10.1038/s41598-020-62918-8. | eng |
dcterms.references | Chen X, Wu H, Wei W. Advances in the diagnosis and treatment of Sjögren’s syndrome. Clin Rheumatol. 2018;37(7):1743-9. DOI: https://doi.org/10.1007/s10067-018-4107-9. | eng |
dcterms.references | Gandolfo S, De Vita S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren’s syndrome. Clin Exp Rheuma tol. 2019;37 Suppl 118(3):199-208. PMID: 31287461. | eng |
dcterms.references | Lee J, Lee J, Kwok SK, Baek S, Jang SG, Hong SM, et al. JAK-1 Inhibition Suppresses Interferon-Induced BAFF Production in Human Salivary Gland: Potential Therapeutic Strategy for Primary Sjögren’s Syndrome. Arthritis Rheumatol Hoboken NJ. 2018; 70(12):2057-66. DOI: https://doi.org/10.1002/art.40798. | eng |
dcterms.references | Fonseca VR, Romão VC, Agua-Doce A, Santos M, López-Presa D, Ferreira AC, et al. The Ratio of Blood T Follicular Regulatory Cells to T Follicular Helper Cells Marks Ectopic Lymphoid Structure Formation While Activated Follicular Helper T Cells Indicate Disease Activity in Primary Sjögren’s Syndrome. Arthritis Rheumatol Hoboken NJ. 2018;70(5):774-84. DOI: https://doi.org/10.1002/ art.40461 | eng |
dcterms.references | Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, et al. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol. 2018; 9:1637. DOI: https://doi. org/10.3389/fimmu.2018.01637. | eng |
dcterms.references | Onuora S. Connective tissue diseases: T cells in blood mark Sjögren syndrome activity. Nat Rev Rheumatol. 2018;14(3):122. DOI: https://doi.org/10.1038/nrrheum.2018.12. | eng |
dcterms.references | Xin X, Wang Q, Qing J, Song W, Gui Y, Li X, et al. Th17 cells in primary Sjögren’s syndrome negatively correlate with increased Roseburia and Coprococcus. Front Immunol. 2022;13:974648. DOI: https://doi.org/10.3389/fimmu.2022.974648 | eng |
dcterms.references | Zhang CJ, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9(1):2745. DOI: https://doi.org/10.1038/s41467- 018-05104-9. | eng |
dcterms.references | Gao Y, Chen Y, Zhang Z, Yu X, Zheng J. Recent Advances in Mouse Models of Sjögren’s Syndrome. Front Immunol. 2020;11:1158. DOI: https://doi.org/10.3389/fimmu.2020.01158. | eng |
dcterms.references | Wang T, Zhang C, Wu C, Liu J, Yu H, Zhou X, et al. miR-765 inhibits the osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting BMP6 via regulating the BMP6/ Smad1/5/9 signaling pathway. Stem Cell Res Ther. 2020;11(1):62. DOI: https://doi.org/10.1186/s13287-020-1556-x. | eng |
dcterms.references | Gomez-Puerto MC, Iyengar PV, García de Vinuesa A, Ten Dijke P, Sanchez-Duffhues G. Bone morphogenetic protein receptor signal transduction in human disease. J Pathol. 2019;247(1):9-20. DOI: https://doi.org/10.1002/path.5173 | eng |
dcterms.references | Xu J, Su Y, Hu L, Cain A, Gu Y, Liu B, et al. Effect of Bone Morphogenetic Protein 6 on Immunomodulatory Functions of Salivary Gland-Derived Mesenchymal Stem Cells in Sjögren’s Syndrome. Stem Cells Dev. 2018;27(22):1540-8. DOI: https://doi. org/10.1089/scd.2018.0109. | eng |
dcterms.references | Su Y, Gu Y, Wu R, Wang H. Bone Morphogenetic Protein 6 Inhibits the Immunomodulatory Property of BMMSCs via Id1 in Sjögren’s Syndrome. Stem Cells Int. 2018;2018:9837035. DOI: https://doi.org/10.1155/2018/9837035 | eng |
dcterms.references | Zyrianova T, Basova LV, Makarenkova H. Isolation of Myoepithelial Cells from Adult Murine Lacrimal and Submandibular Glands. J Vis Exp JoVE. 2019;(148). DOI: https://doi.org/10.3791/59673. | eng |
dcterms.references | Min S, Song EAC, Oyelakin A, Gluck C, Smalley K, Romano RA. Functional characterization and genomic studies of a novel murine submandibular gland epithelial cell line. PLoS ONE. 2018;13(2):e0192775. DOI: https://doi.org/10.1371/journal.pone. 0192775. | eng |
dcterms.references | Gárriz A, Aubry S, Wattiaux Q, Bair J, Mariano M, Hatzipetrou G, et al. Role of the Phospholipase C Pathway and Calcium Mobilization in Oxytocin-Induced Contraction of Lacrimal Gland Myoepithelial Cells. Invest Ophthalmol Vis Sci. 2021;62(14):25. DOI: https://doi.org/10.1167/iovs.62.14.25 | eng |
dcterms.references | Sanna A, Firinu D, Zavattari P, Valera P. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(1):68. DOI: https://doi.org/10.3390/nu10010068. | eng |
dcterms.references | Bhattarai KR, Junjappa R, Handigund M, Kim HR, Chae HJ. The imprint of salivary secretion in autoimmune disorders and related pathological conditions. Autoimmun Rev. 2018;17(4):376-90. DOI: https://doi.org/10.1016/j.autrev.2017.12.017. | eng |
dcterms.references | Rawangwong A, Pidsaya A, Thoungseabyoun W, Tachow A, Sawatpanich T, Sakaew W, et al. Localization of phospholipase C β3 in the major salivary glands of adult mice. Acta Histochem. 2019;121(4):484-90. DOI: https://doi.org/10.1016/j.acthis.2019. 03.002. | eng |
dcterms.references | Kim YJ, Jo Y, Lee YH, Park K, Park HK, Choi SY. Zn2+ stimulates salivary secretions via metabotropic zinc receptor ZnR/GPR39 in human salivary gland cells. Sci Rep. 2019;9(1):17648. DOI: https:// doi.org/10.1038/s41598-019-54274-8. | eng |
dcterms.references | Ciuba K, Hawkes W, Tojkander S, Kogan K, Engel U, Iskratsch T, et al. Calponin-3 is critical for coordinated contractility of actin stress fibers. Sci Rep. 2018;8(1):17670. DOI: https://doi. org/10.1038/s41598-018-36053-7. | eng |
dcterms.references | Birnbaum J, Hoke A, Lalji A, Calabresi P, Bhargava P, CasciolaRosen L. Brief Report: Anti-Calponin 3 Autoantibodies: A Newly Identified Specificity in Patients With Sjögren’s Syndrome. Arthritis Rheumatol Hoboken NJ. 2018;70(10):1610-6. DOI: https:// doi.org/10.1002/art.40537. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion |