Integración de la Escala sMARS Adaptada y Métricas Sintéticas del BCI Emotiv Insight para la Evaluación de la Ansiedad Matemática en Estudiantes de Educación Superior

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorDíaz Pérez, Anderson
dc.contributor.advisorGarcía Jiménez, Rafael
dc.contributor.authorOrozco Guzmán, Manuel Guillermo
dc.date.accessioned2025-12-03T22:52:31Z
dc.date.available2025-12-03T22:52:31Z
dc.date.issued2025
dc.description.abstractLa presente tesis doctoral se centra en la evaluación integral de la ansiedad matemática en estudiantes universitarios, mediante la integración de la escala sMARSCOL v2, adaptada al contexto colombiano, con métricas sintéticas derivadas del dispositivo BCI Emotiv Insight. El objetivo principal fue diseñar un protocolo de medición, que permitiera una evaluación multidimensional de la Ansiedad Matemática en estudiantes de educación superior. La investigación se desarrolló en cinco fases. En la primera, se llevó a cabo la validación de contenido por juicio de expertos, quienes evaluaron la claridad, pertinencia y coherencia de los ítems, así como la incorporación de una subescala orientada a la ansiedad social en contextos matemáticos. En la segunda, se aplicó el instrumento a estudiantes de primer y segundo semestre de programas de educación superior, lo que permitió obtener información empírica para la validación de constructo mediante análisis factorial exploratorio (AFE) y confirmatorio (AFC), con resultados que demostraron adecuados índices de ajuste y consistencia interna. En la tercera fase, se integraron datos sintéticos derivados de métricas EEG simuladas con el dispositivo Emotiv Insight, procesados mediante algoritmos de inteligencia artificial, lo que posibilitó contrastar los resultados psicométricos con indicadores neurofisiológicos simulados y evidenciar la convergencia entre ambas fuentes de información. En la cuarta fase, se realizaron análisis bivariados que mostraron asociaciones estadísticamente significativas entre los niveles de ansiedad matemática y variables sociodemográficas como el sexo y la facultad de pertenencia. Finalmente, en la quinta fase, se formuló un protocolo sistemático de evaluación e intervención que combina las dimensiones psicométricas y neurofisiológicas, orientado a fortalecer los procesos institucionales de acompañamiento estudiantil. Los hallazgos revelan que la ansiedad matemática predomina en niveles moderados dentro de la muestra estudiada, con diferencias significativas por sexo siendo las mujeres más propensas a reportar niveles altos y por facultad con mayor prevalencia en Ciencias Jurídicas y Sociales. Asimismo, la integración de métricas sintéticas y modelado predictivo confirmó la efectividad de la escala sMARSCOL v2 para clasificar a los estudiantes en distintos niveles de ansiedad. En conjunto, la investigación propone un modelo innovador que contribuye tanto al avance de la psicometría como al diseño de políticas educativas basadas en evidencia.spa
dc.description.abstractThis doctoral dissertation focuses on the comprehensive assessment of mathematics anxiety in university students through the integration of the sMARSCOL v2 scale, adapted to the Colombian context, with synthetic metrics derived from the Emotiv Insight BCI device. The main objective was to design a measurement protocol that enables a multidimensional evaluation of mathematics anxiety in higher education students. The research was carried out in five phases. In the first phase, content validation was conducted through expert judgment, where specialists evaluated the clarity, relevance, and coherence of the items, as well as the incorporation of a subscale oriented toward social anxiety in mathematical contexts. In the second phase, the instrument was administered to first- and second-semester higher education students, providing empirical data for construct validation through exploratory (EFA) and confirmatory factor analyses (CFA). The results demonstrated adequate fit indices and internal consistency. In the third phase, synthetic data derived from simulated EEG metrics obtained with the Emotiv Insight device were integrated and processed using artificial intelligence algorithms. This allowed for a comparison between psychometric results and simulated neurophysiological indicators, providing evidence of convergence between both sources of information. The fourth phase involved bivariate analyses, which revealed statistically significant associations between mathematics anxiety levels and sociodemographic variables such as gender and academic program. Finally, in the fifth phase, a systematic protocol of evaluation and intervention was developed, combining psychometric and neurophysiological dimensions with the aim of strengthening institutional student support processes. The findings indicate that mathematics anxiety predominantly manifests at moderate levels within the studied sample, with significant differences by gender women being more likely to report higher levels and by faculty, with greater prevalence in Legal and Social Sciences. Furthermore, the integration of synthetic metrics and predictive modeling confirmed the effectiveness of the sMARSCOL v2 scale in classifying students into different anxiety levels. Overall, the research proposes an innovative model that contributes both to the advancement of psychometrics and to the design of evidence based educational policies.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17161
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ingenieríasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectValidación psicométricaspa
dc.subjectInterfaz Cerebro-Computadorspa
dc.subjectDatos sintéticosspa
dc.subjectAprendizaje automáticospa
dc.subjectComputación afectivaspa
dc.subject.keywordsPsychometric validationeng
dc.subject.keywordsBrain-Computer Interfaceeng
dc.subject.keywordsBCIeng
dc.subject.keywordsSynthetic dataeng
dc.subject.keywordsMachine learningeng
dc.subject.keywordsAffective computingeng
dc.titleIntegración de la Escala sMARS Adaptada y Métricas Sintéticas del BCI Emotiv Insight para la Evaluación de la Ansiedad Matemática en Estudiantes de Educación Superiorspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.spaTesis de doctorado
dcterms.referencesAbadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep Learning with Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), 308–318. https://doi.org/10.1145/2976749.2978318eng
dcterms.referencesAgüero Calvo, E., Meza Cascante, L. G., Suárez Valdés-Ayala, Z., & Schmidt Quesada, S. (2017). Mathematical Anxiety in Secondary Education in Costa Rica. Revista Electrónica de Investigación Educativa, 19(1), 35–45eng
dcterms.referencesAlexander, L., & Martray, C. (1989). The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Measurement and Evaluation in Counseling and Development, 22(3), 143–150.eng
dcterms.referencesAlkan, V., Coşguner, T., & Fidan, Y. (2019). Mathematics teaching anxiety scale: Construction, reliability and validity. International Journal of Assessment Tools in Education, 6(3), 506–521eng
dcterms.referencesAlonso-Valerdi, L. M., Arreola-Villarruel, M. A., & Argüello-Garcia, J. (2019). Interfaces cerebro-computadora: conceptualización, retos de rediseño e impacto social. Revista Mexicana de Ingenieria Biomédica, 40(3)spa
dcterms.referencesAmerican Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). Standards for Educational and Psychological Testing. American Educational Research Association.eng
dcterms.referencesAng, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., Low, W., & Guan, C. (2015). A Randomized Controlled Trial of EEG-Based Motor Imagery Brain–Computer Interface Robotic Rehabilitation for Stroke. Clinical EEG and Neuroscience, 46(4), 310–320. https://doi.org/10.1177/1550059414522229eng
dcterms.referencesAngelidis, K., Hagenaars, S. P., Cieslik, E. C., van der Wee, N. J. A., van der Does, W., Spinhoven, P., Penninx, B. W. J. H., Tendolkar, I., Franke, B., Buitelaar, J. K., Marsman, J. B. C., van Eijndhoven, P., Bollen, L., Beckmann, C. F., & Schmaal, L. (2016). EEG alpha oscillations reflect individual differences in anxiety: A replication and extension study. Journal of Affective Disorders, 205, 111–118eng
dcterms.referencesApley, D. W., & Zhu, J. (2019). Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models. Journal of Machine Learning Research, 20(162), 1–47eng
dcterms.referencesArjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. Proceedings of the 34th International Conference on Machine Learning (ICML), 214–223.eng
dcterms.referencesArmani, F., Daly, I., Vernitski, A., Gillmeister, H., & Scherer, R. (2023). Maths Anxiety and cognitive state monitoring for neuroadaptive learning systems using electroencephalography. 2023 IEEE International Conference on Metrology for EXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), 467–472.eng
dcterms.referencesArsalan, A., & Majid, M. (2022). A study on multi-class anxiety detection using wearable EEG headband. Journal of Ambient Intelligence and Humanized Computing, 13(12), 5739–5749eng
dcterms.referencesAshcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181–185. https://doi.org/10.1111/1467-8721.00196eng
dcterms.referencesAshcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition & Emotion, 8(2), 97–125.eng
dcterms.referencesAshcraft, M. H., & Kirk, E. P. (2001a). The Relationships Among Working Memory, Math Anxiety, and Performance. Journal of Experimental Psychology: General, 130(2), 224–237. https://doi.org/10.1037/0096-3445.130.2.224eng
dcterms.referencesAshcraft, M. H., & Kirk, E. P. (2001b). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224.eng
dcterms.referencesAshcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14, 243–248.eng
dcterms.referencesAshcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the affective drop in performance. Journal of Psychoeducational Assessment, 27(3), 197–205.eng
dcterms.referencesAshcraft, M. H., & Ridley, K. S. (2005). Math anxiety and its cognitive consequences: A tutorial review. The Handbook of Mathematical Cognition, 315–327.eng
dcterms.referencesAuzmendi Escribano, E. (1992). Las actitudes hacia la matemática-estadística en las enseñanzas media y universitaria. Caracter\’\isticas y Medición. Ed Mensajero. Españaspa
dcterms.referencesBadcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., & McArthur, G. (2013). Validation of the Emotiv EPOC EEG Gaming System for Measuring Research Quality Auditory ERPs. PeerJ, 1, e38. https://doi.org/10.7717/peerj.38eng
dcterms.referencesBadcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., & McArthur, G. (2015). Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ, 3, e907. https://doi.org/10.7717/peerj.907eng
dcterms.referencesBaloğlu, M., & Zelhart, P. F. (2007). Psychometric Properties of the Revised Mathematics Anxiety Rating Scale. The Psychological Record, 57, 593–611. https://doi.org/10.1007/BF03395597eng
dcterms.referencesBalt, M., Börnert-Ringleb, M., & Orbach, L. (2022). Reducing math anxiety in school children: A systematic review of intervention research. Frontiers in Education, 7, 798516.eng
dcterms.referencesBarroso, C., Ganley, C. M., McGraw, A. L., Geer, E. A., Hart, S. A., & Daucourt, M. C. (2021). A meta-analysis of the relation between math anxiety and math achievement. Psychological Bulletin, 147(2), 134eng
dcterms.referencesBarry, R. J., Clarke, A. R., McCarthy, R., & Selikowitz, M. (2003). EEG coherence in attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 114(1), 170–179eng
dcterms.referencesBatashvili, M., Staples, P. A., Baker, I., & Sheffield, D. (2019). Exploring the relationship between gamma-band activity and maths anxiety. Cognition and Emotion.eng
dcterms.referencesBatashvili, M., Staples, P., Baker, I. S., & Sheffield, D. (2020). The neurophysiological relationship between number anxiety and the EEG gammaband. Journal of Cognitive Psychology, 32(5–6), 580–585eng
dcterms.referencesBeilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 1860–1863eng
dcterms.referencesBeilock, S. L., & Willingham, D. T. (2014). Math Anxiety: Can Teachers Help Students Reduce It? American Educator, 38(2), 28–32, 43.eng
dcterms.referencesBetz, N. E. (1978). Prevalence, distribution, and correlates of math anxiety in college students. Journal of Counseling Psychology, 25(5), 441–448. https://doi.org/10.1037/0022-0167.25.5.441eng
dcterms.referencesBiasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80–R85. https://doi.org/10.1016/j.cub.2018.11.052eng
dcterms.referencesBiblioteca del Congreso Nacional de Chile. (2021). Ley 21.383: Modifica la Carta Fundamental para establecer el desarrollo científico y tecnológico al servicio de las personas. https://www.bcn.cl/leychile/navegar?idNorma=1166983spa
dcterms.referencesBishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.eng
dcterms.referencesBishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, Issue 4). Springereng
dcterms.referencesBoksem, M. A. S., & Tops, M. (2008). Mental fatigue: costs and benefits. Brain Research Reviews, 59(1), 125–139.eng
dcterms.referencesBowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D. A., Hernández, M. V., Wardlaw, J., & Rueckert, D. (2018). GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks. ArXiv. https://arxiv.org/abs/1810.10863eng
dcterms.referencesBreiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324eng
dcterms.referencesBrown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (2nd ed.). Guilford Press.eng
dcterms.referencesCarey, E., Hill, F., Devine, A., & Szücs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987eng
dcterms.referencesCarey, E., Hill, F., Devine, A., & Szűcs, D. (2017). The modified abbreviated math anxiety scale: A valid and reliable instrument for use with children. Frontiers in Psychology, 8, 11eng
dcterms.referencesCavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421eng
dcterms.referencesCaviola, S., Primi, C., Chiesi, F., & Mammarella, I. C. (2017). Psychometric properties of the Abbreviated Math Anxiety Scale (AMAS) in Italian primary school children. Learning and Individual Differences, 55, 174–182. https://doi.org/10.1016/j.lindif.2017.03.006eng
dcterms.referencesCervera, M. A., Soekadar, S. R., Ushiba, J., Millán, J. d. R., Liu, M., Birbaumer, N., & Garipelli, G. (2018). Brain–Computer Interfaces for Post-Stroke Motor Rehabilitation: A Meta-Analysis. Annals of Clinical and Translational Neurology, 5(5), 651–663. https://doi.org/10.1002/acn3.544eng
dcterms.referencesChoi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., & Sun, J. (2017). Generating Multi-label Discrete Patient Records using Generative Adversarial Networks. Proceedings of the 2nd Machine Learning for Healthcare Conference (MLHC 2017), 68, 286–305. https://proceedings.mlr.press/v68/choi17a.htmleng
dcterms.referencesChoi-Koh, S. S., & Ryoo, B. G. (2019). Differences of math anxiety groups based on two measurements, MASS and EEG. Educational Psychology, 39(5), 659– 677eng
dcterms.referencesCodding, R. S., Goodridge, A. E., Hill, E., Kromminga, K. R., Chehayeb, R., Volpe, R. J., & Scheman, N. (2023). Meta-analysis of skill-based and therapeutic interventions to address math anxiety. Journal of School Psychology, 100, 101229. https://doi.org/10.1016/j.jsp.2023.101229eng
dcterms.referencesCornejo-Plaza, M. I., & et al. (2024). Chilean Supreme Court ruling on the protection of brain data and neurorights. Frontiers in Psychology, 15, 1330439. https://doi.org/10.3389/fpsyg.2024.1330439eng
dcterms.referencesCreswell, J. W., & Plano Clark, V. L. (2017). Designing and Conducting Mixed Methods Research (3rd ed.). SAGE Publicationseng
dcterms.referencesDaker, R. J., Gattas, S. U., Necka, E. A., Green, A. E., & Lyons, I. M. (2023). Does anxiety explain why math-anxious people underperform in math? Npj Science of Learning, 8(1), 6.eng
dcterms.referencesDavidesco, I. (2020). Brain-to-Brain Synchrony in the STEM Classroom. CBE—Life Sciences Education, 19(3), es8. https://doi.org/10.1187/cbe.19-11-0258eng
dcterms.referencesDavidesco, I., Laurent, E., Valk, H., West, T., Milne, C., Poeppel, D., & Dikker, S. (2023). The Temporal Dynamics of Brain-to-Brain Synchrony Between Students and Teachers Predict Learning Outcomes. Psychological Science, 34(5), 633–643. https://doi.org/10.1177/09567976231163872eng
dcterms.referencesde la Hera, J. M., Morales-Rodr\’\iguez, F. M., Rodr\’\iguez-Gobiet, J. P., & Mart\’\inez-Ramón, J. P. (2023). Attitudes toward mathematics/statistics, anxiety, self-efficacy and academic performance: An artificial neural network. Frontiers in Psychology, 14, 1214892eng
dcterms.referencesDebener, S., Minow, F., Emkes, R., Gandras, K., & de Vos, M. (2012). How About Taking a Low-Cost, Small, and Wireless EEG for a Walk? Psychophysiology, 49(11), 1617–1620. https://doi.org/10.1111/j.1469-8986.2012.01471.xeng
dcterms.referencesdel R\’\io, M. F., Susperreguy, M. I., Strasser, K., Iturra, C., & Gallardo, I. (2019). Creencias sobre matemática y género de estudiantes, docentes y padres: datos sensibles para el diseño de intervenciones. https://centroestudios.mineduc.cl/wp-content/uploads/sites/100/2021/08/003- Del-Rio-FINAL.pdfspa
dcterms.referencesdel Valle, M., & Zamora, E. V. (2021). El uso de las medidas de auto-informe: ventajas y limitaciones en la investigación en Psicolog\’\iaspa
dcterms.referencesDevine, A., Fawcett, K., Szűcs, D., & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 8(33), 1–9. https://doi.org/10.1186/1744-9081-8-33eng
dcterms.referencesDikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Van Bavel, J., Ding, M., & Poeppel, D. (2017). Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Current Biology, 27(9), 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002eng
dcterms.referencesDinc, L., & colleagues. (2025). The Effects of Alpha/Theta Neurofeedback on Mood, Anxiety, Emotion Regulation, and Trait Impulsivity. Brain Research. https://pubmed.ncbi.nlm.nih.gov/40945564/eng
dcterms.referencesDoğan, T., Koçtürk, N., Akın, E., Kurnaz, M. F., Öztürk, C. D., Şen, A., & Yalçn, M. (2024). Science-Based Mobile Apps for Reducing Anxiety: A Systematic Review and Meta-Analysis. Clinical Psychology & Psychotherapy, 31(5). https://doi.org/10.1002/cpp.3058eng
dcterms.referencesDondio, P., Gusev, V., & Rocha, M. (2023). Do games reduce maths anxiety? A meta-analysis. Computers & Education, 194, 104650. https://doi.org/10.1016/j.compedu.2022.104650eng
dcterms.referencesDoshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learningeng
dcterms.referencesDowker, A. (2005). Individual Differences in Arithmetic: Implications for Psychology, Neuroscience and Education (1st ed.). Psychology Press. https://doi.org/10.4324/9780203324899eng
dcterms.referencesDowker, A., Sarkar, A., & Looi, C. Y. (2016a). Mathematics Anxiety: What Have We Learned? Acta Psychologica, 164, 48–55. https://doi.org/10.1016/j.actpsy.2015.10.011eng
dcterms.referencesDowker, A., Sarkar, A., & Looi, C. Y. (2016b). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508.eng
dcterms.referencesDu, X., Ding, X., Xi, M., Lv, Y., Qiu, S., & Liu, Q. (2024). A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network. Brain Sciences, 14(4), 375. https://doi.org/10.3390/brainsci14040375eng
dcterms.referencesDuvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., & Dutoit, T. (2013). Performance of the Emotiv Epoc Headset for P300-Based Applications. BioMedical Engineering OnLine, 12, 56. https://doi.org/10.1186/1475-925X-12-56eng
dcterms.referencesDwork, C., & Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–407. https://doi.org/10.1561/0400000042eng
dcterms.referencesEidlin-Levy, H., Avraham, E., Fares, L., & Rubinsten, O. (2023). Math anxiety affects career choices during development. International Journal of STEM Education, 10(1), 49eng
dcterms.referencesElse-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103–127. https://doi.org/10.1037/a0018053eng
dcterms.referencesEMOTIV Insight Specifications. (2024)eng
dcterms.referencesEMOTIV Insight: User & Performance Metrics Manual. (2023).eng
dcterms.referencesEsteban, C., Hyland, S. L., & Rätsch, G. (2017a). Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. ArXiv. https://arxiv.org/abs/1706.02633eng
dcterms.referencesEsteban, C., Hyland, S. L., & Rätsch, G. (2017b). Real-Valued (Medical) Time Series Generation with Recurrent Conditional GANs. ArXiv Preprint ArXiv:1706.02633.eng
dcterms.referencesEvangelopoulou, M., Jiménez-Fanjul, N., & Jose Madrid, M. (2023). ClassroomBased Mathematics Anxiety Among Students in Greek Secondary Education: A Perspective from Math Teachers. Operations Research Forum, 4(4), 74.eng
dcterms.referencesEysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and Cognitive Performance: Attentional Control Theory. Emotion, 7(2), 336–353. https://doi.org/10.1037/1528-3542.7.2.336eng
dcterms.referencesFennema, E., & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326.eng
dcterms.referencesFernández, L. M., Wang, X., Ramirez, O., & Villalobos, M. C. (2021). Latinx students’ mathematics anxiety and their study habits: Exploring their relationship at the postsecondary level. Journal of Hispanic Higher Education, 20(3), 278–296eng
dcterms.referencesFernández-Blanco, A., Rojas-Barahona, C. A., Dib, M. N., & Orbach, L. (2024). Math anxiety assessment within the sate-trait anxiety model: psychometric analysis of the “Mathematics Anxiety Questionnaire” and “State-Mathematics Anxiety Questionnaire” in Chilean school-aged children. Current Psychology, 43(10), 8812–8824.eng
dcterms.referencesFornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312eng
dcterms.referencesFrid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). GAN-based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification. Neurocomputing, 321, 321– 331. https://doi.org/10.1016/j.neucom.2018.09.013eng
dcterms.referencesFrid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic Data Augmentation Using GAN for Improved Liver Lesion Classification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), 289–293. https://doi.org/10.1109/ISBI.2018.8363576eng
dcterms.referencesFriedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451eng
dcterms.referencesFurnham, A., & Henderson, M. (1982). The good, the bad and the mad: Response bias in self-report measures. Personality and Individual Differences, 3(3), 311– 320. https://doi.org/https://doi.org/10.1016/0191-8869(82)90051-4eng
dcterms.referencesGadea, M., Aliño, M., Hidalgo, V., Espert, R., & Salvador, A. (2020). Effects of a Single Session of SMR Neurofeedback Training on Anxiety and Cortisol Levels. Neurophysiologie Clinique / Clinical Neurophysiology, 50(2), 167–173. https://doi.org/10.1016/j.neucli.2020.03.001eng
dcterms.referencesGoetz, T., Bieg, M., Lüdtke, O., Pekrun, R., & Hall, N. C. (2013). Do girls really experience more anxiety in mathematics? Psychological Science, 24(10), 2079–2087. https://doi.org/10.1177/0956797613486989eng
dcterms.referencesGonçalves, A. F., & colleagues. (2020). Generation and evaluation of synthetic patient data. Artificial Intelligence in Medicine, 114, 102040. https://doi.org/10.1016/j.artmed.2021.102040eng
dcterms.referencesGonçalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L., & Sales, A. P. (2020). Generation and evaluation of synthetic patient data. BMC Medical Research Methodology, 20(108). https://doi.org/10.1186/s12874-020-00977-1eng
dcterms.referencesGonzález, A. D., Villafaña, C. M., Ávila, M. M., & de Irapuato, E. N. O. (n.d.). Validación de un instrumento cuantitativo para medir la ansiedad a las matemáticas en niños de primariaspa
dcterms.referencesGonzález, M. del C., Ramírez, M., & García-Suárez, J. (2022). Adaptación y validación de la Escala Abreviada de Ansiedad Matemática (AMAS) en población infantil mexicana. Revista Latinoamericana de Psicología, 54(2), 123–134. https://doi.org/10.14349/rlp.2022.v54.n2.5spa
dcterms.referencesGonzalez-Hernandez, H. G., Peña-Cortes, D. V, Flores-Amado, A., AmozurrutiaElizalde, A., & Mora-Salinas, R. J. (2022). Decreasing exam-anxiety levels with Mindfulness through EEG measurements. 2022 IEEE Global Engineering Education Conference (EDUCON), 1213–1220. https://doi.org/10.1109/EDUCON52537.2022.9766539eng
dcterms.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Presseng
dcterms.referencesGoodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems (NeurIPS), 2672–2680eng
dcterms.referencesGrabner, R. H., Fink, A., Stalps, A., Neubauer, A. C., & Graf, M. (2007). To think or not to think: Enhanced EEG alpha synchronization in students with high mathematical anxiety. International Journal of Psychophysiology, 64(3), 312– 319eng
dcterms.referencesGretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A Kernel Two-Sample Test. Journal of Machine Learning Research, 13, 723– 773.eng
dcterms.referencesGunderson, E. A., Park, D., Maloney, E. A., Beilock, S. L., & Levine, S. C. (2018). Reciprocal relations among motivational frameworks, math anxiety, and math achievement in early elementary school. Journal of Cognition and Development, 19(1), 21–46eng
dcterms.referencesHabashi, A. G., Azab, A. M., Eldawlatly, S., & Aly, G. M. (2023). Generative adversarial networks in EEG analysis: an overview. Journal of NeuroEngineering and Rehabilitation, 20(40). https://doi.org/10.1186/s12984- 023-01169-weng
dcterms.referencesHair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learningeng
dcterms.referencesHartmann, K. G., Schirrmeister, R. T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks for electroencephalographic (EEG) brain signals. ArXiv. https://arxiv.org/abs/1806.01875eng
dcterms.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7eng
dcterms.referencesHembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46eng
dcterms.referencesHernández-Sampieri, R., Fernández-Collado, C., & Baptista Lucio, P. (2014). Metodolog\’\ia de la investigación (6th ed.). McGraw-Hill Interamericanaeng
dcterms.referencesHo, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. Advances in Neural Information Processing Systems (NeurIPS)eng
dcterms.referencesHofmann, S. G., Asnaani, A., Vonk, I. J. J., Sawyer, A. T., & Fang, A. (2012). The Efficacy of Cognitive Behavioral Therapy: A Review of Meta-Analyses. Cognitive Therapy and Research, 36, 427–440. https://doi.org/10.1007/s10608-012-9476-1eng
dcterms.referencesHopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment, 10(2), 178–182.eng
dcterms.referencesHu, L., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118eng
dcterms.referencesIenca, M., & Andorno, R. (2017). Towards new human rights in the age of neuroscience and neurotechnology. Life Sciences, Society and Policy, 13(1), 5. https://doi.org/10.1186/s40504-017-0050-1eng
dcterms.referencesJamieson, J. P., Peters, B. J., Greenwood, E. J., & Altose, A. J. (2016). Reappraising stress arousal improves performance and reduces evaluation anxiety in classroom exam situations. Social Psychological and Personality Science, 7(6), 579–587. https://doi.org/10.1177/1948550616644656eng
dcterms.referencesJordon, J., Yoon, J., & van der Schaar, M. (2019). PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees. International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=S1zk9iRqF7eng
dcterms.referencesKhng, K. H., & Mane, R. (2020). Beyond BCI—Validating a wireless, consumergrade EEG headset against a medical-grade system for evaluating EEG effects of a test anxiety intervention in school. Advanced Engineering Informatics, 45, 101106.eng
dcterms.referencesKingma, D. P., & Welling, M. (2014a). Auto-Encoding Variational Bayes. International Conference on Learning Representations (ICLR).eng
dcterms.referencesKingma, D. P., & Welling, M. (2014b). Auto-Encoding Variational Bayes. ICLR. https://arxiv.org/abs/1312.6114eng
dcterms.referencesKlados, M. A., Pandria, N., Athanasiou, A., & Bamidis, P. D. (2017). An automatic EEG based system for the recognition of math anxiety. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), 409– 412.eng
dcterms.referencesKlados, M. A., Papageorgiou, S. G., Koukouras, E., Xipteras, N., Tsara, V., Voutas, N., & Bamidis, P. D. (2017). Brain connectivity and mathematical anxiety: A resting-state functional connectivity study. Neuroscience Letters, 644, 64–70.eng
dcterms.referencesKlados, M. A., Paraskevopoulos, E., Pandria, N., & Bamidis, P. D. (2019). The impact of math anxiety on working memory: A cortical activations and cortical functional connectivity EEG study. IEEE Access, 7, 15027–15039eng
dcterms.referencesKlimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review. Brain Research Reviews, 29(2–3), 169–195.eng
dcterms.referencesKo, H. K., & Yi, H. S. (2011). Development and validation of a mathematics anxiety scale for students. Asia Pacific Education Review, 12, 509–521eng
dcterms.referencesKoner, S., & Mazumder, S. (n.d.). Academic motivation, self-esteem and personality factors: A review of effect on mathematics anxiety.eng
dcterms.referencesKrigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D., & Colino, F. L. (2017). Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. PeerJ, 5, e4089. https://doi.org/10.7717/peerj.4089eng
dcterms.referencesLandis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.eng
dcterms.referencesLang, P. J. (1968). Fear reduction and fear behavior: Problems in treating a construct. Research in Psychotherapy Conference, 3rd, May-Jun, 1966, Chicago, IL, US.eng
dcterms.referencesLang, P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology, 16(6), 495–512eng
dcterms.referencesLaRocco, J., Le, M. D., & Paeng, D.-G. (2020). A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Frontiers in Neuroinformatics, 14, 553352. https://doi.org/10.3389/fninf.2020.553352eng
dcterms.referencesLei, L., Li, J., & Li, W. (2023). Assessing the role of artificial intelligence in the mental healthcare of teachers and students. Soft Computing, 1–11.eng
dcterms.referencesLeudo Romaña, C. M. (2021). Estrategias didácticas en la enseñanza y aprendizaje de las matemáticas y su incidencia en el rendimiento académico de los estudiantes de séptimo grado de la Institución Educativa Margento. Corporación Universitaria Minuto de Diosspa
dcterms.referencesLey 1581 de 2012: Protección de Datos Personales. (n.d.)spa
dcterms.referencesLiaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. 2(3), 18–22. https://CRAN.R-project.org/doc/Rnews/Rnews_2002-3.pdfeng
dcterms.referencesLinardon, J., Torous, J., Firth, J., Cuijpers, P., Messer, M., & Fuller-Tyszkiewicz, M. (2024). Current evidence on the efficacy of mental health smartphone apps for symptoms of depression and anxiety: A meta-analysis of 176 randomized controlled trials. World Psychiatry, 23(1), 139–149. https://doi.org/10.1002/wps.21183eng
dcterms.referencesLipton, Z. C. (2016). The Mythos of Model Interpretabilityeng
dcterms.referencesLiu, J., Li, J., Peng, W., Feng, M., & Luo, Y. (2019). EEG correlates of math anxiety during arithmetic problem solving: Implication for attention deficits. Neuroscience Letters, 703, 191–197.eng
dcterms.referencesLotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A Review of Classification Algorithms for EEG-Based Brain– Computer Interfaces: A 10-Year Update. Journal of Neural Engineering, 15(3), 31005eng
dcterms.referencesLotte, F., Bougrain, L., Cuppens, K., & others. (2018). A review of classification algorithms for EEG-based brain–computer interfaces: a 10-year update. Journal of Neural Engineering, 15(3), 31005. https://doi.org/10.1088/1741- 2552/aab2f2eng
dcterms.referencesLu, S.-C., Xu, M., Wang, M., Hardi, A., Cheng, A. L., Chang, S.-H., & Yen, P.-Y. (2022). Effectiveness and Minimum Effective Dose of App-Based Mobile Health Interventions for Anxiety and Depression Symptom Reduction: Systematic Review and Meta-Analysis. JMIR Mental Health, 9(9), e39454. https://doi.org/10.2196/39454eng
dcterms.referencesLundberg, S. M., & Lee, S.-I. (2017a). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems 30 (NeurIPS), 4765–4774eng
dcterms.referencesLundberg, S. M., & Lee, S.-I. (2017b). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systemseng
dcterms.referencesLuttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 311–322.eng
dcterms.referencesMa, X. (1999). A Meta-Analysis of the Relationship between Anxiety toward Mathematics and Achievement in Mathematics. Journal for Research in Mathematics Education, 30(5), 520–540. https://doi.org/10.2307/749772eng
dcterms.referencesMaloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational Effects of Parents’ Math Anxiety on Children’s Math Achievement and Anxiety. Psychological Science, 26(10), 1480–1488. https://doi.org/10.1177/0956797615592630eng
dcterms.referencesMartínez-Monteagudo, M., Ingles, C., Cano-Vindel, A., & García-Fernández, J. (2012). Estado actual de la investigación sobre la teoría tridimensional de la ansiedad de Lang [Current status of research on Lang’s three-dimensional theory of anxiety]. Ansiedad y Estres, 18, 201–219.spa
dcterms.referencesMathersul, D., Williams, L. M., Hopkinson, P. J., Rush, A. J., & Gordon, E. (2008). Anterior frontal theta activity and executive dysfunctions in depression: An EEG neurophysiology study. Biological Psychology, 79(2), 151–164.eng
dcterms.referencesMcCullagh, O., Ryan, M., & Fitzmaurice, O. (2024). Mathematics anxiety in undergraduate business studies students. Teaching Mathematics and Its Applications: An International Journal of the IMA, 43(2), 125–146. https://doi.org/10.1093/teamat/hrae001eng
dcterms.referencesMcDonald, R. P. (1999). Test Theory: A Unified Treatment. Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410601087eng
dcterms.referencesMcHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282eng
dcterms.referencesMcNeish, D. (2018). Thanks Coefficient Alpha, We’ll Take It From Here. Psychological Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144eng
dcterms.referencesMedina, B., SIERRA, J. E., & ULLOA, A. B. (2018). Técnicas de extracción de caracter\’\isticas de señales EEG en la imaginación de movimiento para sistemas BCI. Revista Espacios, 39(22)spa
dcterms.referencesMegreya, A. M., Al-Attiyah, A. A., Al-Ali, D., Al-Ansari, B., Al-Mashhadani, F., AlThani, D., & Abdulrahim, D. (2023). Psychometric validation of the Arabic version of the modified Abbreviated Math Anxiety Scale (m-AMAS). Current Psychology, 42, 14639–14649. https://doi.org/10.1007/s12144-021-01952-2eng
dcterms.referencesMegreya, A. M., Al-Emadi, A. A., & Moustafa, A. A. (2023). The Arabic version of the modified-abbreviated math anxiety scale: Psychometric properties, gender differences, and associations with different forms of anxiety and math achievement. Frontiers in Psychology, 13, 919764.eng
dcterms.referencesMitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019). Model Cards for Model Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency (FAccT), 220–229. https://doi.org/10.1145/3287560.3287596eng
dcterms.referencesMolnar, C. (2019). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Independent.eng
dcterms.referencesMolnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2nd ed.). Leanpub. https://christophm.github.io/interpretable-ml-bookeng
dcterms.referencesMoran, T. P., Christian, M. A., Arana, S. E., Stritzke, M., Ross, A. L., & Jarcho, J. M. (2013). Anxiety and gamma power: Reduced synchrony in the frontal cortex during sustained attention. Psychophysiology, 50(10), 1016–1026eng
dcterms.referencesMoreno Cueva, L. A., Pena Cortes, C. A., Maestre Delgado, M., Caicedo Villamizar, S. B., & Pardo Garcia, A. (2017). Neurosignal Record with a BrainComputer Interface to Estimate the Level of Stress in a Student During a Class. INGE CUC, 13(2), 95–101.eng
dcterms.referencesMoustafa, A. A., Al-Emadi, A. A., & Megreya, A. M. (2021). The Need to Develop an Individualized Intervention for Mathematics Anxiety. Frontiers in Psychology, 12, 723289. https://doi.org/10.3389/fpsyg.2021.723289eng
dcterms.referencesNelsen, R. B. (2006). An Introduction to Copulas (2nd ed.). Springer.eng
dcterms.referencesNiso, G., Romero, E., Moreau, J. T., Araujo, A., & Krol, L. R. (2023). Wireless EEG: A survey of systems and studies. NeuroImage, 269, 119774. https://doi.org/10.1016/j.neuroimage.2022.119774eng
dcterms.referencesNorton III, A. H., Seok, Y., & Choi-Koh, S. (2019). Examining mathematics anxiety of undergraduates using a brain-based measurement, EEGeng
dcterms.referencesNúñez Peña, M. I., & Guilera Ferré, G. (2023). Development and validation of the brief Math Anxiety Scale (BMAS) in university students. Psicothema, 2023, Vol. 35, Num. 4, p. 406-413eng
dcterms.referencesNúñez-Peña, M. I., & Campos-Rodríguez, C. (2024). Response monitoring in math-anxious individuals in an arithmetic task. Biological Psychology, 186, 108759eng
dcterms.referencesNúñez-Peña, M. I., Guilera, G., & Suárez-Pellicioni, M. (2014). The Single-Item Math Anxiety Scale (SIMA): An Alternative Way of Measuring Mathematical Anxiety. Journal of Psychoeducational Assessment, 32(4), 306–317. https://doi.org/10.1177/0734282913508528eng
dcterms.referencesNúñez-Peña, M. I., Suárez-Pellicioni, M., & Bono, R. (2013). Effects of math anxiety on student success in higher education. International Journal of Educational Research, 58, 36–44. https://doi.org/10.1016/j.ijer.2012.12.004eng
dcterms.referencesNunnally, J. C. (1978). Psychometric Theory (2nd ed.). McGraw-Hill.eng
dcterms.referencesOber, T. M., Liu, C., & Cheng, Y. (2023). Development, validation, and evidence of measurement invariance of a shortened measure of Trait Test Anxiety. European Journal of Psychological Assessment.eng
dcterms.referencesOCDE. (2019). El trabajo de la OCDE sobre educación y competencias. OCDE Parisspa
dcterms.referencesOECD. (2025). Neurotechnology Toolkit: Implementing the OECD Recommendation. https://www.oecd.org/sti/emerging-tech/neurotechtoolkit.pdfeng
dcterms.referencesOECD Council. (2019). Recommendation on Responsible Innovation in Neurotechnology. https://legalinstruments.oecd.org/en/instruments/658eng
dcterms.referencesOHCHR Human Rights Council. (2023). Neurotechnology and human rights: Advisory Committee study (Resolution 51/3). https://www.ohchr.org/en/hrbodies/hrc/advisory-committee/neurotechnologies-and-human-rightseng
dcterms.referencesO’Leary, K., Fitzpatrick, C. L., & Hallett, D. (2017). Math anxiety is related to some, but not all, experiences with math. Frontiers in Psychology, 8, 2067.eng
dcterms.referencesOrtiz-Padilla, M., Paredes-Bermúdez, M., Soto-Varela, R., & Aldana-Rivera, E. (2020). Ansiedad matemática y desempeño académico en estudiantes en la formación básica de ingenier\’\ia. Formación Universitaria, 13(4), 93–100. https://doi.org/10.4067/S0718-50062020000400093spa
dcterms.referencesO’Shaughnessy, M. R., & others. (2023). Neuroethics guidance documents: principles, analysis, and gaps. Journal of Law and the Biosciences, 10(2), lsad025. https://doi.org/10.1093/jlb/lsad025eng
dcterms.referencesParlamento Latinoamericano y Caribeño (PARLATINO). (2023). Ley Modelo de Neuroderechos para América Latina y el Caribe. https://parlatino.org/wpcontent/uploads/2017/09/leym-neuroderechos-7-3-2023.pdfspa
dcterms.referencesPaulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman (Eds.), Measures of Personality and Social Psychological Attitudes (pp. 17–59). Academic Press.eng
dcterms.referencesPekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315–341.eng
dcterms.referencesPekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36–48.eng
dcterms.referencesPichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., Paolucci, S., Inghilleri, M., Astolfi, L., Cincotti, F., & Mattia, D. (2015). Brain–Computer Interface Boosts Motor Imagery Practice During Stroke Recovery. Annals of Neurology, 77(5), 851–865. https://doi.org/10.1002/ana.24390eng
dcterms.referencesPizzie, R. G., & Kraemer, D. J. M. (2020). Neural evidence for cognitive reappraisal as a strategy to alleviate the effects of math anxiety. Social Cognitive and Affective Neuroscience, 15(11), 1271–1287. https://doi.org/10.1093/scan/nsaa093eng
dcterms.referencesPizzie, R. G., & Kraemer, D. J. M. (2023). Strategies for remediating the impact of math anxiety on high school math performance. Npj Science of Learning, 8(1), 44eng
dcterms.referencesPlake, B. S., & Parker, C. S. (1982). The Development and Validation of a Revised Version of the Mathematics Anxiety Rating Scale. Educational and Psychological Measurement, 42(2), 551–557. https://doi.org/10.1177/001316448204200218eng
dcterms.referencesPodsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research. Journal of Applied Psychology, 88(5), 879–903eng
dcterms.referencesPratama, S. H., Rahmadhani, A., Bramana, A., Oktivasari, P., Handayani, N., Haryanto, F., Khotimah, S. N., & others. (2020). Signal comparison of developed EEG device and emotiv insight based on brainwave characteristics analysis. Journal of Physics: Conference Series, 1505(1), 12071eng
dcterms.referencesPrimi, C., Donati, M. A., Izzo, V. A., Guardabassi, V., O’Connor, P. A., Tomasetto, C., & Morsanyi, K. (2020). The Early Elementary School Abbreviated Math Anxiety Scale (the EES-AMAS): A New Adapted Version of the AMAS to Measure Math Anxiety in Young Children. Frontiers in Psychology, 11, 1014. https://doi.org/10.3389/fpsyg.2020.01014eng
dcterms.referencesPushkarna, M. L., Shankar, S., D’Amour, A., Mitchell, M., Zaldivar, A., Çopur, K., & others. (2022). Data Cards: A Toolkit for Transparency in Dataset Documentation. Communications of the ACM, 66(7), 80–90. https://doi.org/10.1145/3531146eng
dcterms.referencesPutman, P., Westerveld, M. M., & van der Does, W. (2014). EEG alpha asymmetry and anxiety: A critical review. Biological Psychology, 103, 1–9eng
dcterms.referencesPutnick, D. L., & Bornstein, M. H. (2016). Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Developmental Review, 41, 71–90. https://doi.org/10.1016/j.dr.2016.06.004eng
dcterms.referencesPutwain, D. W., & Symes, W. (2011). Teachers’ use of fear appeals in the Mathematics classroom: Worrying or motivating students? British Journal of Educational Psychology, 81(3), 456–474eng
dcterms.referencesQu, Z., Chen, J., Li, B., Tan, J., Zhang, D., & Zhang, Y. (2020). Measurement of high-school students’ trait math anxiety using neurophysiological recordings during math exam. IEEE Access, 8, 57460–57471.eng
dcterms.referencesQuiroz Becerra, J. M., Arteta Sandoval, G., & Travezaño Cabrera, A. I. (2023). The abreviated Math Anxiety Scale (AMAS): Nuevas evidencias psicométricas en adolescentes peruanos. https://alicia.concytec.gob.pe/vufind/Record/UEPU_084081cf2e70ba76ff0d389 a3ec53518spa
dcterms.referencesRamirez, G., & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science, 331(6014), 211–213. https://doi.org/10.1126/science.1199427eng
dcterms.referencesRamirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14(2), 187–202eng
dcterms.referencesRamirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53(3), 145–164eng
dcterms.referencesRaufi, B., & Longo, L. (2022). An Evaluation of the EEG Alpha-to-Theta and Thetato-Alpha Band Ratios as Indexes of Mental Workload. Frontiers in Neuroinformatics, 16, 861967. https://doi.org/10.3389/fninf.2022.861967eng
dcterms.referencesRaykov, T. (1997). Estimation of Composite Reliability for Congeneric Measures. Applied Psychological Measurement, 21(2), 173–184. https://doi.org/10.1177/01466216970212006eng
dcterms.referencesResolución 8430 de 1993: Normas científicas, técnicas y administrativas para la investigación en salud. (n.d.).spa
dcterms.referencesRibeiro, M. T., Singh, S., & Guestrin, C. (2016). ``Why Should I Trust You?’’ Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778eng
dcterms.referencesRichardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: psychometric data. Journal of Counseling Psychology, 19(6), 551eng
dcterms.referencesRos, T., Enriquez-Geppert, S., Zotev, V., Young, K. D., Wood, G., Vuilleumier, P., Whitfield-Gabrieli, S., & others. (2020). Consensus on the Reporting and Experimental Design of Clinical and Cognitive-Behavioural Neurofeedback Studies (CRED-nf Checklist). Brain, 143(6), 1674–1685. https://doi.org/10.1093/brain/awaa009eng
dcterms.referencesRose, A. C., Alashwal, H., Moustafa, A. A., & Weidemann, G. (2023). A neural network model of mathematics anxiety: The role of attention. Plos One, 18(12), e0295264.eng
dcterms.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0eng
dcterms.referencesSabio, J., Williams, N. S., McArthur, G. M., & Badcock, N. A. (2024). A scoping review on the use of consumer-grade EEG devices for research. PLOS ONE, 19(3), e0291186. https://doi.org/10.1371/journal.pone.0291186eng
dcterms.referencesSammallahti, E., Finell, E., Jonsson, B., & Korhonen, T. (2023). A Meta-Analysis of Math Anxiety Interventions. Journal of Numerical Cognition, 9(2), 346–362. https://doi.org/10.5964/jnc.8401eng
dcterms.referencesSchmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. 61, 85– 117. https://doi.org/10.1016/j.neunet.2014.09.003eng
dcterms.referencesShokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership Inference Attacks against Machine Learning Models. 2017 IEEE Symposium on Security and Privacy (SP), 3–18. https://doi.org/10.1109/SP.2017.41eng
dcterms.referencesSimonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. ArXiv Preprint ArXiv:1312.6034eng
dcterms.referencesSoneira, C., & Mato-Vázquez, D. (2020). Estructura de un cuestionario para evaluar la ansiedad hacia las matemáticas en estudiantes de ingenier\’\ia. Revista de Estudios e Investigación En Psicolog\’\ia y Educación, 7(1), 59–70spa
dcterms.referencesSong, J., Zhai, Q., Wang, C., & Liu, J. (2024). EEGGAN-Net: enhancing EEG signal classification through data augmentation. Frontiers in Human Neuroscience, 18, 1430086. https://doi.org/10.3389/fnhum.2024.1430086eng
dcterms.referencesSorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., Dowker, A., & Aro, M. (2017). Math anxiety and its relationship with basic arithmetic skills among primary school children. British Journal of Educational Psychology, 87(3), 309–327eng
dcterms.referencesSoysal, D., Bani-Yaghoub, M., & Riggers-Piehl, T. A. (2022). A Machine Learning Approach to Evaluate Variables of Math Anxiety in STEM Students. Pedagogical Research, 7(2)eng
dcterms.referencesSpencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 4–28. https://doi.org/10.1006/jesp.1998.1373eng
dcterms.referencesSpielberger, C. D. (2013). Anxiety: Current trends in theory and research. Elsevier.eng
dcterms.referencesStach, T., Browarska, N., & Kawala-Janik, A. (2018). Initial study on using emotiv epoc+ neuroheadset as a control device for picture script-based communicators. IFAC-PapersOnLine, 51(6), 180–184.eng
dcterms.referencesStadler, T., Creager, E., Bahdanau, D., Duvenaud, D., & Ghassemi, M. (2022). Synthetic Data: Current Status and Future Prospects. ArXiv Preprint ArXiv:2211.05029eng
dcterms.referencesStrobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(25), 1–21. https://doi.org/10.1186/1471-2105-8-25eng
dcterms.referencesSuárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2015). Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task. Frontiers in Psychology, 6, 1577.eng
dcterms.referencesSuárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016a). Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases. Cognitive, Affective, & Behavioral Neuroscience, 16, 3–22eng
dcterms.referencesSuárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016b). The Neural Basis of Math Anxiety: A Review. Frontiers in Psychology, 7, 42. https://doi.org/10.3389/fpsyg.2016.00042eng
dcterms.referencesSuinn, R. M., & Winston, E. H. (2003). The mathematics anxiety rating scale, a brief version: psychometric data. Psychological Reports, 92(1), 167–173eng
dcterms.referencesSundararajan, M., Taly, A., & Yan, Q. (2017a). Axiomatic Attribution for Deep Networks. Proceedings of the 34th International Conference on Machine Learning (ICML), 3319–3328.eng
dcterms.referencesSundararajan, M., Taly, A., & Yan, Q. (2017b). Axiomatic Attribution for Deep Networks. Proceedings of the 34th International Conference on Machine Learning, 3319–3328eng
dcterms.referencesSung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A metaanalysis and research synthesis. Computers & Education, 94, 252–275. https://doi.org/10.1016/j.compedu.2015.11.008eng
dcterms.referencesTeplan, M. (2002). Fundamentals of EEG Measurement. Measurement Science Review, 2(2), 1–11.eng
dcterms.referencesThayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2012). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective. Biological Psychology, 89(3), 537–546eng
dcterms.referencesTorres, E. P., Torres, E. A., Hernández-Álvarez, M., & Yoo, S.-G. (2020). EEGBased BCI Emotion Recognition: A Survey. Sensors, 20(18), 5083. https://doi.org/10.3390/s20185083eng
dcterms.referencesUNESCO. (2024). The Ethics of Neurotechnology: UNESCO appoints international expert group to prepare a new global standard. https://www.unesco.org/en/articles/ethics-neurotechnology-unesco-appointsinternational-expert-group-prepare-new-global-standardeng
dcterms.referencesVillamizar Acevedo, G., Araujo Arenas, T. Y., & Trujillo Calderón, W. J. (2020). Relationship between mathematical anxiety and academic performance in mathematics in high school students. Ciencias Psicológicas, 14(1).eng
dcterms.referencesVogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A metaanalysis. Journal of Educational Computing Research, 34(3), 229–243eng
dcterms.referencesVukovic, R. K., Roberts, S. O., & Green Wright, L. (2013). From parental involvement to children’s mathematical performance: The role of mathematics anxiety. Early Education & Development, 24(4), 446–467.eng
dcterms.referencesWang, Z., Lukowski, S. L., Hart, S. A., Lyons, I. M., Thompson, L. A., Kovas, Y., Mazzocco, M. M. M., Plomin, R., & Petrill, S. A. (2015). Is math anxiety always bad for math learning? The role of math motivation. Psychological Science, 26(12), 1863–1876.eng
dcterms.referencesWidmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data—a practical approach. Journal of Neuroscience Methods, 250, 34–46. https://doi.org/10.1016/j.jneumeth.2014.08.002eng
dcterms.referencesWolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791eng
dcterms.referencesWorld Medical Association. (2013). World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053eng
dcterms.referencesXu, L., & others. (2019). Modeling Tabular data using Conditional GAN. NeurIPS Workshop. https://arxiv.org/abs/1907.00503eng
dcterms.referencesYadav, H., & Maini, S. (2023). Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Multimedia Tools and Applications, 82(30), 47003–47047.eng
dcterms.referencesYadawad, P. R., Pandey, L., Mallibhat, K., & Mudenagudi, U. (2024). Predicting Anxiety Among Young Adults Using Machine Learning Algorithms. 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), 1–8eng
dcterms.referencesYáñez-Marquina, L., & Villardón-Gallego, L. (2017). Math anxiety, a hierarchical construct: Development and validation of the scale for assessing math anxiety in secondary education. Ansiedad y Estrés, 23(2–3), 59–65.eng
dcterms.referencesYoon, J., Jarrett, D., & van der Schaar, M. (2019). Time-series Generative Adversarial Networks. Advances in Neural Information Processing Systems (NeurIPS)eng
dcterms.referencesYuste, R., Goering, S., & others. (2017). Four ethical priorities for neurotechnologies and AI. Nature, 551(7679), 159–163. https://doi.org/10.1038/551159aeng
dcterms.referencesZhang, J., Cormode, G., Procopiuc, C., Srivastava, D., & Xiao, X. (2017). PrivBayes: Private Data Release via Bayesian Networks. ACM Transactions on Database Systems (TODS), 42(4), 1–41. https://doi.org/10.1145/3134428eng
dcterms.referencesZhao, Z., Kunar, A., der Scheer, H., Birke, R., & Chen, L. Y. (2021). CTAB-GAN: Effective Table Data Synthesizing. Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM 2021) Workshops. https://proceedings.mlr.press/v157/zhao21a.htmeng
dcterms.referencesZhban, E. S., Likhanov, M. V, Zakharov, I. M., Bezrukova, E. M., & Malykh, S. B. (2018). The Role of Mathematical and trait anxiety in Mental fatigue: an eeg investigation. Psychology in Russia: State of the Art, 11(4), 79–95.eng
dcterms.referencesZuo, H., & Wang, L. (2023). The influences of mindfulness on high-stakes mathematics test achievement of middle school students. Frontiers in Psychology, 14, 1061027. https://doi.org/10.3389/fpsyg.2023.1061027eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionConvergencia tecnológicaspa
sb.programaDoctorado en Gestión de la Tecnología y la Innovaciónspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF_RESUMEN.pdf
Tamaño:
333.61 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
1.44 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones