Integración de la Escala sMARS Adaptada y Métricas Sintéticas del BCI Emotiv Insight para la Evaluación de la Ansiedad Matemática en Estudiantes de Educación Superior
| datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
| dc.contributor.advisor | Díaz Pérez, Anderson | |
| dc.contributor.advisor | García Jiménez, Rafael | |
| dc.contributor.author | Orozco Guzmán, Manuel Guillermo | |
| dc.date.accessioned | 2025-12-03T22:52:31Z | |
| dc.date.available | 2025-12-03T22:52:31Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | La presente tesis doctoral se centra en la evaluación integral de la ansiedad matemática en estudiantes universitarios, mediante la integración de la escala sMARSCOL v2, adaptada al contexto colombiano, con métricas sintéticas derivadas del dispositivo BCI Emotiv Insight. El objetivo principal fue diseñar un protocolo de medición, que permitiera una evaluación multidimensional de la Ansiedad Matemática en estudiantes de educación superior. La investigación se desarrolló en cinco fases. En la primera, se llevó a cabo la validación de contenido por juicio de expertos, quienes evaluaron la claridad, pertinencia y coherencia de los ítems, así como la incorporación de una subescala orientada a la ansiedad social en contextos matemáticos. En la segunda, se aplicó el instrumento a estudiantes de primer y segundo semestre de programas de educación superior, lo que permitió obtener información empírica para la validación de constructo mediante análisis factorial exploratorio (AFE) y confirmatorio (AFC), con resultados que demostraron adecuados índices de ajuste y consistencia interna. En la tercera fase, se integraron datos sintéticos derivados de métricas EEG simuladas con el dispositivo Emotiv Insight, procesados mediante algoritmos de inteligencia artificial, lo que posibilitó contrastar los resultados psicométricos con indicadores neurofisiológicos simulados y evidenciar la convergencia entre ambas fuentes de información. En la cuarta fase, se realizaron análisis bivariados que mostraron asociaciones estadísticamente significativas entre los niveles de ansiedad matemática y variables sociodemográficas como el sexo y la facultad de pertenencia. Finalmente, en la quinta fase, se formuló un protocolo sistemático de evaluación e intervención que combina las dimensiones psicométricas y neurofisiológicas, orientado a fortalecer los procesos institucionales de acompañamiento estudiantil. Los hallazgos revelan que la ansiedad matemática predomina en niveles moderados dentro de la muestra estudiada, con diferencias significativas por sexo siendo las mujeres más propensas a reportar niveles altos y por facultad con mayor prevalencia en Ciencias Jurídicas y Sociales. Asimismo, la integración de métricas sintéticas y modelado predictivo confirmó la efectividad de la escala sMARSCOL v2 para clasificar a los estudiantes en distintos niveles de ansiedad. En conjunto, la investigación propone un modelo innovador que contribuye tanto al avance de la psicometría como al diseño de políticas educativas basadas en evidencia. | spa |
| dc.description.abstract | This doctoral dissertation focuses on the comprehensive assessment of mathematics anxiety in university students through the integration of the sMARSCOL v2 scale, adapted to the Colombian context, with synthetic metrics derived from the Emotiv Insight BCI device. The main objective was to design a measurement protocol that enables a multidimensional evaluation of mathematics anxiety in higher education students. The research was carried out in five phases. In the first phase, content validation was conducted through expert judgment, where specialists evaluated the clarity, relevance, and coherence of the items, as well as the incorporation of a subscale oriented toward social anxiety in mathematical contexts. In the second phase, the instrument was administered to first- and second-semester higher education students, providing empirical data for construct validation through exploratory (EFA) and confirmatory factor analyses (CFA). The results demonstrated adequate fit indices and internal consistency. In the third phase, synthetic data derived from simulated EEG metrics obtained with the Emotiv Insight device were integrated and processed using artificial intelligence algorithms. This allowed for a comparison between psychometric results and simulated neurophysiological indicators, providing evidence of convergence between both sources of information. The fourth phase involved bivariate analyses, which revealed statistically significant associations between mathematics anxiety levels and sociodemographic variables such as gender and academic program. Finally, in the fifth phase, a systematic protocol of evaluation and intervention was developed, combining psychometric and neurophysiological dimensions with the aim of strengthening institutional student support processes. The findings indicate that mathematics anxiety predominantly manifests at moderate levels within the studied sample, with significant differences by gender women being more likely to report higher levels and by faculty, with greater prevalence in Legal and Social Sciences. Furthermore, the integration of synthetic metrics and predictive modeling confirmed the effectiveness of the sMARSCOL v2 scale in classifying students into different anxiety levels. Overall, the research proposes an innovative model that contributes both to the advancement of psychometrics and to the design of evidence based educational policies. | eng |
| dc.format.mimetype | ||
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17161 | |
| dc.language.iso | spa | |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Ingenierías | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Validación psicométrica | spa |
| dc.subject | Interfaz Cerebro-Computador | spa |
| dc.subject | Datos sintéticos | spa |
| dc.subject | Aprendizaje automático | spa |
| dc.subject | Computación afectiva | spa |
| dc.subject.keywords | Psychometric validation | eng |
| dc.subject.keywords | Brain-Computer Interface | eng |
| dc.subject.keywords | BCI | eng |
| dc.subject.keywords | Synthetic data | eng |
| dc.subject.keywords | Machine learning | eng |
| dc.subject.keywords | Affective computing | eng |
| dc.title | Integración de la Escala sMARS Adaptada y Métricas Sintéticas del BCI Emotiv Insight para la Evaluación de la Ansiedad Matemática en Estudiantes de Educación Superior | spa |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.spa | Tesis de doctorado | |
| dcterms.references | Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., & Zhang, L. (2016). Deep Learning with Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), 308–318. https://doi.org/10.1145/2976749.2978318 | eng |
| dcterms.references | Agüero Calvo, E., Meza Cascante, L. G., Suárez Valdés-Ayala, Z., & Schmidt Quesada, S. (2017). Mathematical Anxiety in Secondary Education in Costa Rica. Revista Electrónica de Investigación Educativa, 19(1), 35–45 | eng |
| dcterms.references | Alexander, L., & Martray, C. (1989). The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Measurement and Evaluation in Counseling and Development, 22(3), 143–150. | eng |
| dcterms.references | Alkan, V., Coşguner, T., & Fidan, Y. (2019). Mathematics teaching anxiety scale: Construction, reliability and validity. International Journal of Assessment Tools in Education, 6(3), 506–521 | eng |
| dcterms.references | Alonso-Valerdi, L. M., Arreola-Villarruel, M. A., & Argüello-Garcia, J. (2019). Interfaces cerebro-computadora: conceptualización, retos de rediseño e impacto social. Revista Mexicana de Ingenieria Biomédica, 40(3) | spa |
| dcterms.references | American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). Standards for Educational and Psychological Testing. American Educational Research Association. | eng |
| dcterms.references | Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., Low, W., & Guan, C. (2015). A Randomized Controlled Trial of EEG-Based Motor Imagery Brain–Computer Interface Robotic Rehabilitation for Stroke. Clinical EEG and Neuroscience, 46(4), 310–320. https://doi.org/10.1177/1550059414522229 | eng |
| dcterms.references | Angelidis, K., Hagenaars, S. P., Cieslik, E. C., van der Wee, N. J. A., van der Does, W., Spinhoven, P., Penninx, B. W. J. H., Tendolkar, I., Franke, B., Buitelaar, J. K., Marsman, J. B. C., van Eijndhoven, P., Bollen, L., Beckmann, C. F., & Schmaal, L. (2016). EEG alpha oscillations reflect individual differences in anxiety: A replication and extension study. Journal of Affective Disorders, 205, 111–118 | eng |
| dcterms.references | Apley, D. W., & Zhu, J. (2019). Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models. Journal of Machine Learning Research, 20(162), 1–47 | eng |
| dcterms.references | Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein Generative Adversarial Networks. Proceedings of the 34th International Conference on Machine Learning (ICML), 214–223. | eng |
| dcterms.references | Armani, F., Daly, I., Vernitski, A., Gillmeister, H., & Scherer, R. (2023). Maths Anxiety and cognitive state monitoring for neuroadaptive learning systems using electroencephalography. 2023 IEEE International Conference on Metrology for EXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), 467–472. | eng |
| dcterms.references | Arsalan, A., & Majid, M. (2022). A study on multi-class anxiety detection using wearable EEG headband. Journal of Ambient Intelligence and Humanized Computing, 13(12), 5739–5749 | eng |
| dcterms.references | Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181–185. https://doi.org/10.1111/1467-8721.00196 | eng |
| dcterms.references | Ashcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition & Emotion, 8(2), 97–125. | eng |
| dcterms.references | Ashcraft, M. H., & Kirk, E. P. (2001a). The Relationships Among Working Memory, Math Anxiety, and Performance. Journal of Experimental Psychology: General, 130(2), 224–237. https://doi.org/10.1037/0096-3445.130.2.224 | eng |
| dcterms.references | Ashcraft, M. H., & Kirk, E. P. (2001b). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224. | eng |
| dcterms.references | Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14, 243–248. | eng |
| dcterms.references | Ashcraft, M. H., & Moore, A. M. (2009). Mathematics anxiety and the affective drop in performance. Journal of Psychoeducational Assessment, 27(3), 197–205. | eng |
| dcterms.references | Ashcraft, M. H., & Ridley, K. S. (2005). Math anxiety and its cognitive consequences: A tutorial review. The Handbook of Mathematical Cognition, 315–327. | eng |
| dcterms.references | Auzmendi Escribano, E. (1992). Las actitudes hacia la matemática-estadística en las enseñanzas media y universitaria. Caracter\’\isticas y Medición. Ed Mensajero. España | spa |
| dcterms.references | Badcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., & McArthur, G. (2013). Validation of the Emotiv EPOC EEG Gaming System for Measuring Research Quality Auditory ERPs. PeerJ, 1, e38. https://doi.org/10.7717/peerj.38 | eng |
| dcterms.references | Badcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., & McArthur, G. (2015). Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children. PeerJ, 3, e907. https://doi.org/10.7717/peerj.907 | eng |
| dcterms.references | Baloğlu, M., & Zelhart, P. F. (2007). Psychometric Properties of the Revised Mathematics Anxiety Rating Scale. The Psychological Record, 57, 593–611. https://doi.org/10.1007/BF03395597 | eng |
| dcterms.references | Balt, M., Börnert-Ringleb, M., & Orbach, L. (2022). Reducing math anxiety in school children: A systematic review of intervention research. Frontiers in Education, 7, 798516. | eng |
| dcterms.references | Barroso, C., Ganley, C. M., McGraw, A. L., Geer, E. A., Hart, S. A., & Daucourt, M. C. (2021). A meta-analysis of the relation between math anxiety and math achievement. Psychological Bulletin, 147(2), 134 | eng |
| dcterms.references | Barry, R. J., Clarke, A. R., McCarthy, R., & Selikowitz, M. (2003). EEG coherence in attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 114(1), 170–179 | eng |
| dcterms.references | Batashvili, M., Staples, P. A., Baker, I., & Sheffield, D. (2019). Exploring the relationship between gamma-band activity and maths anxiety. Cognition and Emotion. | eng |
| dcterms.references | Batashvili, M., Staples, P., Baker, I. S., & Sheffield, D. (2020). The neurophysiological relationship between number anxiety and the EEG gammaband. Journal of Cognitive Psychology, 32(5–6), 580–585 | eng |
| dcterms.references | Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107(5), 1860–1863 | eng |
| dcterms.references | Beilock, S. L., & Willingham, D. T. (2014). Math Anxiety: Can Teachers Help Students Reduce It? American Educator, 38(2), 28–32, 43. | eng |
| dcterms.references | Betz, N. E. (1978). Prevalence, distribution, and correlates of math anxiety in college students. Journal of Counseling Psychology, 25(5), 441–448. https://doi.org/10.1037/0022-0167.25.5.441 | eng |
| dcterms.references | Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80–R85. https://doi.org/10.1016/j.cub.2018.11.052 | eng |
| dcterms.references | Biblioteca del Congreso Nacional de Chile. (2021). Ley 21.383: Modifica la Carta Fundamental para establecer el desarrollo científico y tecnológico al servicio de las personas. https://www.bcn.cl/leychile/navegar?idNorma=1166983 | spa |
| dcterms.references | Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. | eng |
| dcterms.references | Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, Issue 4). Springer | eng |
| dcterms.references | Boksem, M. A. S., & Tops, M. (2008). Mental fatigue: costs and benefits. Brain Research Reviews, 59(1), 125–139. | eng |
| dcterms.references | Bowles, C., Chen, L., Guerrero, R., Bentley, P., Gunn, R., Hammers, A., Dickie, D. A., Hernández, M. V., Wardlaw, J., & Rueckert, D. (2018). GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks. ArXiv. https://arxiv.org/abs/1810.10863 | eng |
| dcterms.references | Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 | eng |
| dcterms.references | Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (2nd ed.). Guilford Press. | eng |
| dcterms.references | Carey, E., Hill, F., Devine, A., & Szücs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987 | eng |
| dcterms.references | Carey, E., Hill, F., Devine, A., & Szűcs, D. (2017). The modified abbreviated math anxiety scale: A valid and reliable instrument for use with children. Frontiers in Psychology, 8, 11 | eng |
| dcterms.references | Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421 | eng |
| dcterms.references | Caviola, S., Primi, C., Chiesi, F., & Mammarella, I. C. (2017). Psychometric properties of the Abbreviated Math Anxiety Scale (AMAS) in Italian primary school children. Learning and Individual Differences, 55, 174–182. https://doi.org/10.1016/j.lindif.2017.03.006 | eng |
| dcterms.references | Cervera, M. A., Soekadar, S. R., Ushiba, J., Millán, J. d. R., Liu, M., Birbaumer, N., & Garipelli, G. (2018). Brain–Computer Interfaces for Post-Stroke Motor Rehabilitation: A Meta-Analysis. Annals of Clinical and Translational Neurology, 5(5), 651–663. https://doi.org/10.1002/acn3.544 | eng |
| dcterms.references | Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W. F., & Sun, J. (2017). Generating Multi-label Discrete Patient Records using Generative Adversarial Networks. Proceedings of the 2nd Machine Learning for Healthcare Conference (MLHC 2017), 68, 286–305. https://proceedings.mlr.press/v68/choi17a.html | eng |
| dcterms.references | Choi-Koh, S. S., & Ryoo, B. G. (2019). Differences of math anxiety groups based on two measurements, MASS and EEG. Educational Psychology, 39(5), 659– 677 | eng |
| dcterms.references | Codding, R. S., Goodridge, A. E., Hill, E., Kromminga, K. R., Chehayeb, R., Volpe, R. J., & Scheman, N. (2023). Meta-analysis of skill-based and therapeutic interventions to address math anxiety. Journal of School Psychology, 100, 101229. https://doi.org/10.1016/j.jsp.2023.101229 | eng |
| dcterms.references | Cornejo-Plaza, M. I., & et al. (2024). Chilean Supreme Court ruling on the protection of brain data and neurorights. Frontiers in Psychology, 15, 1330439. https://doi.org/10.3389/fpsyg.2024.1330439 | eng |
| dcterms.references | Creswell, J. W., & Plano Clark, V. L. (2017). Designing and Conducting Mixed Methods Research (3rd ed.). SAGE Publications | eng |
| dcterms.references | Daker, R. J., Gattas, S. U., Necka, E. A., Green, A. E., & Lyons, I. M. (2023). Does anxiety explain why math-anxious people underperform in math? Npj Science of Learning, 8(1), 6. | eng |
| dcterms.references | Davidesco, I. (2020). Brain-to-Brain Synchrony in the STEM Classroom. CBE—Life Sciences Education, 19(3), es8. https://doi.org/10.1187/cbe.19-11-0258 | eng |
| dcterms.references | Davidesco, I., Laurent, E., Valk, H., West, T., Milne, C., Poeppel, D., & Dikker, S. (2023). The Temporal Dynamics of Brain-to-Brain Synchrony Between Students and Teachers Predict Learning Outcomes. Psychological Science, 34(5), 633–643. https://doi.org/10.1177/09567976231163872 | eng |
| dcterms.references | de la Hera, J. M., Morales-Rodr\’\iguez, F. M., Rodr\’\iguez-Gobiet, J. P., & Mart\’\inez-Ramón, J. P. (2023). Attitudes toward mathematics/statistics, anxiety, self-efficacy and academic performance: An artificial neural network. Frontiers in Psychology, 14, 1214892 | eng |
| dcterms.references | Debener, S., Minow, F., Emkes, R., Gandras, K., & de Vos, M. (2012). How About Taking a Low-Cost, Small, and Wireless EEG for a Walk? Psychophysiology, 49(11), 1617–1620. https://doi.org/10.1111/j.1469-8986.2012.01471.x | eng |
| dcterms.references | del R\’\io, M. F., Susperreguy, M. I., Strasser, K., Iturra, C., & Gallardo, I. (2019). Creencias sobre matemática y género de estudiantes, docentes y padres: datos sensibles para el diseño de intervenciones. https://centroestudios.mineduc.cl/wp-content/uploads/sites/100/2021/08/003- Del-Rio-FINAL.pdf | spa |
| dcterms.references | del Valle, M., & Zamora, E. V. (2021). El uso de las medidas de auto-informe: ventajas y limitaciones en la investigación en Psicolog\’\ia | spa |
| dcterms.references | Devine, A., Fawcett, K., Szűcs, D., & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 8(33), 1–9. https://doi.org/10.1186/1744-9081-8-33 | eng |
| dcterms.references | Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Van Bavel, J., Ding, M., & Poeppel, D. (2017). Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Current Biology, 27(9), 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002 | eng |
| dcterms.references | Dinc, L., & colleagues. (2025). The Effects of Alpha/Theta Neurofeedback on Mood, Anxiety, Emotion Regulation, and Trait Impulsivity. Brain Research. https://pubmed.ncbi.nlm.nih.gov/40945564/ | eng |
| dcterms.references | Doğan, T., Koçtürk, N., Akın, E., Kurnaz, M. F., Öztürk, C. D., Şen, A., & Yalçn, M. (2024). Science-Based Mobile Apps for Reducing Anxiety: A Systematic Review and Meta-Analysis. Clinical Psychology & Psychotherapy, 31(5). https://doi.org/10.1002/cpp.3058 | eng |
| dcterms.references | Dondio, P., Gusev, V., & Rocha, M. (2023). Do games reduce maths anxiety? A meta-analysis. Computers & Education, 194, 104650. https://doi.org/10.1016/j.compedu.2022.104650 | eng |
| dcterms.references | Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning | eng |
| dcterms.references | Dowker, A. (2005). Individual Differences in Arithmetic: Implications for Psychology, Neuroscience and Education (1st ed.). Psychology Press. https://doi.org/10.4324/9780203324899 | eng |
| dcterms.references | Dowker, A., Sarkar, A., & Looi, C. Y. (2016a). Mathematics Anxiety: What Have We Learned? Acta Psychologica, 164, 48–55. https://doi.org/10.1016/j.actpsy.2015.10.011 | eng |
| dcterms.references | Dowker, A., Sarkar, A., & Looi, C. Y. (2016b). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7, 508. | eng |
| dcterms.references | Du, X., Ding, X., Xi, M., Lv, Y., Qiu, S., & Liu, Q. (2024). A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network. Brain Sciences, 14(4), 375. https://doi.org/10.3390/brainsci14040375 | eng |
| dcterms.references | Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., & Dutoit, T. (2013). Performance of the Emotiv Epoc Headset for P300-Based Applications. BioMedical Engineering OnLine, 12, 56. https://doi.org/10.1186/1475-925X-12-56 | eng |
| dcterms.references | Dwork, C., & Roth, A. (2014). The Algorithmic Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–407. https://doi.org/10.1561/0400000042 | eng |
| dcterms.references | Eidlin-Levy, H., Avraham, E., Fares, L., & Rubinsten, O. (2023). Math anxiety affects career choices during development. International Journal of STEM Education, 10(1), 49 | eng |
| dcterms.references | Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103–127. https://doi.org/10.1037/a0018053 | eng |
| dcterms.references | EMOTIV Insight Specifications. (2024) | eng |
| dcterms.references | EMOTIV Insight: User & Performance Metrics Manual. (2023). | eng |
| dcterms.references | Esteban, C., Hyland, S. L., & Rätsch, G. (2017a). Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs. ArXiv. https://arxiv.org/abs/1706.02633 | eng |
| dcterms.references | Esteban, C., Hyland, S. L., & Rätsch, G. (2017b). Real-Valued (Medical) Time Series Generation with Recurrent Conditional GANs. ArXiv Preprint ArXiv:1706.02633. | eng |
| dcterms.references | Evangelopoulou, M., Jiménez-Fanjul, N., & Jose Madrid, M. (2023). ClassroomBased Mathematics Anxiety Among Students in Greek Secondary Education: A Perspective from Math Teachers. Operations Research Forum, 4(4), 74. | eng |
| dcterms.references | Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and Cognitive Performance: Attentional Control Theory. Emotion, 7(2), 336–353. https://doi.org/10.1037/1528-3542.7.2.336 | eng |
| dcterms.references | Fennema, E., & Sherman, J. A. (1976). Fennema-Sherman mathematics attitudes scales: Instruments designed to measure attitudes toward the learning of mathematics by females and males. Journal for Research in Mathematics Education, 7(5), 324–326. | eng |
| dcterms.references | Fernández, L. M., Wang, X., Ramirez, O., & Villalobos, M. C. (2021). Latinx students’ mathematics anxiety and their study habits: Exploring their relationship at the postsecondary level. Journal of Hispanic Higher Education, 20(3), 278–296 | eng |
| dcterms.references | Fernández-Blanco, A., Rojas-Barahona, C. A., Dib, M. N., & Orbach, L. (2024). Math anxiety assessment within the sate-trait anxiety model: psychometric analysis of the “Mathematics Anxiety Questionnaire” and “State-Mathematics Anxiety Questionnaire” in Chilean school-aged children. Current Psychology, 43(10), 8812–8824. | eng |
| dcterms.references | Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312 | eng |
| dcterms.references | Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). GAN-based Synthetic Medical Image Augmentation for Increased CNN Performance in Liver Lesion Classification. Neurocomputing, 321, 321– 331. https://doi.org/10.1016/j.neucom.2018.09.013 | eng |
| dcterms.references | Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic Data Augmentation Using GAN for Improved Liver Lesion Classification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI), 289–293. https://doi.org/10.1109/ISBI.2018.8363576 | eng |
| dcterms.references | Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451 | eng |
| dcterms.references | Furnham, A., & Henderson, M. (1982). The good, the bad and the mad: Response bias in self-report measures. Personality and Individual Differences, 3(3), 311– 320. https://doi.org/https://doi.org/10.1016/0191-8869(82)90051-4 | eng |
| dcterms.references | Gadea, M., Aliño, M., Hidalgo, V., Espert, R., & Salvador, A. (2020). Effects of a Single Session of SMR Neurofeedback Training on Anxiety and Cortisol Levels. Neurophysiologie Clinique / Clinical Neurophysiology, 50(2), 167–173. https://doi.org/10.1016/j.neucli.2020.03.001 | eng |
| dcterms.references | Goetz, T., Bieg, M., Lüdtke, O., Pekrun, R., & Hall, N. C. (2013). Do girls really experience more anxiety in mathematics? Psychological Science, 24(10), 2079–2087. https://doi.org/10.1177/0956797613486989 | eng |
| dcterms.references | Gonçalves, A. F., & colleagues. (2020). Generation and evaluation of synthetic patient data. Artificial Intelligence in Medicine, 114, 102040. https://doi.org/10.1016/j.artmed.2021.102040 | eng |
| dcterms.references | Gonçalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L., & Sales, A. P. (2020). Generation and evaluation of synthetic patient data. BMC Medical Research Methodology, 20(108). https://doi.org/10.1186/s12874-020-00977-1 | eng |
| dcterms.references | González, A. D., Villafaña, C. M., Ávila, M. M., & de Irapuato, E. N. O. (n.d.). Validación de un instrumento cuantitativo para medir la ansiedad a las matemáticas en niños de primaria | spa |
| dcterms.references | González, M. del C., Ramírez, M., & García-Suárez, J. (2022). Adaptación y validación de la Escala Abreviada de Ansiedad Matemática (AMAS) en población infantil mexicana. Revista Latinoamericana de Psicología, 54(2), 123–134. https://doi.org/10.14349/rlp.2022.v54.n2.5 | spa |
| dcterms.references | Gonzalez-Hernandez, H. G., Peña-Cortes, D. V, Flores-Amado, A., AmozurrutiaElizalde, A., & Mora-Salinas, R. J. (2022). Decreasing exam-anxiety levels with Mindfulness through EEG measurements. 2022 IEEE Global Engineering Education Conference (EDUCON), 1213–1220. https://doi.org/10.1109/EDUCON52537.2022.9766539 | eng |
| dcterms.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press | eng |
| dcterms.references | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems (NeurIPS), 2672–2680 | eng |
| dcterms.references | Grabner, R. H., Fink, A., Stalps, A., Neubauer, A. C., & Graf, M. (2007). To think or not to think: Enhanced EEG alpha synchronization in students with high mathematical anxiety. International Journal of Psychophysiology, 64(3), 312– 319 | eng |
| dcterms.references | Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A Kernel Two-Sample Test. Journal of Machine Learning Research, 13, 723– 773. | eng |
| dcterms.references | Gunderson, E. A., Park, D., Maloney, E. A., Beilock, S. L., & Levine, S. C. (2018). Reciprocal relations among motivational frameworks, math anxiety, and math achievement in early elementary school. Journal of Cognition and Development, 19(1), 21–46 | eng |
| dcterms.references | Habashi, A. G., Azab, A. M., Eldawlatly, S., & Aly, G. M. (2023). Generative adversarial networks in EEG analysis: an overview. Journal of NeuroEngineering and Rehabilitation, 20(40). https://doi.org/10.1186/s12984- 023-01169-w | eng |
| dcterms.references | Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning | eng |
| dcterms.references | Hartmann, K. G., Schirrmeister, R. T., & Ball, T. (2018). EEG-GAN: Generative adversarial networks for electroencephalographic (EEG) brain signals. ArXiv. https://arxiv.org/abs/1806.01875 | eng |
| dcterms.references | Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7 | eng |
| dcterms.references | Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33–46 | eng |
| dcterms.references | Hernández-Sampieri, R., Fernández-Collado, C., & Baptista Lucio, P. (2014). Metodolog\’\ia de la investigación (6th ed.). McGraw-Hill Interamericana | eng |
| dcterms.references | Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. Advances in Neural Information Processing Systems (NeurIPS) | eng |
| dcterms.references | Hofmann, S. G., Asnaani, A., Vonk, I. J. J., Sawyer, A. T., & Fang, A. (2012). The Efficacy of Cognitive Behavioral Therapy: A Review of Meta-Analyses. Cognitive Therapy and Research, 36, 427–440. https://doi.org/10.1007/s10608-012-9476-1 | eng |
| dcterms.references | Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment, 10(2), 178–182. | eng |
| dcterms.references | Hu, L., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118 | eng |
| dcterms.references | Ienca, M., & Andorno, R. (2017). Towards new human rights in the age of neuroscience and neurotechnology. Life Sciences, Society and Policy, 13(1), 5. https://doi.org/10.1186/s40504-017-0050-1 | eng |
| dcterms.references | Jamieson, J. P., Peters, B. J., Greenwood, E. J., & Altose, A. J. (2016). Reappraising stress arousal improves performance and reduces evaluation anxiety in classroom exam situations. Social Psychological and Personality Science, 7(6), 579–587. https://doi.org/10.1177/1948550616644656 | eng |
| dcterms.references | Jordon, J., Yoon, J., & van der Schaar, M. (2019). PATE-GAN: Generating Synthetic Data with Differential Privacy Guarantees. International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=S1zk9iRqF7 | eng |
| dcterms.references | Khng, K. H., & Mane, R. (2020). Beyond BCI—Validating a wireless, consumergrade EEG headset against a medical-grade system for evaluating EEG effects of a test anxiety intervention in school. Advanced Engineering Informatics, 45, 101106. | eng |
| dcterms.references | Kingma, D. P., & Welling, M. (2014a). Auto-Encoding Variational Bayes. International Conference on Learning Representations (ICLR). | eng |
| dcterms.references | Kingma, D. P., & Welling, M. (2014b). Auto-Encoding Variational Bayes. ICLR. https://arxiv.org/abs/1312.6114 | eng |
| dcterms.references | Klados, M. A., Pandria, N., Athanasiou, A., & Bamidis, P. D. (2017). An automatic EEG based system for the recognition of math anxiety. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), 409– 412. | eng |
| dcterms.references | Klados, M. A., Papageorgiou, S. G., Koukouras, E., Xipteras, N., Tsara, V., Voutas, N., & Bamidis, P. D. (2017). Brain connectivity and mathematical anxiety: A resting-state functional connectivity study. Neuroscience Letters, 644, 64–70. | eng |
| dcterms.references | Klados, M. A., Paraskevopoulos, E., Pandria, N., & Bamidis, P. D. (2019). The impact of math anxiety on working memory: A cortical activations and cortical functional connectivity EEG study. IEEE Access, 7, 15027–15039 | eng |
| dcterms.references | Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review. Brain Research Reviews, 29(2–3), 169–195. | eng |
| dcterms.references | Ko, H. K., & Yi, H. S. (2011). Development and validation of a mathematics anxiety scale for students. Asia Pacific Education Review, 12, 509–521 | eng |
| dcterms.references | Koner, S., & Mazumder, S. (n.d.). Academic motivation, self-esteem and personality factors: A review of effect on mathematics anxiety. | eng |
| dcterms.references | Krigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D., & Colino, F. L. (2017). Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. PeerJ, 5, e4089. https://doi.org/10.7717/peerj.4089 | eng |
| dcterms.references | Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. | eng |
| dcterms.references | Lang, P. J. (1968). Fear reduction and fear behavior: Problems in treating a construct. Research in Psychotherapy Conference, 3rd, May-Jun, 1966, Chicago, IL, US. | eng |
| dcterms.references | Lang, P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology, 16(6), 495–512 | eng |
| dcterms.references | LaRocco, J., Le, M. D., & Paeng, D.-G. (2020). A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Frontiers in Neuroinformatics, 14, 553352. https://doi.org/10.3389/fninf.2020.553352 | eng |
| dcterms.references | Lei, L., Li, J., & Li, W. (2023). Assessing the role of artificial intelligence in the mental healthcare of teachers and students. Soft Computing, 1–11. | eng |
| dcterms.references | Leudo Romaña, C. M. (2021). Estrategias didácticas en la enseñanza y aprendizaje de las matemáticas y su incidencia en el rendimiento académico de los estudiantes de séptimo grado de la Institución Educativa Margento. Corporación Universitaria Minuto de Dios | spa |
| dcterms.references | Ley 1581 de 2012: Protección de Datos Personales. (n.d.) | spa |
| dcterms.references | Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. 2(3), 18–22. https://CRAN.R-project.org/doc/Rnews/Rnews_2002-3.pdf | eng |
| dcterms.references | Linardon, J., Torous, J., Firth, J., Cuijpers, P., Messer, M., & Fuller-Tyszkiewicz, M. (2024). Current evidence on the efficacy of mental health smartphone apps for symptoms of depression and anxiety: A meta-analysis of 176 randomized controlled trials. World Psychiatry, 23(1), 139–149. https://doi.org/10.1002/wps.21183 | eng |
| dcterms.references | Lipton, Z. C. (2016). The Mythos of Model Interpretability | eng |
| dcterms.references | Liu, J., Li, J., Peng, W., Feng, M., & Luo, Y. (2019). EEG correlates of math anxiety during arithmetic problem solving: Implication for attention deficits. Neuroscience Letters, 703, 191–197. | eng |
| dcterms.references | Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A Review of Classification Algorithms for EEG-Based Brain– Computer Interfaces: A 10-Year Update. Journal of Neural Engineering, 15(3), 31005 | eng |
| dcterms.references | Lotte, F., Bougrain, L., Cuppens, K., & others. (2018). A review of classification algorithms for EEG-based brain–computer interfaces: a 10-year update. Journal of Neural Engineering, 15(3), 31005. https://doi.org/10.1088/1741- 2552/aab2f2 | eng |
| dcterms.references | Lu, S.-C., Xu, M., Wang, M., Hardi, A., Cheng, A. L., Chang, S.-H., & Yen, P.-Y. (2022). Effectiveness and Minimum Effective Dose of App-Based Mobile Health Interventions for Anxiety and Depression Symptom Reduction: Systematic Review and Meta-Analysis. JMIR Mental Health, 9(9), e39454. https://doi.org/10.2196/39454 | eng |
| dcterms.references | Lundberg, S. M., & Lee, S.-I. (2017a). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems 30 (NeurIPS), 4765–4774 | eng |
| dcterms.references | Lundberg, S. M., & Lee, S.-I. (2017b). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems | eng |
| dcterms.references | Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology Research and Behavior Management, 311–322. | eng |
| dcterms.references | Ma, X. (1999). A Meta-Analysis of the Relationship between Anxiety toward Mathematics and Achievement in Mathematics. Journal for Research in Mathematics Education, 30(5), 520–540. https://doi.org/10.2307/749772 | eng |
| dcterms.references | Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2015). Intergenerational Effects of Parents’ Math Anxiety on Children’s Math Achievement and Anxiety. Psychological Science, 26(10), 1480–1488. https://doi.org/10.1177/0956797615592630 | eng |
| dcterms.references | Martínez-Monteagudo, M., Ingles, C., Cano-Vindel, A., & García-Fernández, J. (2012). Estado actual de la investigación sobre la teoría tridimensional de la ansiedad de Lang [Current status of research on Lang’s three-dimensional theory of anxiety]. Ansiedad y Estres, 18, 201–219. | spa |
| dcterms.references | Mathersul, D., Williams, L. M., Hopkinson, P. J., Rush, A. J., & Gordon, E. (2008). Anterior frontal theta activity and executive dysfunctions in depression: An EEG neurophysiology study. Biological Psychology, 79(2), 151–164. | eng |
| dcterms.references | McCullagh, O., Ryan, M., & Fitzmaurice, O. (2024). Mathematics anxiety in undergraduate business studies students. Teaching Mathematics and Its Applications: An International Journal of the IMA, 43(2), 125–146. https://doi.org/10.1093/teamat/hrae001 | eng |
| dcterms.references | McDonald, R. P. (1999). Test Theory: A Unified Treatment. Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410601087 | eng |
| dcterms.references | McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282 | eng |
| dcterms.references | McNeish, D. (2018). Thanks Coefficient Alpha, We’ll Take It From Here. Psychological Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144 | eng |
| dcterms.references | Medina, B., SIERRA, J. E., & ULLOA, A. B. (2018). Técnicas de extracción de caracter\’\isticas de señales EEG en la imaginación de movimiento para sistemas BCI. Revista Espacios, 39(22) | spa |
| dcterms.references | Megreya, A. M., Al-Attiyah, A. A., Al-Ali, D., Al-Ansari, B., Al-Mashhadani, F., AlThani, D., & Abdulrahim, D. (2023). Psychometric validation of the Arabic version of the modified Abbreviated Math Anxiety Scale (m-AMAS). Current Psychology, 42, 14639–14649. https://doi.org/10.1007/s12144-021-01952-2 | eng |
| dcterms.references | Megreya, A. M., Al-Emadi, A. A., & Moustafa, A. A. (2023). The Arabic version of the modified-abbreviated math anxiety scale: Psychometric properties, gender differences, and associations with different forms of anxiety and math achievement. Frontiers in Psychology, 13, 919764. | eng |
| dcterms.references | Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019). Model Cards for Model Reporting. Proceedings of the Conference on Fairness, Accountability, and Transparency (FAccT), 220–229. https://doi.org/10.1145/3287560.3287596 | eng |
| dcterms.references | Molnar, C. (2019). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Independent. | eng |
| dcterms.references | Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2nd ed.). Leanpub. https://christophm.github.io/interpretable-ml-book | eng |
| dcterms.references | Moran, T. P., Christian, M. A., Arana, S. E., Stritzke, M., Ross, A. L., & Jarcho, J. M. (2013). Anxiety and gamma power: Reduced synchrony in the frontal cortex during sustained attention. Psychophysiology, 50(10), 1016–1026 | eng |
| dcterms.references | Moreno Cueva, L. A., Pena Cortes, C. A., Maestre Delgado, M., Caicedo Villamizar, S. B., & Pardo Garcia, A. (2017). Neurosignal Record with a BrainComputer Interface to Estimate the Level of Stress in a Student During a Class. INGE CUC, 13(2), 95–101. | eng |
| dcterms.references | Moustafa, A. A., Al-Emadi, A. A., & Megreya, A. M. (2021). The Need to Develop an Individualized Intervention for Mathematics Anxiety. Frontiers in Psychology, 12, 723289. https://doi.org/10.3389/fpsyg.2021.723289 | eng |
| dcterms.references | Nelsen, R. B. (2006). An Introduction to Copulas (2nd ed.). Springer. | eng |
| dcterms.references | Niso, G., Romero, E., Moreau, J. T., Araujo, A., & Krol, L. R. (2023). Wireless EEG: A survey of systems and studies. NeuroImage, 269, 119774. https://doi.org/10.1016/j.neuroimage.2022.119774 | eng |
| dcterms.references | Norton III, A. H., Seok, Y., & Choi-Koh, S. (2019). Examining mathematics anxiety of undergraduates using a brain-based measurement, EEG | eng |
| dcterms.references | Núñez Peña, M. I., & Guilera Ferré, G. (2023). Development and validation of the brief Math Anxiety Scale (BMAS) in university students. Psicothema, 2023, Vol. 35, Num. 4, p. 406-413 | eng |
| dcterms.references | Núñez-Peña, M. I., & Campos-Rodríguez, C. (2024). Response monitoring in math-anxious individuals in an arithmetic task. Biological Psychology, 186, 108759 | eng |
| dcterms.references | Núñez-Peña, M. I., Guilera, G., & Suárez-Pellicioni, M. (2014). The Single-Item Math Anxiety Scale (SIMA): An Alternative Way of Measuring Mathematical Anxiety. Journal of Psychoeducational Assessment, 32(4), 306–317. https://doi.org/10.1177/0734282913508528 | eng |
| dcterms.references | Núñez-Peña, M. I., Suárez-Pellicioni, M., & Bono, R. (2013). Effects of math anxiety on student success in higher education. International Journal of Educational Research, 58, 36–44. https://doi.org/10.1016/j.ijer.2012.12.004 | eng |
| dcterms.references | Nunnally, J. C. (1978). Psychometric Theory (2nd ed.). McGraw-Hill. | eng |
| dcterms.references | Ober, T. M., Liu, C., & Cheng, Y. (2023). Development, validation, and evidence of measurement invariance of a shortened measure of Trait Test Anxiety. European Journal of Psychological Assessment. | eng |
| dcterms.references | OCDE. (2019). El trabajo de la OCDE sobre educación y competencias. OCDE Paris | spa |
| dcterms.references | OECD. (2025). Neurotechnology Toolkit: Implementing the OECD Recommendation. https://www.oecd.org/sti/emerging-tech/neurotechtoolkit.pdf | eng |
| dcterms.references | OECD Council. (2019). Recommendation on Responsible Innovation in Neurotechnology. https://legalinstruments.oecd.org/en/instruments/658 | eng |
| dcterms.references | OHCHR Human Rights Council. (2023). Neurotechnology and human rights: Advisory Committee study (Resolution 51/3). https://www.ohchr.org/en/hrbodies/hrc/advisory-committee/neurotechnologies-and-human-rights | eng |
| dcterms.references | O’Leary, K., Fitzpatrick, C. L., & Hallett, D. (2017). Math anxiety is related to some, but not all, experiences with math. Frontiers in Psychology, 8, 2067. | eng |
| dcterms.references | Ortiz-Padilla, M., Paredes-Bermúdez, M., Soto-Varela, R., & Aldana-Rivera, E. (2020). Ansiedad matemática y desempeño académico en estudiantes en la formación básica de ingenier\’\ia. Formación Universitaria, 13(4), 93–100. https://doi.org/10.4067/S0718-50062020000400093 | spa |
| dcterms.references | O’Shaughnessy, M. R., & others. (2023). Neuroethics guidance documents: principles, analysis, and gaps. Journal of Law and the Biosciences, 10(2), lsad025. https://doi.org/10.1093/jlb/lsad025 | eng |
| dcterms.references | Parlamento Latinoamericano y Caribeño (PARLATINO). (2023). Ley Modelo de Neuroderechos para América Latina y el Caribe. https://parlatino.org/wpcontent/uploads/2017/09/leym-neuroderechos-7-3-2023.pdf | spa |
| dcterms.references | Paulhus, D. L. (1991). Measurement and control of response bias. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman (Eds.), Measures of Personality and Social Psychological Attitudes (pp. 17–59). Academic Press. | eng |
| dcterms.references | Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18, 315–341. | eng |
| dcterms.references | Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36–48. | eng |
| dcterms.references | Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., Paolucci, S., Inghilleri, M., Astolfi, L., Cincotti, F., & Mattia, D. (2015). Brain–Computer Interface Boosts Motor Imagery Practice During Stroke Recovery. Annals of Neurology, 77(5), 851–865. https://doi.org/10.1002/ana.24390 | eng |
| dcterms.references | Pizzie, R. G., & Kraemer, D. J. M. (2020). Neural evidence for cognitive reappraisal as a strategy to alleviate the effects of math anxiety. Social Cognitive and Affective Neuroscience, 15(11), 1271–1287. https://doi.org/10.1093/scan/nsaa093 | eng |
| dcterms.references | Pizzie, R. G., & Kraemer, D. J. M. (2023). Strategies for remediating the impact of math anxiety on high school math performance. Npj Science of Learning, 8(1), 44 | eng |
| dcterms.references | Plake, B. S., & Parker, C. S. (1982). The Development and Validation of a Revised Version of the Mathematics Anxiety Rating Scale. Educational and Psychological Measurement, 42(2), 551–557. https://doi.org/10.1177/001316448204200218 | eng |
| dcterms.references | Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research. Journal of Applied Psychology, 88(5), 879–903 | eng |
| dcterms.references | Pratama, S. H., Rahmadhani, A., Bramana, A., Oktivasari, P., Handayani, N., Haryanto, F., Khotimah, S. N., & others. (2020). Signal comparison of developed EEG device and emotiv insight based on brainwave characteristics analysis. Journal of Physics: Conference Series, 1505(1), 12071 | eng |
| dcterms.references | Primi, C., Donati, M. A., Izzo, V. A., Guardabassi, V., O’Connor, P. A., Tomasetto, C., & Morsanyi, K. (2020). The Early Elementary School Abbreviated Math Anxiety Scale (the EES-AMAS): A New Adapted Version of the AMAS to Measure Math Anxiety in Young Children. Frontiers in Psychology, 11, 1014. https://doi.org/10.3389/fpsyg.2020.01014 | eng |
| dcterms.references | Pushkarna, M. L., Shankar, S., D’Amour, A., Mitchell, M., Zaldivar, A., Çopur, K., & others. (2022). Data Cards: A Toolkit for Transparency in Dataset Documentation. Communications of the ACM, 66(7), 80–90. https://doi.org/10.1145/3531146 | eng |
| dcterms.references | Putman, P., Westerveld, M. M., & van der Does, W. (2014). EEG alpha asymmetry and anxiety: A critical review. Biological Psychology, 103, 1–9 | eng |
| dcterms.references | Putnick, D. L., & Bornstein, M. H. (2016). Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Developmental Review, 41, 71–90. https://doi.org/10.1016/j.dr.2016.06.004 | eng |
| dcterms.references | Putwain, D. W., & Symes, W. (2011). Teachers’ use of fear appeals in the Mathematics classroom: Worrying or motivating students? British Journal of Educational Psychology, 81(3), 456–474 | eng |
| dcterms.references | Qu, Z., Chen, J., Li, B., Tan, J., Zhang, D., & Zhang, Y. (2020). Measurement of high-school students’ trait math anxiety using neurophysiological recordings during math exam. IEEE Access, 8, 57460–57471. | eng |
| dcterms.references | Quiroz Becerra, J. M., Arteta Sandoval, G., & Travezaño Cabrera, A. I. (2023). The abreviated Math Anxiety Scale (AMAS): Nuevas evidencias psicométricas en adolescentes peruanos. https://alicia.concytec.gob.pe/vufind/Record/UEPU_084081cf2e70ba76ff0d389 a3ec53518 | spa |
| dcterms.references | Ramirez, G., & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science, 331(6014), 211–213. https://doi.org/10.1126/science.1199427 | eng |
| dcterms.references | Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14(2), 187–202 | eng |
| dcterms.references | Ramirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53(3), 145–164 | eng |
| dcterms.references | Raufi, B., & Longo, L. (2022). An Evaluation of the EEG Alpha-to-Theta and Thetato-Alpha Band Ratios as Indexes of Mental Workload. Frontiers in Neuroinformatics, 16, 861967. https://doi.org/10.3389/fninf.2022.861967 | eng |
| dcterms.references | Raykov, T. (1997). Estimation of Composite Reliability for Congeneric Measures. Applied Psychological Measurement, 21(2), 173–184. https://doi.org/10.1177/01466216970212006 | eng |
| dcterms.references | Resolución 8430 de 1993: Normas científicas, técnicas y administrativas para la investigación en salud. (n.d.). | spa |
| dcterms.references | Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ``Why Should I Trust You?’’ Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778 | eng |
| dcterms.references | Richardson, F. C., & Suinn, R. M. (1972). The mathematics anxiety rating scale: psychometric data. Journal of Counseling Psychology, 19(6), 551 | eng |
| dcterms.references | Ros, T., Enriquez-Geppert, S., Zotev, V., Young, K. D., Wood, G., Vuilleumier, P., Whitfield-Gabrieli, S., & others. (2020). Consensus on the Reporting and Experimental Design of Clinical and Cognitive-Behavioural Neurofeedback Studies (CRED-nf Checklist). Brain, 143(6), 1674–1685. https://doi.org/10.1093/brain/awaa009 | eng |
| dcterms.references | Rose, A. C., Alashwal, H., Moustafa, A. A., & Weidemann, G. (2023). A neural network model of mathematics anxiety: The role of attention. Plos One, 18(12), e0295264. | eng |
| dcterms.references | Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 | eng |
| dcterms.references | Sabio, J., Williams, N. S., McArthur, G. M., & Badcock, N. A. (2024). A scoping review on the use of consumer-grade EEG devices for research. PLOS ONE, 19(3), e0291186. https://doi.org/10.1371/journal.pone.0291186 | eng |
| dcterms.references | Sammallahti, E., Finell, E., Jonsson, B., & Korhonen, T. (2023). A Meta-Analysis of Math Anxiety Interventions. Journal of Numerical Cognition, 9(2), 346–362. https://doi.org/10.5964/jnc.8401 | eng |
| dcterms.references | Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. 61, 85– 117. https://doi.org/10.1016/j.neunet.2014.09.003 | eng |
| dcterms.references | Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership Inference Attacks against Machine Learning Models. 2017 IEEE Symposium on Security and Privacy (SP), 3–18. https://doi.org/10.1109/SP.2017.41 | eng |
| dcterms.references | Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. ArXiv Preprint ArXiv:1312.6034 | eng |
| dcterms.references | Soneira, C., & Mato-Vázquez, D. (2020). Estructura de un cuestionario para evaluar la ansiedad hacia las matemáticas en estudiantes de ingenier\’\ia. Revista de Estudios e Investigación En Psicolog\’\ia y Educación, 7(1), 59–70 | spa |
| dcterms.references | Song, J., Zhai, Q., Wang, C., & Liu, J. (2024). EEGGAN-Net: enhancing EEG signal classification through data augmentation. Frontiers in Human Neuroscience, 18, 1430086. https://doi.org/10.3389/fnhum.2024.1430086 | eng |
| dcterms.references | Sorvo, R., Koponen, T., Viholainen, H., Aro, T., Räikkönen, E., Peura, P., Dowker, A., & Aro, M. (2017). Math anxiety and its relationship with basic arithmetic skills among primary school children. British Journal of Educational Psychology, 87(3), 309–327 | eng |
| dcterms.references | Soysal, D., Bani-Yaghoub, M., & Riggers-Piehl, T. A. (2022). A Machine Learning Approach to Evaluate Variables of Math Anxiety in STEM Students. Pedagogical Research, 7(2) | eng |
| dcterms.references | Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35(1), 4–28. https://doi.org/10.1006/jesp.1998.1373 | eng |
| dcterms.references | Spielberger, C. D. (2013). Anxiety: Current trends in theory and research. Elsevier. | eng |
| dcterms.references | Stach, T., Browarska, N., & Kawala-Janik, A. (2018). Initial study on using emotiv epoc+ neuroheadset as a control device for picture script-based communicators. IFAC-PapersOnLine, 51(6), 180–184. | eng |
| dcterms.references | Stadler, T., Creager, E., Bahdanau, D., Duvenaud, D., & Ghassemi, M. (2022). Synthetic Data: Current Status and Future Prospects. ArXiv Preprint ArXiv:2211.05029 | eng |
| dcterms.references | Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(25), 1–21. https://doi.org/10.1186/1471-2105-8-25 | eng |
| dcterms.references | Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2015). Attentional bias in high math-anxious individuals: evidence from an emotional Stroop task. Frontiers in Psychology, 6, 1577. | eng |
| dcterms.references | Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016a). Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases. Cognitive, Affective, & Behavioral Neuroscience, 16, 3–22 | eng |
| dcterms.references | Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, À. (2016b). The Neural Basis of Math Anxiety: A Review. Frontiers in Psychology, 7, 42. https://doi.org/10.3389/fpsyg.2016.00042 | eng |
| dcterms.references | Suinn, R. M., & Winston, E. H. (2003). The mathematics anxiety rating scale, a brief version: psychometric data. Psychological Reports, 92(1), 167–173 | eng |
| dcterms.references | Sundararajan, M., Taly, A., & Yan, Q. (2017a). Axiomatic Attribution for Deep Networks. Proceedings of the 34th International Conference on Machine Learning (ICML), 3319–3328. | eng |
| dcterms.references | Sundararajan, M., Taly, A., & Yan, Q. (2017b). Axiomatic Attribution for Deep Networks. Proceedings of the 34th International Conference on Machine Learning, 3319–3328 | eng |
| dcterms.references | Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A metaanalysis and research synthesis. Computers & Education, 94, 252–275. https://doi.org/10.1016/j.compedu.2015.11.008 | eng |
| dcterms.references | Teplan, M. (2002). Fundamentals of EEG Measurement. Measurement Science Review, 2(2), 1–11. | eng |
| dcterms.references | Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2012). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective. Biological Psychology, 89(3), 537–546 | eng |
| dcterms.references | Torres, E. P., Torres, E. A., Hernández-Álvarez, M., & Yoo, S.-G. (2020). EEGBased BCI Emotion Recognition: A Survey. Sensors, 20(18), 5083. https://doi.org/10.3390/s20185083 | eng |
| dcterms.references | UNESCO. (2024). The Ethics of Neurotechnology: UNESCO appoints international expert group to prepare a new global standard. https://www.unesco.org/en/articles/ethics-neurotechnology-unesco-appointsinternational-expert-group-prepare-new-global-standard | eng |
| dcterms.references | Villamizar Acevedo, G., Araujo Arenas, T. Y., & Trujillo Calderón, W. J. (2020). Relationship between mathematical anxiety and academic performance in mathematics in high school students. Ciencias Psicológicas, 14(1). | eng |
| dcterms.references | Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A metaanalysis. Journal of Educational Computing Research, 34(3), 229–243 | eng |
| dcterms.references | Vukovic, R. K., Roberts, S. O., & Green Wright, L. (2013). From parental involvement to children’s mathematical performance: The role of mathematics anxiety. Early Education & Development, 24(4), 446–467. | eng |
| dcterms.references | Wang, Z., Lukowski, S. L., Hart, S. A., Lyons, I. M., Thompson, L. A., Kovas, Y., Mazzocco, M. M. M., Plomin, R., & Petrill, S. A. (2015). Is math anxiety always bad for math learning? The role of math motivation. Psychological Science, 26(12), 1863–1876. | eng |
| dcterms.references | Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data—a practical approach. Journal of Neuroscience Methods, 250, 34–46. https://doi.org/10.1016/j.jneumeth.2014.08.002 | eng |
| dcterms.references | Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791 | eng |
| dcterms.references | World Medical Association. (2013). World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 | eng |
| dcterms.references | Xu, L., & others. (2019). Modeling Tabular data using Conditional GAN. NeurIPS Workshop. https://arxiv.org/abs/1907.00503 | eng |
| dcterms.references | Yadav, H., & Maini, S. (2023). Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Multimedia Tools and Applications, 82(30), 47003–47047. | eng |
| dcterms.references | Yadawad, P. R., Pandey, L., Mallibhat, K., & Mudenagudi, U. (2024). Predicting Anxiety Among Young Adults Using Machine Learning Algorithms. 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), 1–8 | eng |
| dcterms.references | Yáñez-Marquina, L., & Villardón-Gallego, L. (2017). Math anxiety, a hierarchical construct: Development and validation of the scale for assessing math anxiety in secondary education. Ansiedad y Estrés, 23(2–3), 59–65. | eng |
| dcterms.references | Yoon, J., Jarrett, D., & van der Schaar, M. (2019). Time-series Generative Adversarial Networks. Advances in Neural Information Processing Systems (NeurIPS) | eng |
| dcterms.references | Yuste, R., Goering, S., & others. (2017). Four ethical priorities for neurotechnologies and AI. Nature, 551(7679), 159–163. https://doi.org/10.1038/551159a | eng |
| dcterms.references | Zhang, J., Cormode, G., Procopiuc, C., Srivastava, D., & Xiao, X. (2017). PrivBayes: Private Data Release via Bayesian Networks. ACM Transactions on Database Systems (TODS), 42(4), 1–41. https://doi.org/10.1145/3134428 | eng |
| dcterms.references | Zhao, Z., Kunar, A., der Scheer, H., Birke, R., & Chen, L. Y. (2021). CTAB-GAN: Effective Table Data Synthesizing. Proceedings of the 30th ACM International Conference on Information and Knowledge Management (CIKM 2021) Workshops. https://proceedings.mlr.press/v157/zhao21a.htm | eng |
| dcterms.references | Zhban, E. S., Likhanov, M. V, Zakharov, I. M., Bezrukova, E. M., & Malykh, S. B. (2018). The Role of Mathematical and trait anxiety in Mental fatigue: an eeg investigation. Psychology in Russia: State of the Art, 11(4), 79–95. | eng |
| dcterms.references | Zuo, H., & Wang, L. (2023). The influences of mindfulness on high-stakes mathematics test achievement of middle school students. Frontiers in Psychology, 14, 1061027. https://doi.org/10.3389/fpsyg.2023.1061027 | eng |
| oaire.version | info:eu-repo/semantics/acceptedVersion | |
| sb.investigacion | Convergencia tecnológica | spa |
| sb.programa | Doctorado en Gestión de la Tecnología y la Innovación | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

