Factores predictores de derrame pleural en pacientes adultos con dengue atendidos en una Unidad de Cuidados Intensivos durante el año 2022
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.advisor | Cortes Restrepo, Luz Angela | |
dc.contributor.advisor | Aldana Roa, Mauricio | |
dc.contributor.advisor | Rebolledo Maldonado, Alberto | |
dc.contributor.author | Rodríguez Rivas, Jesús Alberto | |
dc.contributor.author | Rodríguez Arias, Marcela | |
dc.date.accessioned | 2025-07-11T14:55:39Z | |
dc.date.available | 2025-07-11T14:55:39Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Introducción: En la etapa crítica, los pacientes con dengue pueden experimentar un tercer espacio en la pleura, lo que puede provocar un shock hipovolémico debido a extravasación. Se examinan los factores de predictores para la aparición de derrame pleural. Objetivo: Analizar los factores que predicen el derrame pleural en adultos con dengue atendidos en una unidad de cuidados intensivos en Barranquilla, (Colombia) en el año 2022. Materiales y métodos: Análisis retrospectivo de pacientes graves con dengue ingresados en la unidad de cuidados intensivos en Barranquilla durante el año 2022. Se analizaron diferentes factores que predicen el derrame pleural a través de modelos de regresión logística binaria y regresión lineal, calculando las odds ratio y los coeficientes con sus intervalos de confianza al 95%. Resultados: Se incluyeron 204 pacientes a lo largo del periodo de estudio; de estos, 37 (18.1%) pacientes tuvieron derrame pleural. Los modelos de regresión logística indicaron que la existencia de ascitis (OR: 4.56; IC 95%: 1.82 – 11.45), colecistitis aguda alitiásica (OR: 3.21; IC 95%: 1.21 – 8.54), sepsis pulmonar (OR: 12.98; IC 95%: 1.19 – 141.1), transfusiones (OR: 3.73; IC 95%: 1.21 – 8.54) y un nadir de plaquetas ≤20.000 No./mm3 (OR: 4.77; IC 95%: 2.26 – 10.08) fueron indicadores de la presencia de derrame pleural. Conclusiones: En los pacientes críticos con dengue, se identificaron signos de fuga capilar (ascitis, colecistitis alitiásica) junto a condiciones clínicas (trombocitopenia grave, uso hemoderivados, patologías estructurales pulmonares) como factores predictivos de derrame pleural. | spa |
dc.description.abstract | Introduction: In the critical phase, patients with dengue may experience a third space in the pleura, which can lead to hypovolemic shock due to extravasation. We examined predictive factors for the development of pleural effusion. Objectives: To analyze the factors that predict pleural effusion in adults with dengue who were treated in an intensive care unit in Barranquilla, Colombia, in 2022. Materials and methods: Retrospective analysis of severely ill patients with dengue admitted to the intensive care unit in Barranquilla during 2022. Different factors that predict pleural effusion were analyzed using binary logistic regression and linear regression models, calculating odds ratios and coefficients with their 95% confidence intervals. Results: A total of 204 patients were included throughout the study period; of these, 37 (18.1%) had pleural effusions. Logistic regression models indicated that the presence of ascites (OR: 4.56; 95% CI: 1.82–11.45), acute acalculous cholecystitis (OR: 3.21; 95% CI: 1.21–8.54), pulmonary sepsis (OR: 12.98; 95% CI: 1.19–141.1), transfusions (OR: 3.73; 95% CI: 1.21–8.54), and a nadir platelet count ≤20,000/mm3 (OR: 4.77; 95% CI: 2.26–10.08) were predictors of pleural effusions. Conclusions: In critically ill patients with dengue, signs of capillary leak (ascites, acalculous cholecystitis) were identified along with clinical conditions (severe thrombocytopenia, use of blood products, structural lung pathologies) as predictive factors of pleural effusion. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16824 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Dengue | spa |
dc.subject | Derrame pleural | spa |
dc.subject | Ascitis | spa |
dc.subject | Transfusión | spa |
dc.subject | Adultos | spa |
dc.subject.keywords | Dengue | eng |
dc.subject.keywords | Pleural effusion | eng |
dc.subject.keywords | Ascites | eng |
dc.subject.keywords | Transfusion | eng |
dc.subject.keywords | Adults | eng |
dc.title | Factores predictores de derrame pleural en pacientes adultos con dengue atendidos en una Unidad de Cuidados Intensivos durante el año 2022 | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | Álvarez-Calderón CE, Botero-Murillo D. Guerra y pestilencia: impacto de epidemias y pandemias en la historia hasta el siglo XX. Rev Científica Gen José María Córdova [Internet]. 2021 Jul 1;19(35):573–97. Available from: http://dx.doi.org/10.21830/19006586.840 | spa |
dcterms.references | Che Isa Z, Lim JA, Ain AM, Othman FA, Kueh YC, Tew MM, et al. Clinical profiles and predictors of survival in severe dengue cases. Singapore Med J [Internet]. 2023 Nov 3; Available from: https://doi.org/10.4103/singaporemedj.SMJ-2022-072 | eng |
dcterms.references | Amarasinghe A. Dengue Virus Infection in Africa. Emerg Infect Dis [Internet]. 2011 Aug; Available from: https://doi.org/10.3201/eid1708.101515 | eng |
dcterms.references | Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al. Global Epidemiology of Dengue Outbreaks in 1990–2015: A Systematic Review and Meta-Analysis. Front Cell Infect Microbiol [Internet]. 2017 Jul 12;7. Available from: https://doi.org/10.3389/fcimb.2017.00317 | eng |
dcterms.references | Gallego-Munuera M, Colomé-Hidalgo M. Letalidad por dengue y desigualdades en la Región de las Américas entre el 2014 y el 2023. Rev Panam Salud Pública [Internet]. 2024 Dec 18;48:1. Available from: https://doi.org/10.26633/RPSP.2024.139 | spa |
dcterms.references | Barcelos Figueiredo L, Sakamoto T, Leomil Coelho LF, de Oliveira Rocha ES, Gomes Cota MM, Ferreira GP, et al. Dengue Virus 2 American-Asian Genotype Identified during the 2006/2007 Outbreak in Piauí, Brazil Reveals a Caribbean Route of Introduction and Dissemination of Dengue Virus in Brazil. Ng LF, editor. PLoS One [Internet]. 2014 Aug 15;9(8):e104516. Available from: https://dx.plos.org/10.1371/journal.pone.0104516 | eng |
dcterms.references | Chepkorir E, Lutomiah J, Mutisya J, Mulwa F, Limbaso K, Orindi B, et al. Vector competence of Aedes aegypti populations from Kilifi and Nairobi for dengue 2 virus and the influence of temperature. Parasit Vectors [Internet]. 2014;7(1):435. Available from: https://doi.org/10.1186/1756-3305-7-435 | eng |
dcterms.references | Figueiredo LTM. Emergent arboviruses in Brazil. Rev Soc Bras Med Trop [Internet]. 2007 Apr;40(2):224–9. Available from: https://doi.org/10.1590/S0037-86822007000200016 | eng |
dcterms.references | Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop Med Health [Internet]. 2011;39(4SUPPLEMENT):S3–11. Available from: https://doi.org/10.2149%2Ftmh.2011-S05 | eng |
dcterms.references | Guo X, Yang H, Wu C, Jiang J, Fan J, Li H, et al. Molecular Characterization and Viral Origin of the First Dengue Outbreak in Xishuangbanna, Yunnan Province, China, 2013. Am Soc Trop Med Hyg [Internet]. 2015 Aug 5;93(2):390–3. Available from: https://doi.org/10.4269/ajtmh.14-0044 | eng |
dcterms.references | Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature [Internet]. 2011 Aug 24;476(7361):454–7. Available from: https://doi.org/10.1038/nature10356 | eng |
dcterms.references | Huang XY, Ma HX, Wang HF, DU YH, Su J, Li X Le, et al. Outbreak of dengue Fever in central China, 2013. Biomed Environ Sci [Internet]. 2014 Nov;27(11):894–7. Available from: https://doi.org/10.3967/bes2014.125 | eng |
dcterms.references | Issack MI, Pursem VN, Barkham TMS, Ng L-C, Inoue M, Manraj SS. Reemergence of Dengue in Mauritius. Emerg Infect Dis [Internet]. 2010 Apr;16(4):716–8. Available from: https://doi.org/10.3201/eid1604.091582 | eng |
dcterms.references | Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci [Internet]. 2011 May 3;108(18):7460–5. Available from: https://doi.org/10.1073/pnas.1101377108 | eng |
dcterms.references | The Lancet. Dengue—an infectious disease of staggering proportions. Lancet [Internet]. 2013 Jun;381(9884):2136. Available from: https://doi.org/10.1016/s0140-6736(13)61423-3 | eng |
dcterms.references | Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol [Internet]. 2015 Dec 25;15(12):745–59. Available from: https://doi.org/10.1038/nri3916 | eng |
dcterms.references | Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. N Engl J Med [Internet]. 2012 Apr 12;366(15):1423–32. Available from: https://doi.org/10.1056/NEJMra1110265 | eng |
dcterms.references | Wang T, Wang M, Shu B, Chen X, Luo L, Wang J, et al. Evaluation of Inapparent Dengue Infections During an Outbreak in Southern China. Gubler DJ, editor. PLoS Negl Trop Dis [Internet]. 2015 Mar 31;9(3):e0003677. Available from: https://doi.org/10.1371/journal.pntd.0003677 | eng |
dcterms.references | Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg [Internet]. 1987 Jan;36(1):143–52. Available from: https://doi.org/10.4269/ajtmh.1987.36.143 | eng |
dcterms.references | Wu T, Wu Z, Li Y. Dengue fever and dengue virus in the People’s Republic of China. Rev Med Virol [Internet]. 2022 Jan 19;32(1). Available from: https://doi.org/10.1002/rmv.2245 | eng |
dcterms.references | Ganeshkumar P, Murhekar M V., Poornima V, Saravanakumar V, Sukumaran K, Anandaselvasankar A, et al. Dengue infection in India: A systematic review and meta-analysis. Rodriguez-Barraquer I, editor. PLoS Negl Trop Dis [Internet]. 2018 Jul 16;12(7):e0006618. Available from: https://doi.org/10.1371/journal.pntd.0006618 | eng |
dcterms.references | Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya. Infect Dis Clin North Am [Internet]. 2019 Dec;33(4):1003–25. Available from: https://doi.org/10.1016/j.idc.2019.08.006 | eng |
dcterms.references | GUBLER DJ. Human Arbovirus Infections Worldwide. Ann N Y Acad Sci [Internet]. 2001 Dec 25;951(1):13–24. Available from: https://doi.org/10.1111/j.1749-6632.2001.tb02681.x | eng |
dcterms.references | Yu X, Cheng G. Contribution of phylogenetics to understanding the evolution and epidemiology of dengue virus. Anim Model Exp Med [Internet]. 2022 Oct 17;5(5):410–7. Available from: https://doi.org/10.1002/ame2.12283 | eng |
dcterms.references | Lopes N, Nozawa C, Linhares REC. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Rev Pan-Amazônica Saúde [Internet]. 2014 Aug;5(3). Available from: https://doi.org/10.5123/S2176- 62232014000300007 | ptg |
dcterms.references | Islam R, Salahuddin M, Ayubi MS, Hossain T, Majumder A, Taylor-Robinson AW, et al. Dengue epidemiology and pathogenesis: images of the future viewed through a mirror of the past. Virol Sin [Internet]. 2015 Oct 20;30(5):326–43. Available from: https://doi.org/10.1007/s12250-015-3624-1 | eng |
dcterms.references | World Health Organization. Partes sobre brotes epidémicos; dengue: situación mundial [Internet]. World Health Organization. 2023. Available from: https://www.who.int/es/emergencies/disease-outbreak-news/item/2023- DON498 | spa |
dcterms.references | Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India [Internet]. 2015 Jan;71(1):67–70. Available from: https://doi.org/10.1016/j.mjafi.2014.09.011 | eng |
dcterms.references | Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasit Vectors [Internet]. 2018 Dec 9;11(1):29. Available from: https://doi.org/10.1186/s13071-017-2559-9 | eng |
dcterms.references | Woon YL, Hor CP, Hussin N, Zakaria A, Goh PP, Cheah WK. A Two-Year Review on Epidemiology and Clinical Characteristics of Dengue Deaths in Malaysia, 2013-2014. Gubler DJ, editor. PLoS Negl Trop Dis [Internet]. 2016 May 20;10(5):e0004575. Available from: https://doi.org/10.1371/journal.pntd.0004575 | eng |
dcterms.references | McBride WJ., Bielefeldt-Ohmann H. Dengue viral infections; pathogenesisand epidemiology. Microbes Infect [Internet]. 2000 Jul;2(9):1041–50. Available from: https://doi.org/10.1016/s1286-4579(00)01258-2 | eng |
dcterms.references | Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol [Internet]. 2014 Mar;22(3):138–46. Available from: https://doi.org/10.1016/j.tim.2013.12.011 | eng |
dcterms.references | Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, et al. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol [Internet]. 2023 Dec 18;14. Available from: https://doi.org/10.3389/fimmu.2023.1281667 | eng |
dcterms.references | Junxiong P, Yee-Sin L. Clustering, climate and dengue transmission. Expert Rev Anti Infect Ther [Internet]. 2015 Jun 3;13(6):731–40. Available from: https://doi.org/10.1586/14787210.2015.1028364 | eng |
dcterms.references | Hung TM, Clapham HE, Bettis AA, Cuong HQ, Thwaites GE, Wills BA, et al. The Estimates of the Health and Economic Burden of Dengue in Vietnam. Trends Parasitol [Internet]. 2018 Oct;34(10):904–18. Available from: https://doi.org/10.1016/j.pt.2018.07.007 | eng |
dcterms.references | Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol [Internet]. 2016 Feb 1;97(2):269–73. Available from: https://doi.org/10.1099/jgv.0.000381 | eng |
dcterms.references | Luh D-L, Liu C-C, Luo Y-R, Chen S-C. Economic cost and burden of dengue during epidemics and non-epidemic years in Taiwan. J Infect Public Health [Internet]. 2018 Mar;11(2):215–23. Available from: https://doi.org/10.1016/j.jiph.2017.07.021 | eng |
dcterms.references | San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, et al. The Epidemiology of Dengue in the Americas Over the Last Three Decades: A Worrisome Reality. Am Soc Trop Med Hyg [Internet]. 2010 Jan;82(1):128–35. Available from: https://doi.org/10.4269/ajtmh.2010.09- 0346 | eng |
dcterms.references | García-Henao JP, Alzate-Piedrahita JA, Guevara-Betancurt MP, ForeroGómez JE, Suárez-Brochero OF, Medina-Morales DA. Acute Febrile Syndrome in an endemic region of Colombia: What is there Beyond Dengue? Iatreia [Internet]. 2023;36(2). Available from: https://doi.org/10.17533/udea.iatreia.153 | eng |
dcterms.references | Gobernacion del atlántico. Secretaría de Salud del Atlántico intensifica acciones para prevenir el dengue en los municipios. Gobernacion del Atlántico [Internet]. Barranquilla; 2023; Available from: https://www.atlantico.gov.co/index.php/noticias/salud-prensa/22200- secretaria-de-salud-del-atlantico-intensifica-acciones-para-prevenir-eldengue-en-los-municipios | spa |
dcterms.references | Rodríguez Reyes AJ, Pachon Melo HE, Pardo Herrera LC, Castillo Morales RM. Informe de Evento 2023. Dengue [Internet]. 2022 Jan. Available from: https://doi.org/10.33610/infoeventos.4.1 | spa |
dcterms.references | Castro MC, Wilson ME, Bloom DE. Disease and economic burdens of dengue. Lancet Infect Dis [Internet]. 2017 Mar;17(3):e70–8. Available from: https://doi.org/10.1016/s1473-3099(16)30545-x | eng |
dcterms.references | Laserna A, Barahona-Correa J, Baquero L, Castañeda-Cardona C, Rosselli D. Economic impact of dengue fever in Latin America and the Caribbean: a systematic review. Rev Panam Salud Pública [Internet]. 2018;42. Available from: https://doi.org/10.26633/rpsp.2018.111 | eng |
dcterms.references | Salinas MA, Soto VE, Prada SI. Análisis de costo-efectividad del uso del programa VECTOS en el control rutinario de enfermedades transmitidas por Aedes aegypti en dos municipios de Santander, Colombia. Biomédica [Internet]. 2020 Jun 15;40(2):270–82. Available from: https://doi.org/10.7705/biomedica.4658 | spa |
dcterms.references | Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis [Internet]. 2016 Jun;16(6):712–23. Available from: https://doi.org/10.1016/s1473-3099(16)00026-8 | eng |
dcterms.references | Castro Rodríguez R, Carrasquilla G, Porras A, Galera-Gelvez K, Lopez Yescas JG, Rueda-Gallardo JA. The Burden of Dengue and the Financial Cost to Colombia, 2010–2012. Am J Trop Med Hyg [Internet]. 2016 May 4;94(5):1065–72. Available from: https://doi.org/10.4269/ajtmh.15-0280 | eng |
dcterms.references | Salinas-López MA, Soto-Rojas VE, Ocampo CB. Costos de un programa de control del vector Aedes aegypti en municipios de Colombia: el caso de Girón y Guadalajara de Buga, 2016. Cad Saude Publica [Internet]. 2018 Nov 29;34(12). Available from: https://doi.org/10.1590/0102-311X00044518 | spa |
dcterms.references | Katzelnick LC, Coloma J, Harris E. Dengue: knowledge gaps, unmet needs, and research priorities. Lancet Infect Dis [Internet]. 2017 Mar;17(3):e88–100. Available from: https://doi.org/10.1016/s1473-3099(16)30473-x | eng |
dcterms.references | Rather IA, Parray HA, Lone JB, Paek WK, Lim J, Bajpai VK, et al. Prevention and Control Strategies to Counter Dengue Virus Infection. Front Cell Infect Microbiol [Internet]. 2017 Jul 25;7. Available from: https://doi.org/10.3389/fcimb.2017.00336 | eng |
dcterms.references | Klepac P, Hsieh JL, Ducker CL, Assoum M, Booth M, Byrne I, et al. Climate change, malaria and neglected tropical diseases: a scoping review. Trans R Soc Trop Med Hyg [Internet]. 2024 Sep 2;118(9):561–79. Available from: https://doi.org/10.1093/trstmh/trae026 | eng |
dcterms.references | Cattarino L, Rodriguez-Barraquer I, Imai N, Cummings DAT, Ferguson NM. Mapping global variation in dengue transmission intensity. Sci Transl Med [Internet]. 2020 Jan 29;12(528). Available from: https://doi.org/10.1126/scitranslmed.aax4144 | eng |
dcterms.references | Suwarto S, Nainggolan L, Sinto R, Effendi B, Ibrahim E, Suryamin M, et al. Dengue score: a proposed diagnostic predictor for pleural effusion and/or ascites in adults with dengue infection. BMC Infect Dis [Internet]. 2016 Dec 8;16(1):322. Available from: https://doi.org/10.1186/s12879-016-1671-3 | eng |
dcterms.references | Fujimoto DE, Koifman S. Clinical and laboratory characteristics of patients with dengue hemorrhagic fever manifestations and their transfusion profile. Rev Bras Hematol Hemoter [Internet]. 2014 Mar;36(2):115–20. Available from: https://doi.org/10.5581/1516-8484.20140027 | eng |
dcterms.references | Instituto Nacional de Salud. Informe de Evento 2022. Dengue [Internet]. Bogota; 2023. Available from: https://www.ins.gov.co/buscadoreventos/Informesdeevento/DENGUE INFORME DE EVENTO 2022.pdf | spa |
dcterms.references | World Health Organization. Dengue and severe dengue [Internet]. World Health Organization. 2024. Available from: https://www.who.int/newsroom/fact-sheets/detail/dengue-and-severe-dengue | eng |
dcterms.references | Kaagaard MD, Matos LO, Evangelista MVP, Wegener A, Holm AE, Vestergaard LS, et al. Frequency of pleural effusion in dengue patients by severity, age and imaging modality: a systematic review and meta-analysis. BMC Infect Dis [Internet]. 2023 May 15;23(1):327. Available from: https://doi.org/10.1186/s12879-023-08311-y | eng |
dcterms.references | Riaz M, Harun SNB, Mallhi TH, Khan YH, Butt MH, Husain A, et al. Evaluation of clinical and laboratory characteristics of dengue viral infection and risk factors of dengue hemorrhagic fever: a multi-center retrospective analysis. BMC Infect Dis [Internet]. 2024 May 17;24(1):500. Available from: https://doi.org/10.1186/s12879-024-09384-z | eng |
dcterms.references | Póvoa TF, Alves AMB, Oliveira CAB, Nuovo GJ, Chagas VLA, Paes M V. The Pathology of Severe Dengue in Multiple Organs of Human Fatal Cases: Histopathology, Ultrastructure and Virus Replication. Jin X, editor. PLoS One [Internet]. 2014 Apr 15;9(4):e83386. Available from: https://doi.org/10.1371/journal.pone.0083386 | eng |
dcterms.references | Bushi G, Shabil M, Padhi BK, Ahmed M, Pandey P, Satapathy P, et al. Prevalence of acute kidney injury among dengue cases: a systematic review and meta-analysis. Trans R Soc Trop Med Hyg [Internet]. 2024 Jan 2;118(1):1–11. Available from: https://doi.org/10.1093/trstmh/trad067 | eng |
dcterms.references | Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis [Internet]. 2016 Aug;16(8):935–41. Available from: https://doi.org/10.1016/s1473- 3099(16)00146-8 | eng |
dcterms.references | Guzman MG, Harris E. Dengue. Lancet [Internet]. 2015 Jan;385(9966):453– 65. Available from: https://doi.org/10.1016/s0140-6736(14)60572-9 | eng |
dcterms.references | Ross TM. Dengue Virus. Clin Lab Med [Internet]. 2010 Mar;30(1):149–60. Available from: https://doi.org/10.1016/j.cll.2009.10.007 | eng |
dcterms.references | Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet [Internet]. 2024 Feb;403(10427):667–82. Available from: https://doi.org/10.1016/s0140-6736(23)02576-x | eng |
dcterms.references | Kuhn RJ, Zhang W, Rossmann MG, Pletnev S V., Corver J, Lenches E, et al. Structure of Dengue Virus. Cell [Internet]. 2002 Mar;108(5):717–25. Available from: https://doi.org/10.1016/s0092-8674(02)00660-8 | eng |
dcterms.references | Zonetti LFC, Coutinho MC, de Araujo AS. Molecular Aspects of the Dengue Virus Infection Process: A Review. Protein Pept Lett [Internet]. 2018 Oct 9;25(8):712–9. Available from: https://doi.org/10.2174/0929866525666180709115506 | eng |
dcterms.references | Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol [Internet]. 2019 Jun 10;4(9):1508–15. Available from: https://doi.org/10.1038/s41564-019-0476-8 | eng |
dcterms.references | Semenza JC, Rocklöv J, Ebi KL. Climate Change and Cascading Risks from Infectious Disease. Infect Dis Ther [Internet]. 2022 Aug 19;11(4):1371–90. Available from: https://doi.org/10.1007/s40121-022-00647-3 | eng |
dcterms.references | Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: Facts, scenarios and growing awareness from the public health community within Europe. Anaerobe [Internet]. 2011 Dec;17(6):337–40. Available from: https://doi.org/10.1016/j.anaerobe.2011.05.016 | eng |
dcterms.references | Roy SK, Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol [Internet]. 2021 Oct;67(10):687–702. Available from: https://doi.org/10.1139/cjm-2020-0572 | eng |
dcterms.references | Sirisena PDNN, Mahilkar S, Sharma C, Jain J, Sunil S. Concurrent dengue infections: Epidemiology & clinical implications. Indian J Med Res [Internet]. 2021 Nov;154(5):669–79. Available from: https://doi.org/10.4103/ijmr.ijmr_1219_18 | eng |
dcterms.references | Wong JM, Adams LE, Durbin AP, Muñoz-Jordán JL, Poehling KA, SánchezGonzález LM, et al. Dengue: A Growing Problem With New Interventions. Pediatrics [Internet]. 2022 Jun 1;149(6). Available from: https://doi.org/10.1542/peds.2021-055522 | eng |
dcterms.references | Lambrechts L, Scott TW, Gubler DJ. Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. Halstead SB, editor. PLoS Negl Trop Dis [Internet]. 2010 May 25;4(5):e646. Available from: http://dx.doi.org/10.1371/journal.pntd.0000646 | eng |
dcterms.references | Pan American Health Organization. Severe Dengue cases and deaths [Internet]. Pan American Health Organization. United States of America; 2025 [cited 2025 May 10]. Available from: https://www3.paho.org/data/index.php/en/mnu-topics/indicadores-dengueen/dengue-nacional-en/257-dengue-casos-muertes-pais-ano-en.html | eng |
dcterms.references | Gutierrez-Barbosa H, Medina-Moreno S, Zapata JC, Chua J V. Dengue Infections in Colombia: Epidemiological Trends of a Hyperendemic Country. Trop Med Infect Dis [Internet]. 2020 Oct 3;5(4):156. Available from: https://doi.org/10.3390/tropicalmed5040156 | eng |
dcterms.references | Instituto Nacional de Salud (INS). Dengue PE III 2025 [Internet]. Bogota; 2025. Available from: https://www.ins.gov.co/buscadoreventos/Informesdeevento/DENGUE PE III 2025.pdf | spa |
dcterms.references | Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review. Infect Genet Evol [Internet]. 2019 Jan;67:191–209. Available from: https://doi.org/10.1016/j.meegid.2018.11.009 | eng |
dcterms.references | Ahebwa A, Hii J, Neoh K-B, Chareonviriyaphap T. Aedes aegypti and Aedes albopictus (Diptera: Culicidae) ecology, biology, behaviour, and implications on arbovirus transmission in Thailand: Review. One Heal [Internet]. 2023 Jun;16:100555. Available from: https://doi.org/10.1016/j.onehlt.2023.100555 | eng |
dcterms.references | Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors [Internet]. 2022 Aug 9;15(1):287. Available from: https://doi.org/10.1186/s13071-022-05401-9 | eng |
dcterms.references | Ritchie SA. Dengue vector bionomics: why Aedes aegypti is such a good vector. In: Dengue and dengue hemorrhagic fever [Internet]. UK: CABI; 2014. p. 455–80. Available from: https://doi.org/10.1079/9781845939649.0455 | eng |
dcterms.references | Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. Han BA, editor. PLoS Negl Trop Dis [Internet]. 2019 Mar 28;13(3):e0007213. Available from: https://doi.org/10.1371/journal.pntd.0007213 | eng |
dcterms.references | Calle-Tobón A, Pérez-Pérez J, Forero-Pineda N, Chávez OT, Rojas-Montoya W, Rúa-Uribe G, et al. Local-scale virome depiction in Medellín, Colombia, supports significant differences between Aedes aegypti and Aedes albopictus. Moreira LA, editor. PLoS One [Internet]. 2022 Jul 27;17(7):e0263143. Available from: https://doi.org/10.1371/journal.pone.0263143 | eng |
dcterms.references | Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H, et al. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog Dis [Internet]. 2021 Sep 6;79(7). Available from: https://doi.org/10.1093/femspd/ftab043 | eng |
dcterms.references | Dias ÍKR, Martins RMG, Sobreira CL da S, Rocha RMGS, Lopes M do SV. Ações educativas de enfrentamento ao Aedes Aegypti: revisão integrativa. Cien Saude Colet [Internet]. 2022 Jan;27(1):231–42. Available from: https://doi.org/10.1590/1413-81232022271.33312020 | ptg |
dcterms.references | Lloyd LS, Winch P, Ortega-Canto J, Kendall C. The Design of a CommunityBased Health Education Intervention for the Control of Aedes aegypti. Am J Trop Med Hyg [Internet]. 1994 Apr;50(4):401–11. Available from: https://doi.org/10.4269/ajtmh.1994.50.401 | eng |
dcterms.references | Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, et al. Globe-Trotting Aedes aegypti and Aedes albopictus : Risk Factors for Arbovirus Pandemics. Vector-Borne Zoonotic Dis [Internet]. 2020 Feb 1;20(2):71–81. Available from: https://doi.org/10.1089/vbz.2019.2486 | eng |
dcterms.references | Talbot B, Sander B, Cevallos V, González C, Benítez D, Carissimo C, et al. Determinants of Aedes mosquito density as an indicator of arbovirus transmission risk in three sites affected by co-circulation of globally spreading arboviruses in Colombia, Ecuador and Argentina. Parasit Vectors [Internet]. 2021 Dec 19;14(1):482. Available from: https://doi.org/10.1186/s13071-021- 04984-z | eng |
dcterms.references | Westaway EG, Brinton MA, Gaidamovich Y, Horzinek MC, Igarashi A, Kääriäinen L, et al. Flaviviridae. Intervirology [Internet]. 1985;24(4):183–92. Available from: https://doi.org/10.1159/000149642 | eng |
dcterms.references | Grubaugh ND, Torres-Hernández D, Murillo-Ortiz MA, Dávalos DM, Lopez P, Hurtado IC, et al. Dengue Outbreak Caused by Multiple Virus Serotypes and Lineages, Colombia, 2023–2024. Emerg Infect Dis [Internet]. 2024 Nov;30(11). Available from: https://doi.org/10.3201/eid3011.241031 | eng |
dcterms.references | Zhang Z, Rong L, Li Y-P. Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. Oxid Med Cell Longev [Internet]. 2019 Aug 19;2019:1–17. Available from: https://doi.org/10.1155/2019/1409582 | eng |
dcterms.references | Gokhale NS, McIntyre ABR, Mattocks MD, Holley CL, Lazear HM, Mason CE, et al. Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection. Mol Cell [Internet]. 2020 Feb;77(3):542–555.e8. Available from: https://doi.org/10.1016/j.molcel.2019.11.007 | eng |
dcterms.references | Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses [Internet]. 2022 Aug 18;14(8):1808. Available from: https://doi.org/10.3390/v14081808 | eng |
dcterms.references | Campbell O, Monje-Galvan V. Protein-driven membrane remodeling: Molecular perspectives from Flaviviridae infections. Biophys J [Internet]. 2023 Jun;122(11):1890–9. Available from: https://doi.org/10.1016/j.bpj.2022.11.015 | eng |
dcterms.references | Chen S, Wu Z, Wang M, Cheng A. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins. Viruses [Internet]. 2017 Oct 7;9(10):291. Available from: https://doi.org/10.3390/v9100291 | eng |
dcterms.references | Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH. Dengue virus infection – a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res [Internet]. 2023 Jan;324:199018. Available from: https://doi.org/10.1016/j.virusres.2022.199018 | eng |
dcterms.references | Rathore APS, Mantri CK, Tan MW, Shirazi R, Nishida A, Aman SAB, et al. Immunological and Pathological Landscape of Dengue Serotypes 1-4 Infections in Immune-Competent Mice. Front Immunol [Internet]. 2021 Jun 8;12. Available from: https://doi.org/10.3389/fimmu.2021.681950 | eng |
dcterms.references | Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses [Internet]. 2020 Jul 30;12(8):829. Available from: https://doi.org/10.3390/v12080829 | eng |
dcterms.references | Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, et al. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiol Infect [Internet]. 2023 Jun 9;151:e127. Available from: https://doi.org/10.1017/s0950268823000924 | eng |
dcterms.references | Afreen N, Naqvi IH, Broor S, Ahmed A, Parveen S. Phylogenetic and Molecular Clock Analysis of Dengue Serotype 1 and 3 from New Delhi, India. Ansari AA, editor. PLoS One [Internet]. 2015 Nov 4;10(11):e0141628. Available from: https://doi.org/10.1371/journal.pone.0141628 | eng |
dcterms.references | Hill V, Cleemput S, Fonseca V, Tegally H, Brito AF, Gifford R, et al. A new lineage nomenclature to aid genomic surveillance of dengue virus [Internet]. 2024. Available from: https://doi.org/10.1101/2024.05.16.24307504 | eng |
dcterms.references | Hafsia S, Barbar T, Wilkinson DA, Atyame C, Biscornet L, Bibi J, et al. Genetic characterization of dengue virus serotype 1 circulating in Reunion Island, 2019–2021, and the Seychelles, 2015–2016. BMC Infect Dis [Internet]. 2023 May 5;23(1):294. Available from: https://doi.org/10.1186/s12879-023-08125-y | eng |
dcterms.references | Nyathi S, Rezende IM, Walter KS, Thongsripong P, Mutuku F, Ndenga B, et al. Molecular epidemiology and evolutionary characteristics of dengue virus 2 in East Africa. Nat Commun [Internet]. 2024 Sep 7;15(1):7832. Available from: https://doi.org/10.1038/s41467-024-51018-0 | eng |
dcterms.references | Delli Ponti R, Mutwil M. Structural landscape of the complete genomes of dengue virus serotypes and other viral hemorrhagic fevers. BMC Genomics [Internet]. 2021 Dec 17;22(1):352. Available from: https://doi.org/10.1186/s12864-021-07638-7 | eng |
dcterms.references | Elong Ngono A, Shresta S. Cross-Reactive T Cell Immunity to Dengue and Zika Viruses: New Insights Into Vaccine Development. Front Immunol [Internet]. 2019 Jun 11;10. Available from: https://doi.org/10.3389/fimmu.2019.01316 | eng |
dcterms.references | Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol [Internet]. 2009 Jul;9(4):523– 40. Available from: https://doi.org/10.1016/j.meegid.2009.02.003 | eng |
dcterms.references | Carrillo-Hernandez MY, Ruiz-Saenz J, Jaimes-Villamizar L, Robledo-Restrepo SM, Martinez-Gutierrez M. Phylogenetic and evolutionary analysis of dengue virus serotypes circulating at the Colombian–Venezuelan border during 2015– 2016 and 2018–2019. Zhang C, editor. PLoS One [Internet]. 2021 May 28;16(5):e0252379. Available from: https://doi.org/10.1371/journal.pone.0252379 | eng |
dcterms.references | Walimbe AM, Lotankar M, Cecilia D, Cherian SS. Global phylogeography of Dengue type 1 and 2 viruses reveals the role of India. Infect Genet Evol [Internet]. 2014 Mar;22:30–9. Available from: https://doi.org/10.1016/j.meegid.2014.01.001 | eng |
dcterms.references | Pardo Martínez D, Ojeda Martínez B, Alonso Remedios A. Dinámica de la respuesta inmune en la infección por virus del dengue. Medisur [Internet]. 2018;16(1):76–84. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727- 897X2018000100011 | spa |
dcterms.references | Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol [Internet]. 2022 Sep 16;12. Available from: https://doi.org/10.3389/fcimb.2022.1004608 | eng |
dcterms.references | Cerpas C, Vásquez G, Moreira H, Juarez JG, Coloma J, Harris E, et al. Introduction of New Dengue Virus Lineages after COVID-19 Pandemic, Nicaragua, 2022. Emerg Infect Dis [Internet]. 2024 Jun;30(6). Available from: https://doi.org/10.3201/eid3006.231553 | eng |
dcterms.references | Li L, Guo X, Zhang X, Zhao L, Li L, Wang Y, et al. A unified global genotyping framework of dengue virus serotype-1 for a stratified coordinated surveillance strategy of dengue epidemics. Infect Dis Poverty [Internet]. 2022 Oct 13;11(1):107. Available from: https://doi.org/10.1186/s40249-022-01024-5 | eng |
dcterms.references | Halstead SB. Dengue Antibody-Dependent Enhancement: Knowns and Unknowns. Crowe Jr. JE, Boraschi D, Rappuoli R, editors. Microbiol Spectr [Internet]. 2014 Nov 21;2(6). Available from: https://doi.org/10.1128/microbiolspec.aid-0022-2014 | eng |
dcterms.references | Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, et al. Antibody-dependent enhancement of severe dengue disease in humans. Science (80- ) [Internet]. 2017 Nov 17;358(6365):929–32. Available from: https://doi.org/10.1126/science.aan6836 | eng |
dcterms.references | Martina BEE, Koraka P, Osterhaus ADME. Dengue Virus Pathogenesis: an Integrated View. Clin Microbiol Rev [Internet]. 2009 Oct;22(4):564–81. Available from: https://doi.org/10.1128/CMR.00035-09 | eng |
dcterms.references | Pang X, Zhang R, Cheng G. Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virol Sin [Internet]. 2017 Feb 14;32(1):16–22. Available from: https://doi.org/10.1007/s12250-016-3855-9 | eng |
dcterms.references | Lin C-F, Wan S-W, Cheng H-J, Lei H-Y, Lin Y-S. Autoimmune Pathogenesis in Dengue Virus Infection. Viral Immunol [Internet]. 2006 Jun;19(2):127–32. Available from: https://doi.org/10.1089/vim.2006.19.127 | eng |
dcterms.references | Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Prim [Internet]. 2016 Aug 18;2(1):16055. Available from: https://doi.org/10.1038/nrdp.2016.55 | eng |
dcterms.references | Kwan W-H, Helt A-M, Marañón C, Barbaroux J-B, Hosmalin A, Harris E, et al. Dendritic Cell Precursors Are Permissive to Dengue Virus and Human Immunodeficiency Virus Infection. J Virol [Internet]. 2005 Jun 15;79(12):7291– 9. Available from: https://doi.org/10.1128/jvi.79.12.7291-7299.2005 | eng |
dcterms.references | Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr Opin Infect Dis [Internet]. 2006 Oct;19(5):429–36. Available from: https://doi.org/10.1097/01.qco.0000244047.31135.fa | eng |
dcterms.references | Diamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell [Internet]. 2015 Jul;162(3):488– 92. Available from: https://doi.org/10.1016/j.cell.2015.07.005 | eng |
dcterms.references | Fink J, Gu F, Vasudevan SG. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol [Internet]. 2006 Jul;16(4):263–75. Available from: https://doi.org/10.1002/rmv.507 | eng |
dcterms.references | Parveen S, Riaz Z, Saeed S, Ishaque U, Sultana M, Faiz Z, et al. Dengue hemorrhagic fever: a growing global menace. J Water Health [Internet]. 2023 Nov 1;21(11):1632–50. Available from: https://doi.org/10.2166/wh.2023.114 | eng |
dcterms.references | Alonso-Palomares LA, Moreno-García M, Lanz-Mendoza H, Salazar MI. Molecular Basis for Arbovirus Transmission by Aedes aegypti Mosquitoes. Intervirology [Internet]. 2018;61(6):255–64. Available from: https://doi.org/10.1159/000499128 | eng |
dcterms.references | Baidaliuk A, Miot EF, Lequime S, Moltini-Conclois I, Delaigue F, Dabo S, et al. Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes In Vivo. Pfeiffer JK, editor. J Virol [Internet]. 2019 Sep 15;93(18). Available from: https://doi.org/10.1128/jvi.00705-19 | eng |
dcterms.references | St. John AL, Rathore APS. Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol [Internet]. 2019 Apr 24;19(4):218–30. Available from: https://doi.org/10.1038/s41577-019-0123-x | eng |
dcterms.references | Kou Z, Quinn M, Chen H, Rodrigo WWSI, Rose RC, Schlesinger JJ, et al. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol [Internet]. 2008 Jan 26;80(1):134–46. Available from: https://doi.org/10.1002/jmv.21051 | eng |
dcterms.references | Sinha S, Singh K, Ravi Kumar YS, Roy R, Phadnis S, Meena V, et al. Dengue virus pathogenesis and host molecular machineries. J Biomed Sci [Internet]. 2024 Apr 22;31(1):43. Available from: https://doi.org/10.1186/s12929-024- 01030-9 | eng |
dcterms.references | Kyle JL, Beatty PR, Harris E. Dengue Virus Infects Macrophages and Dendritic Cells in a Mouse Model of Infection. J Infect Dis [Internet]. 2007 Jun 15;195(12):1808–17. Available from: https://doi.org/10.1086/518007 | eng |
dcterms.references | Muller DA, Young PR. The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res [Internet]. 2013 May;98(2):192–208. Available from: https://doi.org/10.1016/j.antiviral.2013.03.008 | eng |
dcterms.references | Dwivedi VD, Tripathi IP, Tripathi RC, Bharadwaj S, Mishra SK. Genomics, proteomics and evolution of dengue virus. Brief Funct Genomics [Internet]. 2017 Jan 10;elw040. Available from: https://doi.org/10.1093/bfgp/elw040 | eng |
dcterms.references | Yacoub S, Mongkolsapaya J, Screaton G. The pathogenesis of dengue. Curr Opin Infect Dis [Internet]. 2013 Jun;26(3):284–9. Available from: https://doi.org/10.1097/qco.0b013e32835fb938 | eng |
dcterms.references | Wang X, Xia H, Liu S, Cao L, You F. Epigenetic regulation in antiviral innate immunity. Eur J Immunol [Internet]. 2021 Jul 27;51(7):1641–51. Available from: https://doi.org/10.1002/eji.202048975 | eng |
dcterms.references | Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol [Internet]. 2011 Aug 15;11(8):532– 43. Available from: https://doi.org/10.1038/nri3014 | eng |
dcterms.references | Krishnamurti C, Alving B. Effect of Dengue Virus on Procoagulant and Fibrinolytic Activities of Monocytes. Clin Infect Dis [Internet]. 1989 May 1;11(Supplement_4):S843–6. Available from: https://doi.org/10.1093/clinids/11.Supplement_4.S843 | eng |
dcterms.references | Calderón-Peláez M-A, Coronel-Ruiz C, Castellanos JE, Velandia-Romero ML. Endothelial Dysfunction, HMGB1, and Dengue: An Enigma to Solve. Viruses [Internet]. 2022 Aug 12;14(8):1765. Available from: https://doi.org/10.3390/v14081765 | eng |
dcterms.references | McBride A, Duyen HT Le, Vuong NL, Tho PV, Tai LTH, Phong NT, et al. Endothelial and inflammatory pathophysiology in dengue shock: New insights from a prospective cohort study in Vietnam. Limonta D, editor. PLoS Negl Trop Dis [Internet]. 2024 Mar 27;18(3):e0012071. Available from: https://doi.org/10.1371/journal.pntd.0012071 | eng |
dcterms.references | Chia PY. Endothelial damage and cardiac dysfunction in the pathophysiology of severe dengue in adults [Internet]. Nanyang Technological University; 2022. Available from: https://doi.org/10.32657/10356/166502 | eng |
dcterms.references | Cabezas S, Bracho G, Aloia AL, Adamson PJ, Bonder CS, Smith JR, et al. Dengue Virus Induces Increased Activity of the Complement Alternative Pathway in Infected Cells. Diamond MS, editor. J Virol [Internet]. 2018 Jul 15;92(14). Available from: https://doi.org/10.1128/jvi.00633-18 | eng |
dcterms.references | Yeh T-M, Liu S-H, Lin K-C, Kuo C, Kuo S-Y, Huang T-Y, et al. Dengue Virus Enhances Thrombomodulin and ICAM-1 Expression through the Macrophage Migration Inhibitory Factor Induction of the MAPK and PI3K Signaling Pathways. Zissel G, editor. PLoS One [Internet]. 2013 Jan 28;8(1):e55018. Available from: https://doi.org/10.1371/journal.pone.0055018 | eng |
dcterms.references | Cipitelli M da C, Amâncio Paiva I, Badolato-Corrêa J, De-Oliveira-Pinto LM. Influence of chemokines on the endothelial permeability and cellular transmigration during dengue. Immunol Lett [Internet]. 2019 Aug;212:88–97. Available from: https://doi.org/10.1016/j.imlet.2019.06.001 | eng |
dcterms.references | Costa VV, Ye W, Chen Q, Teixeira MM, Preiser P, Ooi EE, et al. Dengue VirusInfected Dendritic Cells, but Not Monocytes, Activate Natural Killer Cells through a Contact-Dependent Mechanism Involving Adhesion Molecules. Palese P, editor. MBio [Internet]. 2017 Sep 6;8(4). Available from: https://doi.org/10.1128/mbio.00741-17 | eng |
dcterms.references | Carr JM, Cabezas‐Falcon S, Dubowsky JG, Hulme‐Jones J, Gordon DL. Dengue virus and the complement alternative pathway. FEBS Lett [Internet]. 2020 Aug 24;594(16):2543–55. Available from: https://doi.org/10.1002/1873- 3468.13730 | eng |
dcterms.references | Meri S. Complement activation in diseases presenting with thrombotic microangiopathy. Eur J Intern Med [Internet]. 2013 Sep;24(6):496–502. Available from: https://doi.org/10.1016/j.ejim.2013.05.009 | eng |
dcterms.references | Buijsers B, Garishah FM, Riswari SF, van Ast RM, Pramudo SG, Tunjungputri RN, et al. Increased Plasma Heparanase Activity and Endothelial Glycocalyx Degradation in Dengue Patients Is Associated With Plasma Leakage. Front Immunol [Internet]. 2021 Dec 20;12. Available from: https://doi.org/10.3389/fimmu.2021.759570 | eng |
dcterms.references | Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol [Internet]. 2018 Jan 22;222(1). Available from: https://doi.org/10.1111/apha.12860 | eng |
dcterms.references | Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Cell Mol Physiol [Internet]. 2014 Dec 15;307(12):L924– 35. Available from: https://doi.org/10.1152/ajplung.00318.2014 | eng |
dcterms.references | Nguyen-Pouplin J, Pouplin T, Van TP, Dinh The T, Thi DN, Farrar J, et al. Dextran Fractional Clearance Studies in Acute Dengue Infection. Harris E, editor. PLoS Negl Trop Dis [Internet]. 2011 Aug 23;5(8):e1282. Available from: https://doi.org/10.1371/journal.pntd.0001282 | eng |
dcterms.references | Cui H, Tan Y, Österholm C, Zhang X, Hedin U, Vlodavsky I, et al. Heparanase expression upregulates platelet adhesion activity and thrombogenicity. Oncotarget [Internet]. 2016 Jun 28;7(26):39486–96. Available from: https://doi.org/10.18632/oncotarget.8960 | eng |
dcterms.references | Limonta D, Capó V, Torres G, Pérez AB, Guzmán MG. Apoptosis in tissues from fatal dengue shock syndrome. J Clin Virol [Internet]. 2007 Sep;40(1):50– 4. Available from: https://doi.org/10.1016/j.jcv.2007.04.024 | eng |
dcterms.references | Vervaeke P, Vermeire K, Liekens S. Endothelial dysfunction in dengue virus pathology. Rev Med Virol [Internet]. 2015 Jan;25(1):50–67. Available from: https://doi.org/10.1002/rmv.1818 | eng |
dcterms.references | Priya SP, Sakinah S, Ling MP, Chee H-Y, Higuchi A, Hamat RA, et al. Microanatomical changes in major blood vessel caused by dengue virus (serotype 2) infection. Acta Trop [Internet]. 2017 Jul;171:213–9. Available from: https://doi.org/10.1016/j.actatropica.2017.04.010 | eng |
dcterms.references | Tatour M, Shapira M, Axelman E, Ghanem S, Keren-Politansky A, Bonstein L, et al. Thrombin is a selective inducer of heparanase release from platelets and granulocytes via protease-activated receptor-1. Thromb Haemost [Internet]. 2017 Nov 28;117(7):1391–401. Available from: https://doi.org/10.1160/TH16- 10-0766 | eng |
dcterms.references | Rathakrishnan A, Wang SM, Hu Y, Khan AM, Ponnampalavanar S, Lum LCS, et al. Cytokine Expression Profile of Dengue Patients at Different Phases of Illness. Kallas EG, editor. PLoS One [Internet]. 2012 Dec 20;7(12):e52215. Available from: https://doi.org/10.1371/journal.pone.0052215 | eng |
dcterms.references | Paes MV, Pinhão AT, Barreto DF, Costa SM, Oliveira MP, Nogueira AC, et al. Liver injury and viremia in mice infected with dengue-2 virus. Virology [Internet]. 2005 Aug;338(2):236–46. Available from: https://doi.org/10.1016/j.virol.2005.04.042 | eng |
dcterms.references | Chia PY, Thein T-L, Ong SWX, Lye DC, Leo YS. Severe dengue and liver involvement: an overview and review of the literature. Expert Rev Anti Infect Ther [Internet]. 2020 Mar 3;18(3):181–9. Available from: https://doi.org/10.1080/14787210.2020.1720652 | eng |
dcterms.references | Dissanayake HA, Seneviratne SL. Liver involvement in dengue viral infections. Rev Med Virol [Internet]. 2018 Mar 21;28(2). Available from: https://doi.org/10.1002/rmv.1971 | eng |
dcterms.references | Samanta J. Dengue and its effects on liver. World J Clin Cases [Internet]. 2015;3(2):125. Available from: https://doi.org/10.12998/wjcc.v3.i2.125 | eng |
dcterms.references | Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med [Internet]. 2024 May;30(5):484–98. Available from: https://doi.org/10.1016/j.molmed.2024.03.006 | eng |
dcterms.references | Gibbons R V. Dengue: an escalating problem. BMJ [Internet]. 2002 Jun 29;324(7353):1563–6. Available from: https://doi.org/10.1136/bmj.324.7353.1563 | eng |
dcterms.references | González D, Castro OE, Kourí G, Perez J, Martinez E, Vazquez S, et al. Classical dengue hemorrhagic fever resulting from two dengue infections spaced 20 years or more apart: Havana, Dengue 3 epidemic, 2001–2002. Int J Infect Dis [Internet]. 2005 Sep;9(5):280–5. Available from: https://doi.org/10.1016/j.ijid.2004.07.012 | eng |
dcterms.references | Kularatne SAM. Dengue fever. BMJ [Internet]. 2015 Sep 15;h4661. Available from: https://doi.org/10.1136/bmj.h4661 | eng |
dcterms.references | Halstead SB. Dengue. Lancet [Internet]. 2007 Nov;370(9599):1644–52. Available from: https://doi.org/10.1016/s0140-6736(07)61687-0 | eng |
dcterms.references | Lopes da Fonseca BA, Fonseca SNS. Dengue virus infections. Curr Opin Pediatr [Internet]. 2002 Feb;14(1):67–71. Available from: https://doi.org/10.1097/00008480-200202000-00012 | eng |
dcterms.references | Guzmán MG, Kouri G. Dengue: an update. Lancet Infect Dis [Internet]. 2002 Jan;2(1):33–42. Available from: https://doi.org/10.1016/s1473- 3099(01)00171-2 | eng |
dcterms.references | Sahassananda D, Thanachartwet V, Chonsawat P, Wongphan B, Chamnanchanunt S, Surabotsophon M, et al. Evaluation of Hematocrit in Adults with Dengue by a Laboratory Information System. Vatandoost H, editor. J Trop Med [Internet]. 2021 Mar 27;2021:1–9. Available from: https://doi.org/10.1155/2021/8852031 | eng |
dcterms.references | Haq FU, Imran M, Aslam Z, Mukhtar F, Jabeen K, Chaudhry M, et al. Severity of Dengue Viral Infection Based on Clinical and Hematological Parameters among Pakistani Patients. Am J Trop Med Hyg [Internet]. 2023 Dec 6;109(6):1284–9. Available from: https://doi.org/10.4269/ajtmh.23-0309 | eng |
dcterms.references | Nedjadi T, El-Kafrawy S, Sohrab SS, Desprès P, Damanhouri G, Azhar E. Tackling dengue fever: Current status and challenges. Virol J [Internet]. 2015 Dec 9;12(1):212. Available from: https://doi.org/10.1186/s12985-015-0444-8 | eng |
dcterms.references | HAYES EB, GUBLER DJ. Dengue and dengue hemorrhagic fever. Pediatr Infect Dis J [Internet]. 1992 Apr;11(4):311–7. Available from: https://doi.org/10.1097/00006454-199204000-00010 | eng |
dcterms.references | Jiang Z, Tang X, Xiao R, Jiang L, Chen X. Dengue virus regulates the expression of hemostasis-related molecules in human vein endothelial cells. J Infect [Internet]. 2007 Aug;55(2):e23–8. Available from: https://doi.org/10.1016/j.jinf.2007.04.351 | eng |
dcterms.references | Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication [Internet]. 2024 Jul 1;16(3):32008. Available from: https://doi.org/10.1088/1758-5090/ad4c0b | eng |
dcterms.references | Huang Y, Lei H, Liu H, Lin Y, Chen S, Liu C, et al. Tissue plasminogen activator induced by dengue virus infection of human endothelial cells. J Med Virol [Internet]. 2003 Aug 2;70(4):610–6. Available from: https://doi.org/10.1002/jmv.10438 | eng |
dcterms.references | Kurane I. Dengue hemorrhagic fever with special emphasis on immunopathogenesis. Comp Immunol Microbiol Infect Dis [Internet]. 2007 Sep;30(5–6):329–40. Available from: https://doi.org/10.1016/j.cimid.2007.05.010 | eng |
dcterms.references | Roy Chaudhuri S, Bhattacharya S, Chakraborty M, Bhattacharjee K. Serum Ferritin: A Backstage Weapon in Diagnosis of Dengue Fever. Interdiscip Perspect Infect Dis [Internet]. 2017;2017:1–6. Available from: https://doi.org/10.1155/2017/7463489 | eng |
dcterms.references | Channapatna Suresh S, Hanumanthaiha R, Ramakrishna C, Sandeep R, Narasimhasetty PS, Ramakrihna V, et al. Serum Ferritin As a Prognostic Indicator in Adult Dengue Patients. Am J Trop Med Hyg [Internet]. 2020 Dec 28; Available from: https://doi.org/10.4269/ajtmh.20-1111 | eng |
dcterms.references | Syed Abas SS, Abdul Karim N, Periyasamy P, Yusof N, Shah SA, Leong TT, et al. Correlation of Dengue Warning Signs during Febrile Phase with Rotational Thromboelastometry, Cortisol and Feritin. Int J Environ Res Public Health [Internet]. 2022 Jan 12;19(2):807. Available from: https://doi.org/10.3390/ijerph19020807 | eng |
dcterms.references | Lodha A, Pillai A, Reddy P, Munshi N. Using first-contact serum ferritin to predict severe thrombocytopenia in dengue patients: determination and validation in independent cohorts. Infect Dis (Auckl) [Internet]. 2022 Jun 3;54(6):425–30. Available from: https://doi.org/10.1080/23744235.2022.2032823 | eng |
dcterms.references | van de Weg CAM, Huits RMHG, Pannuti CS, Brouns RM, van den Berg RWA, van den Ham H-J, et al. Hyperferritinaemia in Dengue Virus Infected Patients Is Associated with Immune Activation and Coagulation Disturbances. Marques ETA, editor. PLoS Negl Trop Dis [Internet]. 2014 Oct 9;8(10):e3214. Available from: https://doi.org/10.1371/journal.pntd.0003214 | eng |
dcterms.references | Soundravally R, Agieshkumar B, Daisy M, Sherin J, Cleetus CC. Ferritin levels predict severe dengue. Infection [Internet]. 2015 Feb;43(1):13–9. Available from: https://doi.org/10.1007/s15010-014-0683-4 | eng |
dcterms.references | Imad HA, Phumratanaprapin W, Phonrat B, Chotivanich K, Charunwatthana P, Muangnoicharoen S, et al. Cytokine Expression in Dengue Fever and Dengue Hemorrhagic Fever Patients with Bleeding and Severe Hepatitis. Am J Trop Med Hyg [Internet]. 2020 May 6;102(5):943–50. Available from: https://doi.org/10.4269/ajtmh.19-0487 | eng |
dcterms.references | Huang YH, Lei HY, Liu HS, Lin YS, Liu CC, Yeh TM. Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg [Internet]. 2000 Jul;63(1):71–5. Available from: https://doi.org/10.4269/ajtmh.2000.63.71 | eng |
dcterms.references | Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and Innate Immune Responses in Dengue Infection. Am J Pathol [Internet]. 2013 Jun;182(6):1950–61. Available from: https://doi.org/10.1016/j.ajpath.2013.02.027 | eng |
dcterms.references | Navarro-Sánchez E, Desprès P, Cedillo-Barrón L. Innate Immune Responses to Dengue Virus. Arch Med Res [Internet]. 2005 Sep;36(5):425–35. Available from: https://doi.org/10.1016/j.arcmed.2005.04.007 | eng |
dcterms.references | Sivasubramanian S, Mohandas S, Gopalan V, Vimal Raj V, Govindan K, Varadarajan P, et al. The utility of inflammatory and endothelial factors in the prognosis of severe dengue. Immunobiology [Internet]. 2022 Nov;227(6):152289. Available from: https://doi.org/10.1016/j.imbio.2022.152289 | eng |
dcterms.references | Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral Res [Internet]. 2014 Sep;109:160–70. Available from: https://doi.org/10.1016/j.antiviral.2014.07.005 | eng |
dcterms.references | Chaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol [Internet]. 2000 Jul;28(3):183–8. Available from: https://doi.org/10.1111/j.1574-695x.2000.tb01474.x | eng |
dcterms.references | Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke R V., et al. Increased Production of Interleukin-8 in Primary Human Monocytes and in Human Epithelial and Endothelial Cell Lines after Dengue Virus Challenge. J Virol [Internet]. 2002 Jun;76(11):5588–97. Available from: https://doi.org/10.1128/jvi.76.11.5588-5597.2002 | eng |
dcterms.references | Tian Y, Seumois G, De-Oliveira-Pinto LM, Mateus J, Herrera-de la Mata S, Kim C, et al. Molecular Signatures of Dengue Virus-Specific IL-10/IFN-γ Coproducing CD4 T Cells and Their Association with Dengue Disease. Cell Rep [Internet]. 2019 Dec;29(13):4482–4495.e4. Available from: https://doi.org/10.1016/j.celrep.2019.11.098 | eng |
dcterms.references | Vijay J, Anuradha N, Anbalagan VP. Clinical Presentation and Platelet Profile of Dengue Fever: A Retrospective Study. Cureus [Internet]. 2022 Aug 31; Available from: https://doi.org/10.7759/cureus.28626 | eng |
dcterms.references | Chuansumrit A, Chaiyaratana W. Hemostatic derangement in dengue hemorrhagic fever. Thromb Res [Internet]. 2014 Jan;133(1):10–6. Available from: https://doi.org/10.1016/j.thromres.2013.09.028 | eng |
dcterms.references | Hassan J, Borhany M, Abid M, Zaidi U, Fatima N, Shamsi T. Coagulation abnormalities in dengue and dengue haemorrhagic fever patients. Transfus Med [Internet]. 2020 Feb 19;30(1):46–50. Available from: https://doi.org/10.1111/tme.12658 | eng |
dcterms.references | Quirino-Teixeira AC, Andrade FB, Pinheiro MBM, Rozini SV, Hottz ED. Platelets in dengue infection: more than a numbers game. Platelets [Internet]. 2022 Feb 17;33(2):176–83. Available from: https://doi.org/10.1080/09537104.2021.1921722 | eng |
dcterms.references | McBride A, Chanh HQ, Fraser JF, Yacoub S, Obonyo NG. Microvascular dysfunction in septic and dengue shock: Pathophysiology and implications for clinical management. Glob Cardiol Sci Pract [Internet]. 2020 Dec 6;2020(2). Available from: https://doi.org/10.21542/gcsp.2020.29 | eng |
dcterms.references | Huy NT, Van Giang T, Thuy DHD, Kikuchi M, Hien TT, Zamora J, et al. Factors Associated with Dengue Shock Syndrome: A Systematic Review and MetaAnalysis. Halstead SB, editor. PLoS Negl Trop Dis [Internet]. 2013 Sep 26;7(9):e2412. Available from: https://doi.org/10.1371/journal.pntd.0002412 | eng |
dcterms.references | Srichaikul T, Nimmannitya S. Haematology in dengue and dengue haemorrhagic fever. Best Pract Res Clin Haematol [Internet]. 2000 Jun;13(2):261–76. Available from: https://doi.org/10.1053/beha.2000.0073 | eng |
dcterms.references | Azeredo EL de, Monteiro RQ, de-Oliveira Pinto LM. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Yeh T-M, editor. Mediators Inflamm [Internet]. 2015 Jan 27;2015(1). Available from: https://doi.org/10.1155/2015/313842 | eng |
dcterms.references | Srikiatkhachorn A, Green S. Markers of Dengue Disease Severity. In 2010. p. 67–82. Available from: http://dx.doi.org/10.1007/978-3-642-02215-9_6 | eng |
dcterms.references | Weiskopf D, Sette A. T-Cell Immunity to Infection with Dengue Virus in Humans. Front Immunol [Internet]. 2014 Mar 7;5. Available from: https://doi.org/10.3389/fimmu.2014.00093 | eng |
dcterms.references | Huang Y-H, Liu C-C, Wang S-T, Lei H-Y, Liu H-S, Lin Y-S, et al. Activation of coagulation and fibrinolysis during dengue virus infection. J Med Virol [Internet]. 2001 Mar;63(3):247–51. Available from: https://doi.org/10.1002/1096-9071(200103)63:3%3C247::aidjmv1008%3E3.0.co;2-f | eng |
dcterms.references | Azin FRFG, Gonçalves RP, Pitombeira MH da S, Lima DM, Branco IC. Dengue. Rev Bras Hematol Hemoter [Internet]. 2011;34(1):36–41. Available from: http://dx.doi.org/10.5581/1516-8484.20120012 | eng |
dcterms.references | Hottz ED, Oliveira MF, Nunes PCG, Nogueira RMR, Valls-de-Souza R, Da Poian AT, et al. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost [Internet]. 2013 May;11(5):951–62. Available from: https://doi.org/10.1111/jth.12178 | eng |
dcterms.references | Rondina MT, Weyrich AS, Zimmerman GA. Platelets as Cellular Effectors of Inflammation in Vascular Diseases. Circ Res [Internet]. 2013 May 24;112(11):1506–19. Available from: https://doi.org/10.1161/CIRCRESAHA.113.300512 | eng |
dcterms.references | Suwanmanee S, Luplertlop N. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis. Viral Immunol [Internet]. 2017 Jan;30(1):13–9. Available from: https://doi.org/10.1089/vim.2016.0092 | eng |
dcterms.references | Lei H-Y, Yeh T-M, Liu H-S, Lin Y-S, Chen S-H, Liu C-C. Immunopathogenesis of dengue virus infection. J Biomed Sci [Internet]. 2001 Sep;8(5):377–88. Available from: https://doi.org/10.1007/bf02255946 | eng |
dcterms.references | Wan S-W, Lin C-F, Yeh T-M, Liu C-C, Liu H-S, Wang S, et al. Autoimmunity in dengue pathogenesis. J Formos Med Assoc [Internet]. 2013 Jan;112(1):3– 11. Available from: https://doi.org/10.1016/j.jfma.2012.11.006 | eng |
dcterms.references | Sehrawat P, Biswas A, Kumar P, Singla P, Wig N, Dar L, et al. ROLE OF CYTOKINES AS MOLECULAR MARKER OF DENGUE SEVERITY. Mediterr J Hematol Infect Dis [Internet]. 2018 Apr 20;10(1):2018023. Available from: https://doi.org/10.4084/mjhid.2018.023 | eng |
dcterms.references | Iyer S, Sucila Thangam G. Pathophysiologic and prognostic role of proinflammatory and regulatory cytokines as a proinflammatory and regulatory cytokine in dengue fever. Indian J Med Microbiol [Internet]. 2022 Apr;40(2):235–8. Available from: https://doi.org/10.1016/j.ijmmb.2022.01.010 | eng |
dcterms.references | Wilder-Smith A, Ooi E-E, Horstick O, Wills B. Dengue. Lancet [Internet]. 2019 Jan;393(10169):350–63. Available from: https://doi.org/10.1016/s0140- 6736(18)32560-1 | eng |
dcterms.references | Horstick O, Tozan Y, Wilder-Smith A. Reviewing Dengue: Still a Neglected Tropical Disease? Clements ACA, editor. PLoS Negl Trop Dis [Internet]. 2015 Apr 30;9(4):e0003632. Available from: https://doi.org/10.1371/journal.pntd.0003632 | eng |
dcterms.references | Wilder-Smith A, Ooi E-E, Vasudevan SG, Gubler DJ. Update on Dengue: Epidemiology, Virus Evolution, Antiviral Drugs, and Vaccine Development. Curr Infect Dis Rep [Internet]. 2010 May 30;12(3):157–64. Available from: https://doi.org/10.1007/s11908-010-0102-7 | eng |
dcterms.references | Wilder-Smith A, Quam M, Sessions O, Rocklov J, Liu-Helmersson J, Franco L, et al. The 2012 dengue outbreak in Madeira: exploring the origins. Eurosurveillance [Internet]. 2014 Feb 27;19(8). Available from: https://doi.org/10.2807/1560-7917.es2014.19.8.20718 | eng |
dcterms.references | Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol [Internet]. 2010 Dec;8(S12):S7–16. Available from: https://doi.org/10.1038%2Fnrmicro2460 | eng |
dcterms.references | Srikiatkhachorn A, Rothman AL, Gibbons R V., Sittisombut N, Malasit P, Ennis FA, et al. Dengue--How Best to Classify It. Clin Infect Dis [Internet]. 2011 Sep 15;53(6):563–7. Available from: https://doi.org/10.1093/cid/cir451 | eng |
dcterms.references | Horstick O, Jaenisch T, Martinez E, Kroeger A, See LLC, Farrar J, et al. Comparing the Usefulness of the 1997 and 2009 WHO Dengue Case Classification: A Systematic Literature Review. Am Soc Trop Med Hyg [Internet]. 2014 Sep 3;91(3):621–34. Available from: https://doi.org/10.4269/ajtmh.13-0676 | eng |
dcterms.references | Hadinegoro SRS. The revised WHO dengue case classification: does the system need to be modified? Paediatr Int Child Health [Internet]. 2012 May 12;32(sup1):33–8. Available from: https://doi.org/10.1179/2046904712z.00000000052 | eng |
dcterms.references | B.A. Seixas J, Giovanni Luz K, Pinto Junior V. Atualização Clínica sobre Diagnóstico, Tratamento e Prevenção da Dengue. Acta Med Port [Internet]. 2024 Feb 1;37(2):126–35. Available from: https://doi.org/10.20344/amp.20569 | ptg |
dcterms.references | Yacoub S, Wills B. Predicting outcome from dengue. BMC Med [Internet]. 2014 Dec 4;12(1):147. Available from: https://doi.org/10.1186/s12916-014- 0147-9 | eng |
dcterms.references | Díaz FA, Martínez RA, Villar LA. Criterios clínicos para diagnosticar el dengue en los primeros días de enfermedad. Biomédica [Internet]. 2006 Mar 1;26(1):22. Available from: https://doi.org/10.7705/biomedica.v26i1.1391 | spa |
dcterms.references | Elong Ngono A, Shresta S. Immune Response to Dengue and Zika. Annu Rev Immunol [Internet]. 2018 Apr 26;36(1):279–308. Available from: https://doi.org/10.1146/annurev-immunol-042617-053142 | eng |
dcterms.references | Somkijrungroj T, Kongwattananon W. Ocular manifestations of dengue. Curr Opin Ophthalmol [Internet]. 2019 Nov;30(6):500–5. Available from: https://doi.org/10.1097/icu.0000000000000613 | eng |
dcterms.references | Thergarajan G, Sekaran SD. Diagnostic approaches for dengue infection. Expert Rev Mol Diagn [Internet]. 2023 Aug 3;23(8):643–51. Available from: https://doi.org/10.1080/14737159.2023.2234815 | eng |
dcterms.references | Muller DA, Depelsenaire ACI, Young PR. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis [Internet]. 2017 Mar 1;215(suppl_2):S89– 95. Available from: https://doi.org/10.1093/infdis/jiw649 | eng |
dcterms.references | Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem [Internet]. 2022 Mar 21;477(3):815–32. Available from: https://doi.org/10.1007/s11010-021-04326-8 | eng |
dcterms.references | Wong P-F, Wong L-P, AbuBakar S. Diagnosis of severe dengue: Challenges, needs and opportunities. J Infect Public Health [Internet]. 2020 Feb;13(2):193– 8. Available from: https://doi.org/10.1016/j.jiph.2019.07.012 | eng |
dcterms.references | Looi KW, Matsui Y, Kono M, Samudi C, Kojima N, Ong JX, et al. Evaluation of immature platelet fraction as a marker of dengue fever progression. Int J Infect Dis [Internet]. 2021 Sep;110:187–94. Available from: https://doi.org/10.1016/j.ijid.2021.07.048 | eng |
dcterms.references | Leowattana W, Leowattana T. Dengue hemorrhagic fever and the liver. World J Hepatol [Internet]. 2021 Dec 27;13(12):1968–76. Available from: https://doi.org/10.4254/wjh.v13.i12.1968 | eng |
dcterms.references | Wiwanitkit V. Dengue fever: diagnosis and treatment. Expert Rev Anti Infect Ther [Internet]. 2010 Jul 10;8(7):841–5. Available from: https://doi.org/10.1586/eri.10.53 | eng |
dcterms.references | Araiza-Garaygordobil D, García-Martínez CE, Burgos LM, Saldarriaga C, Liblik K, Mendoza I, et al. Dengue and the heart. Cardiovasc J Afr [Internet]. 2021 Oct 28;32(5):46–53. Available from: https://doi.org/10.5830/cvja-2021- 033 | eng |
dcterms.references | Shivanthan MC, Navinan MR, Constantine GR, Rajapakse S. Cardiac involvement in dengue infection. J Infect Dev Ctries [Internet]. 2015 Apr 15;9(4):338–46. Available from: https://doi.org/10.3855/jidc.6200 | eng |
dcterms.references | Nunes PCG, Lima MRQ, dos Santos FB. Molecular Diagnosis of Dengue. In 2022. p. 157–71. Available from: https://doi.org/10.1007/978-1-0716-1879- 0_11 | eng |
dcterms.references | Chawla P, Yadav A, Chawla V. Clinical implications and treatment of dengue. Asian Pac J Trop Med [Internet]. 2014 Mar;7(3):169–78. Available from: https://doi.org/10.1016/s1995-7645(14)60016-x | eng |
dcterms.references | Amâncio FF, Heringer TP, Oliveira C da CHB de, Fassy LB, Carvalho FB de, Oliveira DP, et al. Clinical Profiles and Factors Associated with Death in Adults with Dengue Admitted to Intensive Care Units, Minas Gerais, Brazil. Jin X, editor. PLoS One [Internet]. 2015 Jun 19;10(6):e0129046. Available from: https://doi.org/10.1371/journal.pone.0129046 | eng |
dcterms.references | Yacoub S, Griffiths A, Hong Chau TT, Simmons CP, Wills B, Hien TT, et al. Cardiac function in Vietnamese patients with different dengue severity grades*. Crit Care Med [Internet]. 2012 Feb;40(2):477–83. Available from: https://doi.org/10.1097/ccm.0b013e318232d966 | eng |
dcterms.references | Sangkaew S, Ming D, Boonyasiri A, Honeyford K, Kalayanarooj S, Yacoub S, et al. Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. Lancet Infect Dis [Internet]. 2021 Jul;21(7):1014–26. Available from: https://doi.org/10.1016/S1473- 3099(20)30601-0 | eng |
dcterms.references | Thein T-L, Lye DC, Leo Y-S, Wong JGX, Hao Y, Wilder-Smith A. Severe Neutropenia in Dengue Patients: Prevalence and Significance. Am Soc Trop Med Hyg [Internet]. 2014 Jun 4;90(6):984–7. Available from: https://doi.org/10.4269/ajtmh.14-0004 | eng |
dcterms.references | Chen C-M, Chan K-S, Yu W-L, Cheng K-C, Chao H-C, Yeh C-Y, et al. The outcomes of patients with severe dengue admitted to intensive care units. Medicine (Baltimore) [Internet]. 2016 Aug;95(31):e4376. Available from: https://doi.org/10.1097/MD.0000000000004376 | eng |
dcterms.references | Thach TQ, Eisa HG, Hmeda A Ben, Faraj H, Thuan TM, Abdelrahman MM, et al. Predictive markers for the early prognosis of dengue severity: A systematic review and meta-analysis. Caimano MJ, editor. PLoS Negl Trop Dis [Internet]. 2021 Oct 5;15(10):e0009808. Available from: https://doi.org/10.1371/journal.pntd.0009808 | eng |
dcterms.references | Srisuphanunt M, Puttaruk P, Kooltheat N, Katzenmeier G, Wilairatana P. Prognostic Indicators for the Early Prediction of Severe Dengue Infection: A Retrospective Study in a University Hospital in Thailand. Trop Med Infect Dis [Internet]. 2022 Jul 31;7(8):162. Available from: https://doi.org/10.3390/tropicalmed7080162 | eng |
dcterms.references | Thao LTT, Vinh NN, Hien TT, Trung DT, Simmons C, Hien PTD, et al. Liver Involvement Associated with Dengue Infection in Adults in Vietnam. Am J Trop Med Hyg [Internet]. 2010 Oct 5;83(4):774–80. Available from: https://doi.org/10.4269/ajtmh.2010.10-0090 | eng |
dcterms.references | Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res [Internet]. 2016;2016:1–14. Available from: https://doi.org/10.1155/2016/6803098 | eng |
dcterms.references | Wiemer D, Frickmann H, Krüger A. Dengue fieber. Der Hautarzt [Internet]. 2017 Dec 16;68(12):1011–20. Available from: https://doi.org/10.1007/s00105- 017-4073-6 | eng |
dcterms.references | Peeling RW, Artsob H, Pelegrino JL, Buchy P, Cardosa MJ, Devi S, et al. Evaluation of diagnostic tests: dengue. Nat Rev Microbiol [Internet]. 2010 Dec;8(S12):S30–7. Available from: https://doi.org/10.1038/nrmicro2459 | eng |
dcterms.references | Maeda A, Maeda J. Review of diagnostic plaque reduction neutralization tests for flavivirus infection. Vet J [Internet]. 2013 Jan;195(1):33–40. Available from: https://doi.org/10.1016/j.tvjl.2012.08.019 | eng |
dcterms.references | Perng G, Chokephaibulkit K. Immunologic hypo- or non-responder in natural dengue virus infection. J Biomed Sci [Internet]. 2013;20(1):34. Available from: https://doi.org/10.1186/1423-0127-20-34 | eng |
dcterms.references | Jelinek T, Mühlberger N, Harms G, Corachán M, Grobusch MP, Knobloch J, et al. Epidemiology and Clinical Features of Imported Dengue Fever in Europe: Sentinel Surveillance Data from TropNetEurop. Clin Infect Dis [Internet]. 2002 Nov;35(9):1047–52. Available from: https://doi.org/10.1086/342906 | eng |
dcterms.references | Singh RK, Tiwari A, Satone PD, Priya T, Meshram RJ. Updates in the Management of Dengue Shock Syndrome: A Comprehensive Review. Cureus [Internet]. 2023 Oct 9; Available from: https://doi.org/10.7759/cureus.46713 | eng |
dcterms.references | Witte P, Venturini S, Meyer H, Zeller A, Christ M. Dengue fever. Dtsch Arztebl Int [Internet]. 2024 Nov 15; Available from: https://doi.org/10.3238/arztebl.m2024.0175 | eng |
dcterms.references | Rathore AP, Farouk FS, St. John AL. Risk factors and biomarkers of severe dengue. Curr Opin Virol [Internet]. 2020 Aug;43:1–8. Available from: https://doi.org/10.1016/j.coviro.2020.06.008 | eng |
dcterms.references | Lee TH, Lee LK, Lye DC, Leo YS. Current management of severe dengue infection. Expert Rev Anti Infect Ther [Internet]. 2017 Jan 2;15(1):67–78. Available from: https://doi.org/10.1080/14787210.2017.1248405 | eng |
dcterms.references | Ahmad Z, Poh CL. The Conserved Molecular Determinants of Virulence in Dengue Virus. Int J Med Sci [Internet]. 2019;16(3):355–65. Available from: https://doi.org/10.7150/ijms.29938 | eng |
dcterms.references | Lam SK. Challenges in reducing dengue burden; diagnostics, control measures and vaccines. Expert Rev Vaccines [Internet]. 2013 Sep 9;12(9):995–1010. Available from: https://doi.org/10.1586/14760584.2013.824712 | eng |
dcterms.references | Tavakolipoor P, Schmidt-Chanasit J, Burchard GD, Jordan S. Clinical features and laboratory findings of dengue fever in German travellers: A single-centre, retrospective analysis. Travel Med Infect Dis [Internet]. 2016 Jan;14(1):39–44. Available from: https://doi.org/10.1016/j.tmaid.2016.01.007 | eng |
dcterms.references | Hunsperger EA, Sharp TM, Lalita P, Tikomaidraubuta K, Cardoso YR, Naivalu T, et al. Use of a Rapid Test for Diagnosis of Dengue during Suspected Dengue Outbreaks in Resource-Limited Regions. Tang Y-W, editor. J Clin Microbiol [Internet]. 2016 Aug;54(8):2090–5. Available from: https://doi.org/10.1128/JCM.00521-16 | eng |
dcterms.references | Fry SR, Meyer M, Semple MG, Simmons CP, Sekaran SD, Huang JX, et al. The Diagnostic Sensitivity of Dengue Rapid Test Assays Is Significantly Enhanced by Using a Combined Antigen and Antibody Testing Approach. Guzman MG, editor. PLoS Negl Trop Dis [Internet]. 2011 Jun 21;5(6):e1199. Available from: https://doi.org/10.1371/journal.pntd.0001199 | eng |
dcterms.references | Frazer JL, Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J Med Microbiol [Internet]. 2024 May 9;73(5). Available from: https://doi.org/10.1099/jmm.0.001833 | eng |
dcterms.references | Abd‐Jamil J, Azizan N, Che‐Mat‐Seri N, Yaacob C, Samsudin N, Mahfodz N, et al. Detection and confirmation of dengue pre‐ and postintroduction of dengue NS1‐antigen test at the University Malaya Medical Centre: An observational study. J Med Virol [Internet]. 2021 Aug 15;93(8):4714–9. Available from: https://doi.org/10.1002/jmv.26790 | eng |
dcterms.references | Whitehorn J, Farrar J. Dengue. Br Med Bull [Internet]. 2010 Sep 1;95(1):161– 73. Available from: https://doi.org/10.1093/bmb/ldq019 | eng |
dcterms.references | Teoh B-T, Sam S-S, Tan K-K, Johari J, Danlami MB, Hooi P-S, et al. Detection of dengue viruses using reverse transcription-loop-mediated isothermal amplification. BMC Infect Dis [Internet]. 2013 Dec 21;13(1):387. Available from: https://doi.org/10.1186/1471-2334-13-387 | eng |
dcterms.references | Tsai H-P, Tsai Y-Y, Lin I-T, Kuo P-H, Chang K-C, Chen J-C, et al. Validation and Application of a Commercial Quantitative Real-Time Reverse Transcriptase-PCR Assay in Investigation of a Large Dengue Virus Outbreak in Southern Taiwan. Harley D, editor. PLoS Negl Trop Dis [Internet]. 2016 Oct 12;10(10):e0005036. Available from: https://doi.org/10.1371/journal.pntd.0005036 | eng |
dcterms.references | Najioullah F, Viron F, Césaire R. Evaluation of four commercial real-time RTPCR kits for the detection of dengue viruses in clinical samples. Virol J [Internet]. 2014 Dec 15;11(1):164. Available from: https://doi.org/10.1186/1743-422x-11-164 | eng |
dcterms.references | Saengsawang J, Nathalang O, Kamonsil M, Watanaveeradej V. Comparison of Two Commercial Real-Time PCR Assays for Detection of Dengue Virus in Patient Serum Samples. Tang Y-W, editor. J Clin Microbiol [Internet]. 2014 Oct;52(10):3781–3. Available from: https://doi.org/10.1128/jcm.01870-14 | eng |
dcterms.references | Martinez JD, Garza JAC la, Cuellar-Barboza A. Going Viral 2019. Dermatol Clin [Internet]. 2019 Jan;37(1):95–105. Available from: https://doi.org/10.1016/j.det.2018.07.008 | eng |
dcterms.references | Mardekian SK, Roberts AL. Diagnostic Options and Challenges for Dengue and Chikungunya Viruses. Biomed Res Int [Internet]. 2015;2015:1–8. Available from: https://doi.org/10.1155/2015/834371 | eng |
dcterms.references | Simmons CP, McPherson K, Van Vinh Chau N, Hoai Tam DT, Young P, Mackenzie J, et al. Recent advances in dengue pathogenesis and clinical management. Vaccine [Internet]. 2015 Dec;33(50):7061–8. Available from: https://doi.org/10.1016/j.vaccine.2015.09.103 | eng |
dcterms.references | Tayal A, Kabra SK, Lodha R. Management of Dengue: An Updated Review. Indian J Pediatr [Internet]. 2023 Feb 27;90(2):168–77. Available from: https://doi.org/10.1007/s12098-022-04394-8 | eng |
dcterms.references | Dung NM, Day NPJ, Tam DTH, Loan HT, Chau HTT, Minh LN, et al. Fluid Replacement in Dengue Shock Syndrome: A Randomized, Double‐Blind Comparison of Four Intravenous‐Fluid Regimens. Clin Infect Dis [Internet]. 1999 Oct;29(4):787–94. Available from: https://doi.org/10.1086/520435 | eng |
dcterms.references | Jasamai M, Yap WB, Sakulpanich A, Jaleel A. Current prevention and potential treatment options for dengue infection. J Pharm Pharm Sci [Internet]. 2019 Sep 19;22:440–56. Available from: https://doi.org/10.18433/jpps30216 | eng |
dcterms.references | Yung C-F, Lee K-S, Thein T-L, Tan L-K, Gan VC, Wong JGX, et al. Dengue Serotype-Specific Differences in Clinical Manifestation, Laboratory Parameters and Risk of Severe Disease in Adults, Singapore. Am Soc Trop Med Hyg [Internet]. 2015 May 6;92(5):999–1005. Available from: https://doi.org/10.4269/ajtmh.14-0628 | eng |
dcterms.references | Ponlawat A, Harrington LC. Blood Feeding Patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol [Internet]. 2005 Sep 1;42(5):844–9. Available from: https://doi.org/10.1093/jmedent/42.5.844 | eng |
dcterms.references | Lum L, Ng CJ, Khoo EM. Managing dengue fever in primary care: A practical approach. Malaysian Fam physician Off J Acad Fam Physicians Malaysia [Internet]. 2014;9(2):2–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25893065 | eng |
dcterms.references | Organización Panamericana de la Salud. Herramienta interactiva: Algoritmos para el manejo clínico de los casos de dengue [Internet]. Organización Panamericana de la Salud. 2025 [cited 2025 May 11]. Available from: https://www.paho.org/es/herramienta-interactiva-algoritmos-para-manejoclinico-casos-dengue | spa |
dcterms.references | Iturbe-Ormaetxe I, Walker T, O’ Neill SL. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep [Internet]. 2011 Jun;12(6):508–18. Available from: https://doi.org/10.1038/embor.2011.84 | eng |
dcterms.references | Scott TW, Morrison AC. Vector Dynamics and Transmission of Dengue Virus: Implications for Dengue Surveillance and Prevention Strategies. In 2010. p. 115–28. Available from: https://doi.org/10.1007/978-3-642-02215-9_9 | eng |
dcterms.references | Gubler DJ. The partnership for dengue control – A new global alliance for the prevention and control of dengue. Vaccine [Internet]. 2015 Mar;33(10):1233. Available from: https://doi.org/10.1016/j.vaccine.2015.01.002 | eng |
dcterms.references | Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a Theory for the Dynamics and Control of MosquitoTransmitted Pathogens. Chitnis CE, editor. PLoS Pathog [Internet]. 2012 Apr 5;8(4):e1002588. Available from: https://doi.org/10.1371/journal.ppat.1002588 | eng |
dcterms.references | Nhan NT, Phuong CXT, Kneen R, Wills B, Van My N, Phuong NTQ, et al. Acute Management of Dengue Shock Syndrome: A Randomized Double-Blind Comparison of 4 Intravenous Fluid Regimens in the First Hour. Clin Infect Dis [Internet]. 2001 Jan 15;32(2):204–13. Available from: https://doi.org/10.1086/318479 | eng |
dcterms.references | Tun‐Lin W, Lenhart A, Nam VS, Rebollar‐Téllez E, Morrison AC, Barbazan P, et al. Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: a multi‐country non‐inferiority cluster randomized trial. Trop Med Int Heal [Internet]. 2009 Sep 24;14(9):1143–53. Available from: https://doi.org/10.1111/j.1365-3156.2009.02341.x | eng |
dcterms.references | Frances SP, Sithiprasasna R, Linthicum KJ. Laboratory Evaluation of the Response of Aedes aegypti and Aedes albopictus Uninfected and Infected With Dengue Virus to Deet. J Med Entomol [Internet]. 2011 Mar 1;48(2):334– 6. Available from: https://doi.org/10.1603/me10120 | eng |
dcterms.references | Vanlerberghe V, Toledo ME, Rodriguez M, Gomez D, Baly A, Benitez JR, et al. Community involvement in dengue vector control: cluster randomised trial. BMJ [Internet]. 2009 Jun 9;338(jun09 1):b1959–b1959. Available from: https://doi.org/10.1136/bmj.b1959 | eng |
dcterms.references | Ooi E-E, Goh K-T, Gubler DJ. Dengue Prevention and 35 Years of Vector Control in Singapore. Emerg Infect Dis [Internet]. 2006 Jun;12(6):887–93. Available from: https://doi.org/10.3201/10.3201/eid1206.051210 | eng |
dcterms.references | Achee NL, Gould F, Perkins TA, Reiner RC, Morrison AC, Ritchie SA, et al. A Critical Assessment of Vector Control for Dengue Prevention. Halstead SB, editor. PLoS Negl Trop Dis [Internet]. 2015 May 7;9(5):e0003655. Available from: https://doi.org/10.1371/journal.pntd.0003655 | eng |
dcterms.references | Harwood JF, Rama V, Hash JM, Gordon SW. The Attractiveness of the Gravid Aedes Trap to Dengue Vectors in Fiji. J Med Entomol [Internet]. 2018 Feb 28;55(2):481–4. Available from: https://doi.org/10.1093/jme/tjx221 | eng |
dcterms.references | Veni T, Pushpanathan T, Mohanraj J. Larvicidal and ovicidal activity of Terminalia chebula Retz. (Family: Combretaceae) medicinal plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. J Parasit Dis [Internet]. 2017 Sep 10;41(3):693–702. Available from: https://doi.org/10.1007/s12639-016-0869-z | eng |
dcterms.references | Oliveira ÉCL de, Pontes ERJC, Cunha RV da, Fróes ÍB, Nascimento D do. Alterações hematológicas em pacientes com dengue. Rev Soc Bras Med Trop [Internet]. 2009 Dec;42(6):682–5. Available from: https://doi.org/10.1590/S0037-86822009000600014 | eng |
dcterms.references | Senanayake SN. Dengue and Relative Bradycardia. Emerg Infect Dis [Internet]. 2008 Feb;14(2):350–1. Available from: https://doi.org/10.3201/eid1402.070401 | eng |
dcterms.references | Rigau-Pérez JG. Severe dengue: the need for new case definitions. Lancet Infect Dis [Internet]. 2006 May;6(5):297–302. Available from: https://doi.org/10.1016/s1473-3099(06)70465-0 | eng |
dcterms.references | Santamaria R, Martinez E, Kratochwill S, Soria C, Tan LH, Nuñez A, et al. Comparison and critical appraisal of dengue clinical guidelines and their use in Asia and Latin America. Int Health [Internet]. 2009 Dec;1(2):133–40. Available from: https://doi.org/10.1016/j.inhe.2009.08.006 | eng |
dcterms.references | Carvalho MS. DENGUE: TEORIAS E PRÁTICAS. Cad Saude Publica [Internet]. 2016;32(4). Available from: https://doi.org/10.1590/0102- 311X00016216 | eng |
dcterms.references | Binh PT, Matheus S, Huong VTQ, Deparis X, Marechal V. Early clinical and biological features of severe clinical manifestations of dengue in Vietnamese adults. J Clin Virol [Internet]. 2009 Aug;45(4):276–80. Available from: https://doi.org/10.1016/j.jcv.2009.04.004 | eng |
dcterms.references | Khan NA, Azhar EI, El-Fiky S, Madani HH, Abuljadial MA, Ashshi AM, et al. Clinical profile and outcome of hospitalized patients during first outbreak of dengue in Makkah, Saudi Arabia. Acta Trop [Internet]. 2008 Jan;105(1):39– 44. Available from: https://doi.org/10.1016/j.actatropica.2007.09.005 | eng |
dcterms.references | Hapaurachchi H, Bandara K, Hapugoda M, Williams S, Abeyewickreme W. Laboratory confirmation of dengue and chikungunya co-infection. Ceylon Med J [Internet]. 2008 Dec 17;53(3):104. Available from: https://doi.org/10.4038/cmj.v53i3.252 | eng |
dcterms.references | Jantan I bin, Yalvema MF, Ahmad NW, Jamal JA. Insecticidal Activities of the Leaf Oils of Eight Cinnamomum . species Against Aedes aegypti . and Aedes albopictus . Pharm Biol [Internet]. 2005 Jan 7;43(6):526–32. Available from: https://doi.org/10.1080/13880200500220771 | eng |
dcterms.references | Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res [Internet]. 2010 Jul 15;87(2):198–210. Available from: https://doi.org/10.1093/cvr/cvq062 | eng |
dcterms.references | Pattnaik SS, Patil U, Aggarwal L, Patro S, Mishra P, Mohanty A. Exploring Mean Platelet Volume and Platelet Count Recovery in Dengue Patients: Findings From an Observational Retrospective Clinical Study. Cureus [Internet]. 2024 Jul 28; Available from: https://doi.org/10.7759/cureus.65553 | eng |
dcterms.references | Gould E, Solomon T. Pathogenic flaviviruses. Lancet [Internet]. 2008 Feb;371(9611):500–9. Available from: https://doi.org/10.1016/s0140- 6736(08)60238-x | eng |
dcterms.references | Kuno G, Cropp CB, Wong-Lee J, Gubler DJ. Evaluation of an IgM immunoblot kit for dengue diagnosis. Am J Trop Med Hyg [Internet]. 1998 Nov;59(5):757– 62. Available from: https://doi.org/10.4269/ajtmh.1998.59.757 | eng |
dcterms.references | Haritoglou C, Scholz F, Bialasiewicz A, Klauß V. Okuläre Manifestation bei Dengue-Fieber. Der Ophthalmol [Internet]. 2000 Jun 19;97(6):433–6. Available from: https://doi.org/10.1007/s003470070094 | eng |
dcterms.references | Tejo AM, Hamasaki DT, Menezes LM, Ho Y-L. Severe dengue in the intensive care unit. J Intensive Med [Internet]. 2024 Jan;4(1):16–33. Available from: https://doi.org/10.1016/j.jointm.2023.07.007 | eng |
dcterms.references | Ranjit S, Kissoon N. Dengue hemorrhagic fever and shock syndromes*. Pediatr Crit Care Med [Internet]. 2011 Jan;12(1):90–100. Available from: https://doi.org/10.1097/pcc.0b013e3181e911a7 | eng |
dcterms.references | Wills BA, Dung NM, Loan HT, Tam DTH, Thuy TTN, Minh LTT, et al. Comparison of Three Fluid Solutions for Resuscitation in Dengue Shock Syndrome. N Engl J Med [Internet]. 2005 Sep;353(9):877–89. Available from: https://doi.org/10.1056/nejmoa044057 | eng |
dcterms.references | Prapty CNBS, Rahmat R, Araf Y, Shounak SK, Noor‐A‐Afrin, Rahaman TI, et al. SARS‐CoV‐2 and dengue virus co‐infection: Epidemiology, pathogenesis, diagnosis, treatment, and management. Rev Med Virol [Internet]. 2023 Jan 3;33(1). Available from: https://doi.org/10.1002/rmv.2340 | eng |
dcterms.references | Kien ND, El-Qushayri AE, Ahmed AM, Safi A, Mageed SA, Mehyar SM, et al. Correction to: Association of Allergic Symptoms with Dengue Infection and Severity: A Systematic Review and Meta-analysis. Virol Sin [Internet]. 2020 Feb 21;35(1):124–124. Available from: https://doi.org/10.1007/s12250-019- 00180-7 | eng |
dcterms.references | Gallagher P, Chan KR, Rivino L, Yacoub S. The association of obesity and severe dengue: possible pathophysiological mechanisms. J Infect [Internet]. 2020 Jul;81(1):10–6. Available from: https://doi.org/10.1016/j.jinf.2020.04.039 | eng |
dcterms.references | Anders KL, Nguyet NM, Van Vinh Chau N, Hung NT, Thuy TT, Lien LB, et al. Epidemiological Factors Associated with Dengue Shock Syndrome and Mortality in Hospitalized Dengue Patients in Ho Chi Minh City, Vietnam. Am Soc Trop Med Hyg [Internet]. 2011 Jan 5;84(1):127–34. Available from: https://doi.org/10.4269/ajtmh.2011.10-0476 | eng |
dcterms.references | Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathology and management. Clin Med (Northfield Il) [Internet]. 2022 Jan 25;22(1):9–13. Available from: https://doi.org/10.7861%2Fclinmed.2021- 0791 | eng |
dcterms.references | Tomashek KM, Margolis HS. Dengue: a potential transfusion‐transmitted disease. Transfusion [Internet]. 2011 Aug 10;51(8):1654–60. Available from: https://doi.org/10.1111/j.1537-2995.2011.03269.x | eng |
dcterms.references | Arellanos‐Soto D, B.‐d. l. Cruz V, Mendoza‐Tavera N, Ramos‐Jiménez J, Cázares‐Taméz R, Ortega‐Soto A, et al. Constant risk of dengue virus infection by blood transfusion in an endemic area in Mexico. Transfus Med [Internet]. 2015 Apr 16;25(2):122–4. Available from: https://doi.org/10.1111/tme.12198 | eng |
dcterms.references | Chaurasia R, Zaman S, Chatterjee K, Das B. Retrospective Review of Platelet Transfusion Practices during 2013 Dengue Epidemic of Delhi, India. Transfus Med Hemotherapy [Internet]. 2015;42(4):227–31. Available from: https://doi.org/10.1159/000371500 | eng |
dcterms.references | Halstead SB. Dengue. Curr Opin Infect Dis [Internet]. 2002 Oct;15(5):471–6. Available from: https://doi.org/10.1097/00001432-200210000-00003 | eng |
dcterms.references | Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengue viral infections. Postgrad Med J [Internet]. 2004 Oct 5;80(948):588–601. Available from: https://doi.org/10.1136/pgmj.2004.019638 | eng |
dcterms.references | Lum LCS, Abdel-Latif ME-A, Goh AYT, Chan PWK, Lam SK. Preventive transfusion in dengue shock syndrome–is it necessary? J Pediatr [Internet]. 2003 Nov;143(5):682–4. Available from: https://doi.org/10.1067/s0022- 3476(03)00503-1 | eng |
dcterms.references | Singhi S, Kissoon N, Bansal A. Dengue and dengue hemorrhagic fever: management issues in an intensive care unit. J Pediatr (Rio J) [Internet]. 2007 Jun 1;83(7):22–35. Available from: https://doi.org/10.2223/jped.1622 | eng |
dcterms.references | Zerfu B, Kassa T, Legesse M. Epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection, and its trend in Ethiopia: a comprehensive literature review. Trop Med Health [Internet]. 2023 Feb 24;51(1):11. Available from: https://doi.org/10.1186/s41182-023-00504-0 | eng |
dcterms.references | Santhosh V, Patil P, Srinath M, Kumar A, Archana M, Jain A. Sonography in the Diagnosis and Assessment of Dengue Fever. J Clin Imaging Sci [Internet]. 2014;4(1):14. Available from: https://doi.org/10.4103/2156-7514.129260 | eng |
dcterms.references | Talukdar S, Thanachartwet V, Desakorn V, Chamnanchanunt S, Sahassananda D, Vangveeravong M, et al. Predictors of plasma leakage among dengue patients in Thailand: A plasma-leak score analysis. Ghozy S, editor. PLoS One [Internet]. 2021 Jul 29;16(7):e0255358. Available from: https://doi.org/10.1371/journal.pone.0255358 | eng |
dcterms.references | Yuan K, Chen Y, Zhong M, Lin Y, Liu L. Risk and predictive factors for severe dengue infection: A systematic review and meta-analysis. Wang M-S, editor. PLoS One [Internet]. 2022 Apr 15;17(4):e0267186. Available from: https://dx.plos.org/10.1371/journal.pone.0267186 | eng |
dcterms.references | Motla M, Manaktala S, Gupta V, Aggarwal M, Bhoi SK, Aggarwal P, et al. Sonographic Evidence of Ascites, Pleura-Pericardial Effusion and Gallbladder Wall Edema for Dengue Fever. Prehosp Disaster Med [Internet]. 2011 Oct 26;26(5):335–41. Available from: https://doi.org/10.1017/S1049023X11006637 | eng |
dcterms.references | Gurung S, Karki S, Khadka M, Gurung S, Dhakal S. Acute acalculous cholecystitis in a patient with dengue fever: A case report. Ann Med Surg [Internet]. 2022 Dec;84. Available from: https://doi.org/10.1016/j.amsu.2022.104960 | eng |
dcterms.references | Setyawati AN, DK KT, Chionardes MA, Arkhaesi N. Acute acalculous cholecystitis in a pediatric dengue hemorrhagic fever patient: A case report, lesson learned from limited resource setting. Ann Med Surg [Internet]. 2022 Sep;81. Available from: https://doi.org/10.1016/j.amsu.2022.104437 | eng |
dcterms.references | Donaldson CD, de Mel S, Clarice CSH, Thilakawardana BU, de Mel P, Shalindi M, et al. Admission ultrasonography as a predictive tool for thrombocytopenia and disease severity in dengue infection. Trans R Soc Trop Med Hyg [Internet]. 2021 Dec 2;115(12):1396–402. Available from: https://doi.org/10.1093/trstmh/trab064 | eng |
dcterms.references | Shih H-I, Chi C-Y, Wang Y-P, Chien Y-W. Risks of Acute Cholecystitis, Acute Pancreatitis, and Acute Appendicitis in Patients with Dengue Fever: A Population-Based Cohort Study in Taiwan. Infect Dis Ther [Internet]. 2023 Jun 10;12(6):1677–93. Available from: https://doi.org/10.1007/s40121-023-00821- 1 | eng |
dcterms.references | Michels M, Sumardi U, de Mast Q, Jusuf H, Puspita M, Dewi IMW, et al. The Predictive Diagnostic Value of Serial Daily Bedside Ultrasonography for Severe Dengue in Indonesian Adults. Lopes da Fonseca BA, editor. PLoS Negl Trop Dis [Internet]. 2013 Jun 13;7(6):e2277. Available from: https://doi.org/10.1371/journal.pntd.0002277 | eng |
dcterms.references | Setiawan MW, Samsi TK, Wulur H, Sugianto D, Pool TN. Dengue haemorrhagic fever: ultrasound as an aid to predict the severity of the disease. Pediatr Radiol [Internet]. 1998 Jan 16;28(1):1–4. Available from: https://doi.org/10.1007/s002470050281 | eng |
dcterms.references | Narvaez F, Montenegro C, Juarez JG, Zambrana JV, Gonzalez K, Videa E, et al. Dengue severity by serotype and immune status in 19 years of pediatric clinical studies in Nicaragua. Marques ETA, editor. PLoS Negl Trop Dis [Internet]. 2025 Jan 10;19(1):e0012811. Available from: https://doi.org/10.1371/journal.pntd.0012811 | eng |
dcterms.references | Marchiori E, Hochhegger B, Zanetti G. Pulmonary manifestations of dengue. J Bras Pneumol [Internet]. 2020;46(1). Available from: https://doi.org/10.1590/1806-3713/e20190246 | eng |
dcterms.references | Rodrigues RS, Brum ALG, Paes MV, Póvoa TF, Basilio-de-Oliveira CA, Marchiori E, et al. Lung in Dengue: Computed Tomography Findings. Costa C, editor. PLoS One [Internet]. 2014 May 16;9(5):e96313. Available from: https://doi.org/10.1371/journal.pone.0096313 | eng |
dcterms.references | Kalayanarooj S. Clinical Manifestations and Management of Dengue/DHF/DSS. Trop Med Health [Internet]. 2011;39(4SUPPLEMENT):S83–7. Available from: https://doi.org/10.2149/tmh.2011-S10 | eng |
dcterms.references | Talukdar S, Thanachartwet V, Desakorn V, Chamnanchanunt S, Sahassananda D, Vangveeravong M, et al. Predictors of plasma leakage among dengue patients in Thailand: A plasma-leak score analysis. Ghozy S, editor. PLoS One [Internet]. 2021 Jul 29;16(7):e0255358. Available from: https://dx.plos.org/10.1371/journal.pone.0255358 | eng |
dcterms.references | Vedaraju K, Kumar K, Vijayaraghavachari T. Role of Ultrasound in the Assessment of Dengue Fever. Int J Sci Study [Internet]. 2016;3(10):56–62. Available from: https://doi.org/10.17354/ijss/2016/12 | eng |
dcterms.references | Nahar K, Jahan M-, Akhter S, Barua S, Begum D, Hasan MK. Ultrasonographic assessment of dengue fever and its correlation with platelet count. Bangladesh Med Res Counc Bull [Internet]. 2022 May 17;47(1):23–8. Available from: https://doi.org/10.3329/bmrcb.v47i1.55794 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Especialización en Medicina Crítica y Cuidados Intensivos | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: