Prevalencia de desenlaces graves en pacientes críticos con neumonía secundaria por Covid-19 que ingresaron en una unidad de cuidados intensivos de Barranquilla durante el año 2021

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorGránela Pérez, Katya Lorena
dc.contributor.advisorNavarro Quiroz, Elkin Antonio
dc.contributor.authorEcheverry Gálvez, Sebastián
dc.contributor.authorRomero Escorcia, Joysee Lenys
dc.date.accessioned2023-07-17T16:19:31Z
dc.date.available2023-07-17T16:19:31Z
dc.date.issued2023
dc.description.abstractIntroducción: La presencia de desenlaces graves en pacientes críticos con neumonía secundaria por COVID-19 coloca en alarma el modelo de atención debido a la presencia de complicaciones tempranas y el elevado de riesgo mortalidad. Objetivos: Determinar la prevalencia de los desenlaces graves de pacientes críticos con neumonía secundaria por COVID-19 que ingresaron en la unidad de cuidados intensivos durante el año 2021. Materiales y métodos: La información clínica de los pacientes fue recolectada retrospectivamente. Obtuvimos las variables de interés de la historia clínica de los pacientes y los comparamos con la presencia o ausencia de uno o más desenlaces graves (ventilación mecánica; terapia de remplazo renal, traqueostomía; transfusiones). Se realizo un modelo de regresión logística binaria y una correlación lineal donde se calcularon OR y coeficientes con sus intervalos de confianza al 95%. Resultados: De los 252 pacientes incluidos el 75.4% desarrollaron desenlaces graves y de estos el 86.3% de los pacientes fallecieron. La presencia de APACHE II score ≥ 20 puntos, uso de vasoactivos, lesión renal aguda, estancia hospitalaria y la muerte son variables predictoras para la presencia de un desenlace grave. Los niveles de lactato deshidrogenasa y leucocitos en la admisión se correlaciono con la presencia de desenlace grave. Conclusiones: La presencia desenlaces graves en pacientes con COVID-19 se asoció con una alta mortalidad. Además, la presencia de APACHE II score ≥20 puntos, estancia hospitalaria, vasoactivos y los niveles de lactato deshidrogenasa y leucocitos en la admisión se correlaciono con desenlaces graves.spa
dc.description.abstractIntroduction: The presence of serious outcomes in critically ill patients with secondary pneumonia due to COVID-19 alarms the care model due to the presence of early complications and the high risk of mortality. Objectives: To determine the prevalence of severe outcomes in critically ill patients with secondary pneumonia due to COVID-19 who were admitted to the intensive care unit during the year 2021. Materials and Methods: The clinical information of the patients was collected retrospectively. We obtained the variables of interest from the patients' medical records and compared them with the presence or absence of one or more serious outcomes (ventilation mechanical; therapy replacement renal, tracheostomy; transfusions). A binary logistic regression model and a linear correlation were performed where OR and coefficients with their 95% confidence intervals were calculated. Results: Of the 252 patients included, 75.4% developed serious outcomes and of these, 86.3% of the patients died. The presence of APACHE II score ≥ 20 points, use of vasoactive agents, acute kidney injury, hospital stay, and death are predictive variables for the presence of a serious outcome. Lactate dehydrogenase and leukocyte levels on admission correlated with the presence of severe outcome. Conclusions: The presence of severe outcomes in patients with COVID-19 was associated with high mortality. In addition, the presence of APACHE II score ≥20 points, hospital stay, vasoactive and lactate dehydrogenase and leukocyte levels on admission were correlated with severe outcomes.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/12822
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCuidados intensivosspa
dc.subjectDesenlaces gravesspa
dc.subjectCOVID-19spa
dc.subjectMuertespa
dc.subjectIntensive careeng
dc.subjectSerious outcomeseng
dc.subjectDeatheng
dc.titlePrevalencia de desenlaces graves en pacientes críticos con neumonía secundaria por Covid-19 que ingresaron en una unidad de cuidados intensivos de Barranquilla durante el año 2021spa
dc.type.driverinfo:eu-repo/semantics/otherspa
dc.type.spaOtrosspa
dcterms.referencesGrubaugh ND, Ladner JT, Lemey P, Pybus OG, Rambaut A, Holmes EC, et al. Tracking virus outbreaks in the twenty-first century. Nat Microbiol [Internet]. 2018 Dec 13;4(1):10–9. Available from: https://doi.org/10.1038/s41564-018-0296-2eng
dcterms.referencesHua J, Shaw R. Corona Virus (COVID-19) “Infodemic” and Emerging Issues through a Data Lens: The Case of China. Int J Environ Res Public Health [Internet]. 2020 Mar 30;17(7):2309. Available from: https://doi.org/10.3390/ijerph17072309eng
dcterms.referencesMcCloskey B, Heymann DL. SARS to novel coronavirus – old lessons and new lessons. Epidemiol Infect [Internet]. 2020 Feb 5;148: e22. Available from: https://doi.org/10.1017/S0950268820000254eng
dcterms.referencesWang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet [Internet]. 2020 Feb;395(10223):470–3. Available from: https://doi.org/10.1016/S0140-6736(20)30185-9eng
dcterms.referencesYang P, Wang X. COVID-19: a new challenge for human beings. Cell Mol Immunol [Internet]. 2020 May 31;17(5):555–7. Available from: https://doi.org/10.1038/s41423-020-0407-xeng
dcterms.referencesCui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol [Internet]. 2019 Mar 10;17(3):181–92. Available from: https://doi.org/10.1038/s41579-018-0118-9eng
dcterms.referencesKhan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, et al. COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far. Molecules [Internet]. 2020 Dec 23;26(1):39. Available from: https://doi.org/10.3390/molecules26010039eng
dcterms.referencesLupia T, Scabini S, Mornese Pinna S, Di Perri G, De Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. J Glob Antimicrob Resist [Internet]. 2020 Jun; 21:22–7. Available from: https://doi.org/10.1016/j.jgar.2020.02.021eng
dcterms.referencesde la Salud OP. Síntesis de evidencia y recomendaciones: Guía para el cuidado de pacientes adultos críticos con COVID-19 en las Américas. Rev Panam Salud Pública [Internet]. 2021 nov 3; 45:1. Available from: https://doi.org/10.26633/RPSP.2021.128spa
dcterms.referencesMinisterio de Salud De Colombia. Colombia tiene 44,35 de disponibilidad de camas UCI [Internet]. Ministerio de salud y proteccion social. 2022 [cited 2023 Jun 2]. Available from: https://www.minsalud.gov.co/Paginas/Colombia-tiene-44,35-de-disponibilidad-de-camas-UCI.aspxspa
dcterms.referencesFernández-Pérez GC, Oñate Miranda M, Fernández-Rodríguez P, Velasco Casares M, Corral de la Calle M, Franco López Á, et al. SARS-CoV-2: cómo es, cómo actúa y cómo se expresa en la imagen. Radiologia. 2021 Mar;63(2):115–26.spa
dcterms.referencesHuang L, Li X, Gu X, Zhang H, Ren L, Guo L, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med [Internet]. 2022 Sep;10(9):863–76. Available from: https://doi.org/10.1016/S2213-2600(22)00126-6eng
dcterms.referencesLong B, Carius BM, Chavez S, Liang SY, Brady WJ, Koyfman A, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med [Internet]. 2022 Apr; 54:46–57. Available from: https://doi.org/10.1016/j.ajem.2022.01.028eng
dcterms.referencesShi Y, Wang G, Cai X, Deng J, Zheng L, Zhu H, et al. An overview of COVID-19. J Zhejiang Univ B [Internet]. 2020 May 8;21(5):343–60. Available from: https://doi.org/10.1631/jzus.B2000083eng
dcterms.referencesOchoa SA, Franco OH, Rojas LZ, Raguindin PF, Roa-Díaz ZM, Wyssmann BM, et al. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am J Epidemiol [Internet]. 2021 Jan 4;190(1):161–75. Available from: https://doi.org/10.1093/aje/kwaa191eng
dcterms.referencesVardavas CI, Mathioudakis AG, Nikitara K, Stamatelopoulos K, Georgiopoulos G, Phalkey R, et al. Prognostic factors for mortality, intensive care unit and hospital admission due to SARS-CoV-2: a systematic review and meta-analysis of cohort studies in Europe. Eur Respir Rev [Internet]. 2022 Dec 31;31(166):220098. Available from: https://doi.org/10.1183/16000617.0098-2022eng
dcterms.referencesAdil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, et al. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J [Internet]. 2021 Feb 1;97(1144):110–6. Available from: https://doi.org/10.1136/postgradmedj-2020-138386eng
dcterms.referencesWorobey M, Levy JI, Malpica Serrano L, Crits-Christoph A, Pekar JE, Goldstein SA, et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science (80- ) [Internet]. 2022 Aug 26;377(6609):951–9. Available from: https://doi.org/10.1126/science.abp8715eng
dcterms.referencesVelavan TP, Meyer CG. The COVID‐19 epidemic. Trop Med Int Heal [Internet]. 2020 Mar 16;25(3):278–80. Available from: https://doi.org/10.1111/tmi.13383eng
dcterms.referencesKubiak JZ, Kloc M. Dissecting Physiopathology of COVID-19. Int J Mol Sci [Internet]. 2022 Aug 24;23(17):9602. Available from: https://doi.org/10.3390/ijms23179602eng
dcterms.referencesYang H, Rao Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol [Internet]. 2021 Nov 17;19(11):685–700. Available from: https://doi.org/10.1038/s41579-021-00630-8eng
dcterms.referencesYao H, Song Y, Chen Y, Wu N, Xu J, Sun C, et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell [Internet]. 2020 Oct;183(3):730–738.e13. Available from: https://doi.org/10.1016/j.cell.2020.09.018eng
dcterms.referencesKirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect Genet Evol [Internet]. 2020 Nov; 85:104502. Available from: https://doi.org/10.1016/j.meegid.2020.104502eng
dcterms.referencesMuralidar S, Ambi SV, Sekaran S, Krishnan UM. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie [Internet]. 2020 Dec; 179:85–100. Available from: https://doi.org/10.1016/j.biochi.2020.09.018eng
dcterms.referencesHarrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol [Internet]. 2020 Dec;41(12):1100–15. Available from: https://doi.org/10.1016/j.it.2020.10.004eng
dcterms.referencesArons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med [Internet]. 2020 May 28;382(22):2081–90. Available from: https://doi.org/10.1056/NEJMoa2008457eng
dcterms.referencesPan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis [Internet]. 2020 Apr;20(4):410–1. Available from: https://doi.org/10.1016/S1473-3099(20)30114-6eng
dcterms.referencesChams N, Chams S, Badran R, Shams A, Araji A, Raad M, et al. COVID-19: A Multidisciplinary Review. Front Public Heal [Internet]. 2020 Jul 29;8. Available from: https://doi.org/10.3389/fpubh.2020.00383eng
dcterms.referencesBelouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci [Internet]. 2009 Apr 7;106(14):5871–6. Available from: https://doi.org/10.1073/pnas.0809524106eng
dcterms.referencesBelouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses [Internet]. 2012 Jun 20;4(6):1011–33. Available from: https://doi.org/10.3390/v4061011eng
dcterms.referencesTrougakos IP, Stamatelopoulos K, Terpos E, Tsitsilonis OE, Aivalioti E, Paraskevis D, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci [Internet]. 2021 Jan 12;28(1):9. Available from: https://doi.org/10.1186/s12929-020-00703-5eng
dcterms.referencesJefferson T, Spencer EA, Brassey J, Onakpoya IJ, Rosca EC, Plüddemann A, et al. Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) from pre and asymptomatic infected individuals: a systematic review. ClinMicrobiol Infect [Internet]. 2022 Feb;28(2):178–89. Available from: https://doi.org/10.1016/j.cmi.2021.10.015eng
dcterms.referencesRazi O, Teixeira AM, Tartibian B, Zamani N, Knechtle B. Respiratory issues in patients with multiple sclerosis as a risk factor during SARS-CoV-2 infection: a potential role for exercise. Mol Cell Biochem [Internet]. 2023 Jul 21;478(7):1533–59. Available from: https://doi.org/10.1007/s11010-022-04610-1eng
dcterms.referencesLi X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal [Internet]. 2020;10(2):102–8. Available from: https://doi.org/10.1016/j.jpha.2020.03.001eng
dcterms.referencesLi G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol [Internet]. 2020 Apr 7;92(4):424–32. Available from: https://doi.org/10.1002/jmv.25685eng
dcterms.referencesTisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev [Internet]. 2012 Mar;76(1):16–32. Available from: https://doi.org/10.1128/MMBR.05015-11eng
dcterms.referencesKornitzer J, Johnson J, Yang M, Pecor KW, Cohen N, Jiang C, et al. A Systematic Review of Characteristics Associated with COVID-19 in Children with Typical Presentation and with Multisystem Inflammatory Syndrome. Int J Environ Res Public Health [Internet]. 2021 Aug 4;18(16):8269. Available from: https://doi.org/10.3390/ijerph18168269eng
dcterms.referencesCarpenter CR, Mudd PA, West CP, Wilber E, Wilber ST. Diagnosing COVID‐19 in the Emergency Department: A Scoping Review of Clinical Examinations, Laboratory Tests, Imaging Accuracy, and Biases. Zehtabchi S, editor. Acad Emerg Med [Internet]. 2020 Aug 26;27(8):653–70. Available from: https://doi.org/10.1111/acem.14048eng
dcterms.referencesStruyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev [Internet]. 2020 Jul 7; Available from: https://doi.org/10.1002/14651858.CD013665eng
dcterms.referencesCheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology [Internet]. 2020 Jul;159(1):81–95. Available from: https://doi.org/10.1053/j.gastro.2020.03.065eng
dcterms.referencesLentz S, Roginski MA, Montrief T, Ramzy M, Gottlieb M, Long B. Initial emergency department mechanical ventilation strategies for COVID-19 hypoxemic respiratory failure and ARDS. Am J Emerg Med [Internet]. 2020 Oct;38(10):2194–202. Available from: https://doi.org/10.1016/j.ajem.2020.06.082eng
dcterms.referencesPecoraro V, Negro A, Pirotti T, Trenti T. Estimate false‐negative RT‐PCR rates for SARS‐CoV‐2. A systematic review and meta‐analysis. Eur J Clin Invest [Internet]. 2022 Feb 5;52(2). Available from: https://doi.org/10.1111/eci.13706eng
dcterms.referencesRahman S, Montero MTV, Rowe K, Kirton R, Kunik F. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Rev Clin Pharmacol [Internet]. 2021 May 4;14(5):601–21. Available from: https://doi.org/10.1080/17512433.2021.1902303eng
dcterms.referencesYang A-P, Liu J, Tao W, Li H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol [Internet]. 2020 Jul; 84:106504. Available from: https://doi.org/10.1016/j.intimp.2020.106504eng
dcterms.referencesWong HYF, Lam HYS, Fong AH-T, Leung ST, Chin TW-Y, Lo CSY, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology [Internet]. 2020 Aug;296(2): E72–8. Available from: https://doi.org/10.1148/radiol.2020201160eng
dcterms.referencesBorakati A, Perera A, Johnson J, Sood T. Diagnostic accuracy of X-ray versus CT in COVID-19: a propensity-matched database study. BMJ Open [Internet]. 2020 Nov;10(11): e042946. Available from: https://doi.org/10.1136/bmjopen-2020-042946eng
dcterms.referencesAdams HJA, Kwee TC, Yakar D, Hope MD, Kwee RM. Chest CT Imaging Signature of Coronavirus Disease 2019 Infection. Chest [Internet]. 2020 Nov;158(5):1885–95. Available from: https://doi.org/10.1016/j.chest.2020.06.025eng
dcterms.referencesGuan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med [Internet]. 2020 Apr 30;382(18):1708–20. Available from: https://doi.org/10.1056/NEJMoa2002032eng
dcterms.referencesVargas JG, Avila N, Hurtado D, Cárdenas-Roldán J, Peña D, Ortiz G. Lesión renal aguda en COVID-19: puesta al día y revisión de la literatura. Acta Colomb Cuid Intensivo [Internet]. 2022 Jan;22(1):24–34. Available from: https://doi.org/10.1016/j.acci.2020.10.004spa
dcterms.referencesKlok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res [Internet]. 2020 Jul; 191:145–7. Available from: https://doi.org/10.1016/j.thromres.2020.04.013eng
dcterms.referencesZhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet [Internet]. 2020 Mar;395(10229):1054–62. Available from: https://doi.org/10.1016/S0140-6736(20)30566-3eng
dcterms.referencesGupta N, Zhao Y-Y, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res [Internet]. 2019 Sep; 181:77–83. Available from: https://doi.org/10.1016/j.thromres.2019.07.013eng
dcterms.referencesChow N, Fleming-Dutra K, Gierke R, Hall A, Hughes M, Pilishvili T, et al. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019 — United States, February 12–March 28, 2020. MMWR Morb Mortal Wkly Rep [Internet]. 2020 Apr 3;69(13):382–6. Available from: https://doi.org/10.15585/mmwr.mm6913e2eng
dcterms.referencesGuo L, Shi Z, Zhang Y, Wang C, Do Vale Moreira NC, Zuo H, et al. Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: A meta-analysis. Diabetes Res Clin Pract [Internet]. 2020 Aug; 166:108346. Available from: https://doi.org/10.1016/j.diabres.2020.108346eng
dcterms.referencesZhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: A single‐centre, retrospective, observational study in Wuhan. Diabetes, Obes Metab [Internet]. 2020 Aug 17;22(8):1443–54. Available from: https://doi.org/10.1111/dom.14086eng
dcterms.referencesRajpal A, Rahimi L, Ismail‐Beigi F. Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes. J Diabetes [Internet]. 2020 Dec 2;12(12):895–908. Available from: https://doi.org/10.1111/1753-0407.13085eng
dcterms.referencesRadzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, et al. Distribution of ACE2, CD147, CD26, and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy [Internet]. 2020 Nov 24;75(11):2829–45. Available from: https://doi.org/10.1111/all.14429eng
dcterms.referencesGao F, Zheng KI, Wang X-B, Sun Q-F, Pan K-H, Wang T-Y, et al. Obesity Is a Risk Factor for Greater COVID-19 Severity. Diabetes Care [Internet]. 2020 jul;43(7): e72–4. Available from: https://doi.org/10.2337/dc20-0682eng
dcterms.referencesFresán U, Guevara M, Elía F, Albéniz E, Burgui C, Castilla J, et al. Independent Role of Severe Obesity as a Risk Factor for COVID‐19 Hospitalization: A Spanish Population‐Based Cohort Study. Obesity [Internet]. 2021 Jan 6;29(1):29–37. Available from: https://doi.org/10.1002/oby.23029eng
dcterms.referencesAlva N, Asqui G, Alvarado GF, Muchica F. Factores de riesgo de ingreso a unidad de cuidados intensivos o mortalidad en adultos hospitalizados por COVID-19 en altura. Rev Peru Med Exp Salud Publica [Internet]. 2022 jul 8;39(2):143–51. Available from: https://doi.org/10.17843/rpmesp.2022.392.10721spa
dcterms.referencesFerrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Características, evolución clínica y factores asociados a la mortalidad en UCI de los pacientes críticos infectados por SARS-CoV-2 en España: estudio prospectivo, de cohorte y multicéntrico. Rev Esp Anestesiol Reanim [Internet]. 2020 Oct;67(8):425–37. Available from: https://doi.org/10.1016/j.redar.2020.07.003spa
dcterms.referencesCamargo Mendoza JP, Rodríguez Ariza DE, Hernández Sabogal JC. Caracterización y factores pronóstico de mortalidad en pacientes ingresados en UCI por COVID-19 en un hospital público de referencia en Bogotá, Colombia. Acta Colomb Cuid Intensivo [Internet]. 2022 jun;22: S19–27. Available from: https://doi.org/10.1016/j.acci.2022.01.001spa
dcterms.referencesTafur Betancourt LA, Rosero Cundar AS, Remolina Granados SA, Millán M del M, Arévalo M, Lema Flórez E, et al. Características y desenlaces clínicos de pacientes con COVID-19 en la primera ola en Cali, Colombia. Acta Colomb Cuid Intensivo [Internet]. 2022 jun;22: S36–45. Available from: https://doi.org/10.1016/j.acci.2021.12.002spa
dcterms.referencesSerrano-Martínez JL, Machado-Casas JF, Redondo-Orts M, Manzano-Manzano F, Castaño-Pérez J, Pérez-Villares JM. Características y resultados de una serie de 59 pacientes con neumonía grave por COVID-19 ingresados en UCI. Med Intensiva [Internet]. 2020 Dec;44(9):580–3. Available from: https://doi.org/10.1016/j.medin.2020.06.004spa
dcterms.referencesÑamendys-Silva SA, Alvarado-Ávila PE, Domínguez-Cherit G, Rivero-Sigarroa E, Sánchez-Hurtado LA, Gutiérrez-Villaseñor A, et al. Outcomes of patients with COVID-19 in the intensive care unit in Mexico: A multicenter observational study. Hear Lung [Internet]. 2021 Jan;50(1):28–32. Available from: https://doi.org/10.1016/j.hrtlng.2020.10.013eng
dcterms.referencesde Almeida DC, Franco M do CP, dos Santos DRP, Santos MC, Maltoni IS, Mascotte F, et al. Acute kidney injury: Incidence, risk factors, and outcomes in severe COVID-19 patients. Seguro AC, editor. PLoS One [Internet]. 2021 May 25;16(5): e0251048. Available from: https://doi.org/10.1371/journal.pone.0251048eng
dcterms.referencesMartinez Mesa A, Cabrera César E, Martín-Montañez E, Sanchez Alvarez E, Lopez PM, Romero-Zerbo Y, et al. Acute Lung Injury Biomarkers in the Prediction of COVID-19 Severity: Total Thiol, Ferritin and Lactate Dehydrogenase. Antioxidants [Internet]. 2021 Jul 29;10(8):1221. Available from: https://doi.org/10.3390/antiox10081221eng
dcterms.referencesGrasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA [Internet]. 2020 Apr 28;323(16):1574. Available from: https://doi.org/10.1001/jama.2020.5394eng
dcterms.referencesDhakal S, Charoen P, Pan-ngum W, Luvira V, Sivakorn C, Hanboonkunupakarn B, et al. Severity of COVID-19 in Patients with Diarrhoea: A Systematic Review and Meta-Analysis. Trop Med Infect Deseases [Internet]. 2023;8(2):8. Available from: https://doi.org/10.3390/tropicalmed8020084eng
dcterms.referencesBurke E, Haber E, Pike CW, Sonti R. Outcomes of renal replacement therapy in the critically ill with COVID-19. Med Intensiva [Internet]. 2021 Aug;45(6):325–31. Available from: https://doi.org/10.1016/j.medin.2021.02.004eng
dcterms.referencesHenry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med [Internet]. 2020 Jun 25;58(7):1021–8. Available from: https://doi.org/10.1515/cclm-2020-0369eng
dcterms.referencesQin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis [Internet]. 2020 Jul 28;71(15):762–8. Available from: https://doi.org/10.1093/cid/ciaa248eng
dcterms.referencesCocoş R, Mahler B, Turcu-Stiolica A, Stoichiță A, Ghinet A, Shelby E-S, et al. Risk of Death in Comorbidity Subgroups of Hospitalized COVID-19 Patients Inferred by Routine Laboratory Markers of Systemic Inflammation on Admission: A Retrospective Study. Viruses [Internet]. 2022 May 31;14(6):1201. Available from: https://doi.org/10.3390/v14061201eng
dcterms.referencesWang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA [Internet]. 2020 Mar 17;323(11):1061. Available from: https://doi.org/10.1001/jama.2020.1585eng
dcterms.referencesBeigmohammadi MT, Amoozadeh L, Rezaei Motlagh F, Rahimi M, Maghsoudloo M, Jafarnejad B, et al. Mortality Predictive Value of APACHE II and SOFA Scores in COVID-19 Patients in the Intensive Care Unit. Zhu Y, editor. Can Respir J [Internet]. 2022 Mar 28; 2022:1–8. Available from: https://doi.org/10.1155/2022/5129314eng
dcterms.referencesHuang Y, Guo L, Chen J, Wu M, Zhang C, Liu Z, et al. Serum Lactate Dehydrogenase Level as a Prognostic Factor for COVID-19: A Retrospective Study Based on a Large Sample Size. Front Med [Internet]. 2022 Jan 4;8. Available from: https://doi.org/10.3389/fmed.2021.671667eng
dcterms.referencesWang L, Cheng X, Dong Q, Zhou C, Wang Y, Song B, et al. The characteristics of laboratory tests at admission and the risk factors for adverse clinical outcomes of severe and critical COVID-19 patients. BMC Infect Dis [Internet]. 2021 Dec 20;21(1):371. Available from: https://doi.org/10.1186/s12879-021-06057-zeng
dcterms.referencesAlgarín-Lara H, Guevara-Romero E, Osorio-Rodríguez E, Patiño-Patiño J, Flórez García V, Tuesca R de J, et al. Factores relacionados con la neumonía bacteriana en pacientes con COVID-19 en una unidad de cuidados intensivos de Barranquilla, Colombia. Acta Colomb Cuid Intensivo [Internet]. 2022 jun;22: S28–35. Available from: https://doi.org/10.1016/j.acci.2021.07.002spa
dcterms.referencesFeng X, Li P, Ma L, Liang H, Lei J, Li W, et al. Clinical Characteristics and Short-Term Outcomes of Severe Patients With COVID-19 in Wuhan, China. Front Med [Internet]. 2020 Aug 6;7. Available from: https://doi.org/10.3389/fmed.2020.00491eng
dcterms.referencesFernandes S, Sérvio R, Patrício P, Pereira C. Validation of the Acute Physiology and Chronic Health Evaluation (APACHE) II Score in COVID-19 Patients Admitted to the Intensive Care Unit in Times of Resource Scarcity. Cureus [Internet]. 2023 Feb 7; Available from: https://doi.org/10.7759/cureus.34721eng
dcterms.referencesChou C-Y, Yeh H-C, Chen W, Liu J-H, Lin H-H, Liu Y-L, et al. Norepinephrine and Hospital Mortality in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Artif Organs [Internet]. 2011 Feb; no-no. Available from: https://doi.org/10.1111/j.1525-1594.2010.01115.xeng
dcterms.referencesKant S, Menez SP, Hanouneh M, Fine DM, Crews DC, Brennan DC, et al. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol [Internet]. 2020 Dec 27;21(1):449. Available from: https://doi.org/10.1186/s12882-020-02112-0eng
dcterms.referencesPaek JH, Kim Y, Park WY, Jin K, Hyun M, Lee JY, et al. Severe acute kidney injury in COVID-19 patients is associated with in-hospital mortality. Hirst JA, editor. PLoS One [Internet]. 2020 Dec 9;15(12): e0243528. Available from: https://doi.org/10.1371/journal.pone.0243528eng
dcterms.referencesWang L, Li X, Chen H, Yan S, Li D, Li Y, et al. Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. Am J Nephrol [Internet]. 2020;51(5):343–8. Available from: https://doi.org/10.1159/000507471eng
dcterms.referencesFu EL, Janse RJ, de Jong Y, van der Endt VHW, Milders J, van der Willik EM, et al. Acute kidney injury and kidney replacement therapy in COVID-19: a systematic review and meta-analysis. Clin Kidney J [Internet]. 2020 Aug 1;13(4):550–63. Available from: https://doi.org/10.1093/ckj/sfaa160eng
dcterms.referencesPei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. J Am Soc Nephrol [Internet]. 2020 Jun;31(6):1157–65. Available from: https://doi.org/10.1681/ASN.2020030276eng
dcterms.referencesLegrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, et al. Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol [Internet]. 2021 Nov 5;17(11):751–64. Available from: https://doi.org/10.1038/s41581-021-00452-0eng
dcterms.referencesAnandh U, Noorin A, Kazmi SKS, Bannur S, Shah SSA, Farooq M, et al. Acute kidney injury in critically ill COVID-19 infected patients requiring dialysis: experience from India and Pakistan. BMC Nephrol [Internet]. 2022 Sep 8;23(1):308. Available from: https://doi.org/10.1186/s12882-022-02931-3eng
dcterms.referencesSu L, Zhang J, Peng Z. The role of kidney injury biomarkers in COVID-19. Ren Fail [Internet]. 2022 Dec 31;44(1):1281–9. Available from: https://doi.org/10.1080/0886022X.2022.2107544eng
dcterms.referencesShi J, Li Y, Zhou X, Zhang Q, Ye X, Wu Z, et al. Lactate dehydrogenase and susceptibility to deterioration of mild COVID-19 patients: a multicenter nested case-control study. BMC Med [Internet]. 2020 Dec 3;18(1):168. Available from: https://doi.org/10.1186/s12916-020-01633-7eng
dcterms.referencesHuang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet [Internet]. 2020 Feb;395(10223):497–506. Available from: https://doi.org/10.1016/S0140-6736(20)30183-5eng
dcterms.referencesWiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA [Internet]. 2020 Aug 25;324(8):782. Available from: https://doi.org/10.1001/jama.2020.12839eng
dcterms.referencesWu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA [Internet]. 2020 Apr 7;323(13):1239. Available from: https://doi.org/10.1001/jama.2020.2648eng
dcterms.referencesLv X-T, Zhu Y-P, Cheng A-G, Jin Y-X, Ding H-B, Wang C-Y, et al. High serum lactate dehydrogenase and dyspnea: Positive predictors of adverse outcome in critical COVID-19 patients in Yichang. World J Clin Cases [Internet]. 2020 Nov 26;8(22):5535–46. Available from: https://doi.org/10.12998/wjcc.v8.i22.5535eng
dcterms.referencesDong X, Sun L, Li Y. Prognostic value of lactate dehydrogenase for in-hospital mortality in severe and critically ill patients with COVID-19. Int J Med Sci [Internet]. 2020;17(14):2225–31. Available from: https://doi.org/10.7150/ijms.47604eng
dcterms.referencesLi C, Ye J, Chen Q, Hu W, Wang L, Fan Y, et al. Elevated Lactate Dehydrogenase (LDH) level as an independent risk factor for the severity and mortality of COVID-19. Aging (Albany NY) [Internet]. 2020 Aug 14;12(15):15670–81. Available from: https://doi.org/10.18632/aging.103770eng
dcterms.referencesJin Z, Zheng M, Shi J, Ye X, Cheng F, Chen Q-L, et al. Correlation Analysis Between Serum Uric Acid, Prealbumin Level, Lactate Dehydrogenase, and Severity of COVID-19. Front Mol Biosci [Internet]. 2021 Jul 12;8. Available from: https://doi.org/10.3389/fmolb.2021.615837eng
dcterms.referencesWu M, Yao L, Wang Y, Zhu X, Wang X, Tang P, et al. Clinical evaluation of potential usefulness of serum lactate dehydrogenase (LDH) in 2019 novel coronavirus (COVID-19) pneumonia. Respir Res [Internet]. 2020 Dec 6;21(1):171. Available from: https://doi.org/10.1186/s12931-020-01427-8eng
dcterms.referencesMasumoto A, Kitai T, Matsumoto S, Kuroda S, Kohsaka S, Tachikawa R, et al. Impact of serum lactate dehydrogenase on the short-term prognosis of COVID-19 with pre-existing cardiovascular diseases. J Cardiol [Internet]. 2022 Apr;79(4):501–8. Available from: https://doi.org/10.1016/j.jjcc.2021.12.014eng
dcterms.referencesSilva PL, Cruz FF, Martins CM, Herrmann J, Gerard SE, Xin Y, et al. A specific combination of laboratory data is associated with overweight lungs in patients with COVID-19 pneumonia at hospital admission: secondary cross-sectional analysis of a randomized clinical trial. Front Med [Internet]. 2023 May 16;10. Available from: https://doi.org/10.3389/fmed.2023.1137784eng
dcterms.referencesPatil S, Bhadake M, Narwade G, Acharya A. Role of Lactate Dehydrogenasein COVID-19 pneumonia: a single tertiary care center follow-up experience of 1000 cases in India. J One Heal Res [Internet]. 2023;1(1):7–14. Available from: https://doi.org/10.5281/zenodo.7521677eng
dcterms.referencesXu X, Liu K, Cheng P, Huang Y, Huang C, Wu W, Xing C, Mao H, Liu Y. Association between continuous renal replacement therapy and 28-day mortality of critically ill patients with COVID-19 receiving mechanical ventilation. Clin Nephrol. 2021 Oct;96(4):207-215. doi: 10.5414/CN110474. PMID: 34236306.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaEspecialización en Medicina Crítica y Cuidados Intensivosspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
254.49 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
588.27 KB
Formato:
Adobe Portable Document Format

Colecciones