Mecanismo de la ATPasa tipo P CtpF de Mycobacterium tuberculosis como diana para nuevos antibióticos antituberculosis
Cargando...
Fecha
2024
Autores
Pestana Nobles, Roberto Carlos
Título de la revista
ISSN de la revista
Título del volumen
Editor
Ediciones Universidad Simón Bolívar
Facultad de Ciencias Básicas y Biomédicas
Facultad de Ciencias Básicas y Biomédicas
Resumen
Mycobacterium tuberculosis (Mtb), el agente causal de la tuberculosis (TB), se
clasifica predominantemente como un patógeno del sistema respiratorio, aunque
tiene la capacidad de afectar otros órganos y tejidos del cuerpo. Esta enfermedad
representa un desafío significativo en países con recursos económicos limitados,
donde aproximadamente 1,5 millones de individuos fallecen anualmente a causa de
esta. El tratamiento actual para la TB sigue las directrices establecidas por la
Organización Mundial de la Salud (OMS), consistiendo principalmente en un
tratamiento usando fármacos de primera línea: isoniacida (INH), rifampicina (RIF),
etambutol (EMB) y pirazinamida (PZA). Una problemática central en el manejo de
la TB es la interrupción prematura del tratamiento anti-TB, factor que contribuye
significativamente a la aparición y propagación de cepas de Mtb resistentes a
múltiples medicamentos, conocidas como Tuberculosis multi-resistente (TB-MDR)
y Tuberculosis extremadamente-resistente (TB-XDR). Ante la necesidad urgente de
superar las limitaciones de los tratamientos actuales y prevenir el desarrollo de
resistencias bacterianas, se hace imperativo buscar y validar nuevos blancos
terapéuticos que ofrezcan mecanismos alternativos de acción. En este contexto,
emergen como blancos prometedores las ATPasas tipo P de Mtb, unas proteínas
de membrana que catalizan el transporte de iones contra gradientes de
concentración utilizando la energía derivada de la hidrólisis del ATP. Estas proteínas
juegan roles esenciales en los procesos de transporte celular y en la interacción
entre el patógeno y su huésped, convirtiéndose en candidatos ideales para el
desarrollo de nuevas estrategias terapéuticas debido a su ubicación accesible en la
membrana celular, lo cual facilita el abordaje por parte de agentes farmacológicos
sin enfrentar obstáculos significativos de permeabilidad.
Por lo que en este estudio se seleccionó la proteína CtpF, una bomba de eflujo
específica para iones de calcio, la cual se encuentra implicada en mecanismos de
defensa y supervivencia de la Mtb dentro del macrófago. Con el fin de tener una
representación más fiel al entorno químico de la proteína, esta fue modelada dentro
de una membrana lipídica compuesta por 1-palmitoil-2-oleoil-fosfatidilcolina (POPC)
usando el servidor CHARMMGUI. Con este sistema construido se procedió a
realizar una dinámica molecular gaussiana acelerada (GaMD) por 1 microsegundo,
con el fin de explorar los movimientos intrínsecos de la proteína.
La modelación de la proteína CtpF dentro de un ambiente simulado permitió estudiar
la dinámica de la proteína y como esta se relaciona con su mecanismo enzimático,
además se lograron identificar 4 compuestos con potencia inhibitoria para la
proteína CtpF. A través de docking molecular, se evaluaron en total 670.000
moléculas, de las cuales 4 resultaron ser posibles inhibidores para la proteína CtpF.
Estos 4 posibles inhibidores fueron evaluados usando dinámica molecular y cálculos
de energía de interacción a través de MMPBSA comparando sus resultados con un
ligando de referencia Ácido ciclopiazónico (CPA), energía de unión: -31.8663,
donde se lograron identificar los aminoácidos que juegan un papel clave en la
interacción con los ligandos. Se identificaron los siguientes compuestos, ligando
L_43303, nombre IUPAC: Morfolina urea 1,2,4,5-tetraoxano, código ChEMBL:
CHEMBL259023, energía libre de unión de -23.2025 kcal/mol. Ligando L_59025,
nombre IUPAC: 2,2'-espirobi[6,7,8,9-tetrahidro-3H-ciclopenta[a]naftaleno]-1,1'-
diona, energía libre de unión: -24.1896 kcal/mol. Ligando L_4946, nombre IUPAC:
1-[4-[3-(1-quinolin-2-ilazetidin-3-il)pirazin-2-il]piperazin-1-il]etanona, energía libre de
unión: -29.358 kcal/mol. Ligando L_113260, nombre IUPAC: 10-amino-12-(3-
metilfenil)-1,3,13-triazapentaciclo[11,8,0,02,11,04,9,015,20]henicosa2,4(9),10,15,17,19-hexaeno-14,21-diona, código ChEMBL: CHEMBL4213928,
energía libre de unión: -30.1867 kcal/mol. Siendo el ligando L_113260 como posible
punto de partida para para el diseño de nuevos fármacos mediante técnicas de hitto-lead y docking molecular basado en fragmentos. Este enfoque de la modelación
molecular promete abrir nuevas vías para el desarrollo de terapias más efectivas y
rápidas contra la TB, abordando así uno de los problemas de salud pública más
urgente a nivel global.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is primarily classified as a pathogen of the respiratory system, yet it possesses the capacity to affect other organs and body tissues. This disease presents a significant challenge in countries with limited economic resources, where approximately 1.5 million individuals die annually from it. The current TB treatment adheres to the guidelines established by the World Health Organization (WHO), mainly involving a regimen utilizing first-line drugs: isoniazid (INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA). A critical issue in TB management is the premature discontinuation of anti-TB treatment, a factor that significantly contributes to the emergence and spread of multi-drug resistant Mtb strains, known as Multi-Drug Resistant Tuberculosis (MDR-TB) and Extensively Drug-Resistant Tuberculosis (XDR-TB). Faced with the urgent need to surpass the limitations of current treatments and prevent the development of bacterial resistances, it is imperative to identify and validate new therapeutic targets that offer alternative mechanisms of action. In this regard, Mtb P-type ATPases, membrane proteins that catalyze ion transport against concentration gradients using energy from ATP hydrolysis, emerge as promising targets. These proteins play crucial roles in cellular transport processes and the pathogen-host interaction, making them ideal candidates for the development of new therapeutic strategies due to their accessible location on the cell membrane, which facilitates the approach by pharmacological agents without significant permeability obstacles. In light of the foregoing, this study selected the CtpF protein, a specific efflux pump for calcium ions involved in Mtb's defense and survival mechanisms inside the macrophage. To closely mimic the protein's chemical environment, it was modeled within a lipid membrane composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) using the CHARMMGUI server. With this constructed system, accelerated Gaussian molecular dynamics (GaMD) were conducted for 1 microsecond to explore the protein's intrinsic movements. Modeling the CtpF protein in a simulated environment allowed for the study of its dynamics and relation to its enzymatic mechanism, also enabling the identification of 4 compounds with inhibitory potential for the CtpF protein. Through molecular docking, a total of 670,000 molecules were evaluated, resulting in 4 as potential CtpF protein inhibitors. These 4 potential inhibitors were further assessed using molecular dynamics and interaction energy calculations through MMPBSA, comparing their results with a reference ligand, Cyclopiazonic Acid (CPA), with a binding energy of - 31.8663 kcal/mol, identifying key amino acids involved in the interaction with the ligands. The following compounds were identified: ligand L_43303, IUPAC name Morpholine urea 1,2,4,5-tetraoxane, ChEMBL code: CHEMBL259023, with a free binding energy of -23.2025 kcal/mol. Ligand L_59025, IUPAC name: 2,2'- spirobi[6,7,8,9-tetrahydro-3H-cyclopenta[a]naphthalene]-1,1'-dione, with a free binding energy of -24.1896 kcal/mol. Ligand L_4946, IUPAC name: 1-[4-[3-(1- quinolin-2-ylazetidin-3-yl)pyrazin-2-yl]piperazin-1-yl]ethanone, with a free binding energy of -29.358 kcal/mol. Ligand L_113260, IUPAC name: 10-amino-12-(3- methylphenyl)-1,3,13-triazapentacyclo[11,8,0,02,11,04,9,015,20]henicosa2,4(9),10,15,17,19-hexaene-14,21-dione, ChEMBL code: CHEMBL4213928, with a free binding energy of -30.1867 kcal/mol. Ligand L_113260 was identified as a potential starting point for new drug design using hit-to-lead techniques and fragment-based molecular docking. This molecular modeling approach promises to open new pathways for the development of more effective and rapid therapies against TB, thereby addressing one of the most urgent global public health issues
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is primarily classified as a pathogen of the respiratory system, yet it possesses the capacity to affect other organs and body tissues. This disease presents a significant challenge in countries with limited economic resources, where approximately 1.5 million individuals die annually from it. The current TB treatment adheres to the guidelines established by the World Health Organization (WHO), mainly involving a regimen utilizing first-line drugs: isoniazid (INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA). A critical issue in TB management is the premature discontinuation of anti-TB treatment, a factor that significantly contributes to the emergence and spread of multi-drug resistant Mtb strains, known as Multi-Drug Resistant Tuberculosis (MDR-TB) and Extensively Drug-Resistant Tuberculosis (XDR-TB). Faced with the urgent need to surpass the limitations of current treatments and prevent the development of bacterial resistances, it is imperative to identify and validate new therapeutic targets that offer alternative mechanisms of action. In this regard, Mtb P-type ATPases, membrane proteins that catalyze ion transport against concentration gradients using energy from ATP hydrolysis, emerge as promising targets. These proteins play crucial roles in cellular transport processes and the pathogen-host interaction, making them ideal candidates for the development of new therapeutic strategies due to their accessible location on the cell membrane, which facilitates the approach by pharmacological agents without significant permeability obstacles. In light of the foregoing, this study selected the CtpF protein, a specific efflux pump for calcium ions involved in Mtb's defense and survival mechanisms inside the macrophage. To closely mimic the protein's chemical environment, it was modeled within a lipid membrane composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) using the CHARMMGUI server. With this constructed system, accelerated Gaussian molecular dynamics (GaMD) were conducted for 1 microsecond to explore the protein's intrinsic movements. Modeling the CtpF protein in a simulated environment allowed for the study of its dynamics and relation to its enzymatic mechanism, also enabling the identification of 4 compounds with inhibitory potential for the CtpF protein. Through molecular docking, a total of 670,000 molecules were evaluated, resulting in 4 as potential CtpF protein inhibitors. These 4 potential inhibitors were further assessed using molecular dynamics and interaction energy calculations through MMPBSA, comparing their results with a reference ligand, Cyclopiazonic Acid (CPA), with a binding energy of - 31.8663 kcal/mol, identifying key amino acids involved in the interaction with the ligands. The following compounds were identified: ligand L_43303, IUPAC name Morpholine urea 1,2,4,5-tetraoxane, ChEMBL code: CHEMBL259023, with a free binding energy of -23.2025 kcal/mol. Ligand L_59025, IUPAC name: 2,2'- spirobi[6,7,8,9-tetrahydro-3H-cyclopenta[a]naphthalene]-1,1'-dione, with a free binding energy of -24.1896 kcal/mol. Ligand L_4946, IUPAC name: 1-[4-[3-(1- quinolin-2-ylazetidin-3-yl)pyrazin-2-yl]piperazin-1-yl]ethanone, with a free binding energy of -29.358 kcal/mol. Ligand L_113260, IUPAC name: 10-amino-12-(3- methylphenyl)-1,3,13-triazapentacyclo[11,8,0,02,11,04,9,015,20]henicosa2,4(9),10,15,17,19-hexaene-14,21-dione, ChEMBL code: CHEMBL4213928, with a free binding energy of -30.1867 kcal/mol. Ligand L_113260 was identified as a potential starting point for new drug design using hit-to-lead techniques and fragment-based molecular docking. This molecular modeling approach promises to open new pathways for the development of more effective and rapid therapies against TB, thereby addressing one of the most urgent global public health issues
Descripción
Palabras clave
Mycobacterium tuberculosis, Dinámica molecular, Docking molecular, CtpF, Inhibidores, Tuberculosis, Dinámica molecular gaussiana acelerada, ATPasa tipo P., Mycobacterium tuberculosis, Molecular dyamics, Molecular docking, CtpF, Inhibitors, Tuberculosis, Gaussian accelerated molecular dynamics, ATPase type P.