Psycho-Neuro-Endocrine-Immunological Basis of the Placebo Effect: Potential Applications beyond Pain Therapy

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorOrtega, Ángel
dc.contributor.authorSalazar, Juan
dc.contributor.authorGalban, Néstor
dc.contributor.authorRojas, Milagros
dc.contributor.authorAriza, Daniela
dc.contributor.authorChávez-Castillo, Mervin
dc.contributor.authorNava, Manuel
dc.contributor.authorRiaño-Garzón, Manuel E.
dc.contributor.authorDíaz-Camargo, Edgar Alexis
dc.contributor.authorMedina-Ortiz, Oscar
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2022-11-11T17:41:55Z
dc.date.available2022-11-11T17:41:55Z
dc.date.issued2022
dc.description.abstractThe placebo effect can be defined as the improvement of symptoms in a patient after the administration of an innocuous substance in a context that induces expectations regarding its effects. During recent years, it has been discovered that the placebo response not only has neurobiological functions on analgesia, but that it is also capable of generating effects on the immune and endocrine systems. The possible integration of changes in different systems of the organism could favor the well-being of the individuals and go hand in hand with conventional treatment for multiple diseases. In this sense, classic conditioning and setting expectations stand out as psychological mechanisms implicated in the placebo effect. Recent advances in neuroimaging studies suggest a relationship between the placebo response and the opioid, cannabinoid, and monoaminergic systems. Likewise, a possible immune response conditioned by the placebo effect has been reported. There is evidence of immune suppression conditioned through the insular cortex and the amygdala, with noradrenalin as the responsible neurotransmitter. Finally, a conditioned response in the secretion of different hormones has been determined in different studies; however, the molecular mechanisms involved are not entirely known. Beyond studies about its mechanism of action, the placebo effect has proved to be useful in the clinical setting with promising results in the management of neurological, psychiatric, and immunologic disorders. However, more research is needed to better characterize its potential use. This review integrates current knowledge about the psycho-neuro-endocrine-immune basis of the placebo effect and its possible clinical applications.eng
dc.format.mimetypepdfeng
dc.identifier.citationOrtega, Á., Salazar, J., Galban, N., Rojas, M., Ariza, D., Chávez-Castillo, M., Nava, M., Riaño-Garzón, M. E., Díaz-Camargo, E. A., Medina-Ortiz, O., & Bermúdez, V. (2022). Psycho-Neuro-Endocrine-Immunological Basis of the Placebo Effect: Potential Applications beyond Pain Therapy. International Journal of Molecular Sciences, 23(8), 4196. https://doi.org/10.3390/ijms23084196eng
dc.identifier.doihttps://doi.org/10.3390/ijms23084196
dc.identifier.issn14220067
dc.identifier.urihttps://hdl.handle.net/20.500.12442/11295
dc.language.isoengeng
dc.publisherMDPIeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInternational Journal of Molecular Scienceseng
dc.sourceVol. 23, Isuue 8 (2022)eng
dc.subjectplacebo effecteng
dc.subjectPsychoneuroimmunologyeng
dc.subjectConditioningeng
dc.titlePsycho-Neuro-Endocrine-Immunological Basis of the Placebo Effect: Potential Applications beyond Pain Therapyeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesJütte, R. The Early History of the Placebo. Complement. Ther. Med. 2013, 21, 94–97.eng
dcterms.referencesKerr, C.E.; Milne, I.; Kaptchuk, T.J. William Cullen and a Missing Mind-Body Link in the Early History of Placebos. J. R. Soc. Med. 2008, 101, 89–92.eng
dcterms.referencesTavel, M.E. The Placebo Effect: The Good, the Bad, and the Ugly. Am. J. Med. 2014, 127, 484–488.eng
dcterms.referencesColagiuri, B.; Schenk, L.A.; Kessler, M.D.; Dorsey, S.G.; Colloca, L. The Placebo Effect: From Concepts to Genes. Neuroscience 2015, 307, 171–190.eng
dcterms.referencesColagiuri, B.; Schenk, L.A.; Kessler, M.D.; Dorsey, S.G.; Colloca, L. The Placebo Effect: From Concepts to Genes. Neuroscience 2015, 307, 171–190.eng
dcterms.referencesWager, T.D.; Atlas, L.Y. The Neuroscience of Placebo Effects: Connecting Context, Learning and Health. Nat. Rev. Neurosci. 2015, 16, 403–418.eng
dcterms.referencesKlinger, R.; Colloca, L.; Bingel, U.; Flor, H. Placebo Analgesia: Clinical Applications. Pain 2014, 155, 1055–1058.eng
dcterms.referencesMeyer, B.; Yuen, K.S.L.; Ertl, M.; Polomac, N.; Mulert, C.; Büchel, C.; Kalisch, R. Neural Mechanisms of Placebo Anxiolysis. J. Neurosci. 2015, 35, 7365–7373.eng
dcterms.referencesFrisaldi, E.; Carlino, E.; Zibetti, M.; Barbiani, D.; Dematteis, F.; Lanotte, M.; Lopiano, L.; Benedetti, F. The Placebo Effect on Bradykinesia in Parkinson’s Disease with and without Prior Drug Conditioning. Mov. Disord. 2017, 32, 1474–1478.eng
dcterms.referencesTolusso, D.V.; Laurent, C.M.; Fullenkamp, A.M.; Tobar, D.A. Placebo Effect: Influence on Repeated Intermittent Sprint Performance on Consecutive Days. J. Strength Cond. Res. 2015, 29, 1915–1924.eng
dcterms.referencesTuri, Z.; Bjørkedal, E.; Gunkel, L.; Antal, A.; Paulus, W.; Mittner, M. Evidence for Cognitive Placebo and Nocebo Effects in Healthy Individuals. Sci. Rep. 2018, 8, 17443.eng
dcterms.referencesBenedetti, F. Placebo-Induced Improvements: How Therapeutic Rituals Affect the Patient’s Brain. J. Acupunct. Meridian Stud. 2012, 5, 97–103.eng
dcterms.referencesKong, J.; Spaeth, R.; Cook, A.; Kirsch, I.; Claggett, B.; Vangel, M.; Gollub, R.L.; Smoller, J.W.; Kaptchuk, T.J. Are All Placebo Effects Equal? Placebo Pills, Sham Acupuncture, Cue Conditioning and Their Association. PLoS ONE 2013, 8, e67485.eng
dcterms.referencesZheng, Y.-C.; Yuan, T.-T.; Liu, T. Is Acupuncture a Placebo Therapy? Complement. Ther. Med. 2014, 22, 724–730.eng
dcterms.referencesGeuter, S.; Koban, L.; Wager, T.D. The Cognitive Neuroscience of Placebo Effects: Concepts, Predictions, and Physiology. Annu. Rev. Neurosci. 2017, 40, 167–188.eng
dcterms.referencesEelen, P. Classical Conditioning: Classical Yet Modern. Psychol. Belg. 2018, 58, 196–211.eng
dcterms.referencesFrisaldi, E.; Piedimonte, A.; Benedetti, F. Placebo and Nocebo Effects: A Complex Interplay Between Psychological Factors and Neurochemical Networks. Am. J. Clin. Hypn. 2015, 57, 267–284.eng
dcterms.referencesColloca, L.; Miller, F.G. How Placebo Responses Are Formed: A Learning Perspective. Philos. Trans. R. Soc. B 2011, 366, 1859–1869. [Google Scholar] [CrossRef][Green Version]eng
dcterms.referencesCarlino, E.; Torta, D.M.E.; Piedimonte, A.; Frisaldi, E.; Vighetti, S.; Benedetti, F. Role of Explicit Verbal Information in Conditioned Analgesia: Explicit Verbal Information in Conditioned Analgesia. Eur. J. Pain 2015, 19, 546–553.eng
dcterms.referencesUrsano, A.M.; Sonnenberg, S.M.; Ursano, R.J. Physician-Patient Relationship. In Psychiatry; Tasman, A., Kay, J., Lieberman, J.A., First, M.B., Riba, M.B., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 20–33. ISBN 978-1-118-75337-8.eng
dcterms.referencesRabinovich, M.; Kacen, L. Transference in View of a Classical Conditioning Model. Am. J. Psychol. 2012, 125, 209–223.eng
dcterms.referencesCarlino, E.; Benedetti, F. Placebo and Nocebo Effects. In The Handbook of Behavioral Medicine; Mostofsky, D.I., Ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2014; pp. 36–57. ISBN 978-1-118-45394-0.eng
dcterms.referencesBrown, W.A. Expectation, the Placebo Effect and the Response to Treatment. R. I. Med. J. 2015, 98, 19–21.eng
dcterms.referencesPrice, D.D.; Finniss, D.G.; Benedetti, F. A Comprehensive Review of the Placebo Effect: Recent Advances and Current Thought. Annu. Rev. Psychol. 2008, 59, 565–590.eng
dcterms.referencesCampbell, J.N.; Meyer, R.A. Mechanisms of Neuropathic Pain. Neuron 2006, 52, 77–92.eng
dcterms.referencesVachon-Presseau, E.; Berger, S.E.; Abdullah, T.B.; Huang, L.; Cecchi, G.; Griffith, J.W.; Schnitzer, T.J.; Apkarian, A.V. Brain and Psychological Determinants of Placebo Pill Response in Chronic Pain Patients. Neuroscience 2017, 9, 3397.eng
dcterms.referencesWanigasekera, V.; Wartolowska, K.; Huggins, J.P.; Duff, E.P.; Vennart, W.; Whitlock, M.; Massat, N.; Pauer, L.; Rogers, P.; Hoggart, B.; et al. Disambiguating Pharmacological Mechanisms from Placebo in Neuropathic Pain Using Functional Neuroimaging. Br. J. Anaesth. 2018, 120, 299–307.eng
dcterms.referencesWager, T.D.; Atlas, L.Y.; Leotti, L.A.; Rilling, J.K. Predicting Individual Differences in Placebo Analgesia: Contributions of Brain Activity during Anticipation and Pain Experience. J. Neurosci. 2011, 31, 439–452.eng
dcterms.referencesXu, L.; Wan, Y.; Ma, L.; Zheng, J.; Han, B.; Liu, F.-Y.; Yi, M.; Wan, Y. A Context-Based Analgesia Model in Rats: Involvement of Prefrontal Cortex. Neurosci. Bull. 2018, 34, 1047–1057.eng
dcterms.referencesHikida, T.; Morita, M.; Macpherson, T. Neural Mechanisms of the Nucleus Accumbens Circuit in Reward and Aversive Learning. Neurosci. Res. 2016, 108, 1–5.eng
dcterms.referencesWatanabe, M. Emotional and Motivational Functions of the Prefrontal Cortex. Brain Nerve 2016, 68, 1291–1299.eng
dcterms.referencesKrummenacher, P.; Candia, V.; Folkers, G.; Schedlowski, M.; Schönbächler, G. Prefrontal Cortex Modulates Placebo Analgesia. Pain 2010, 148, 368–374.eng
dcterms.referencesPeciña, M.; Bohnert, A.S.B.; Sikora, M.; Avery, E.T.; Langenecker, S.A.; Mickey, B.J.; Zubieta, J.-K. Association between Placebo-Activated Neural Systems and Antidepressant Responses: Neurochemistry of Placebo Effects in Major Depression. JAMA Psychiatry 2015, 72, 1087–1094.eng
dcterms.referencesPetrovic, P.; Dietrich, T.; Fransson, P.; Andersson, J.; Carlsson, K.; Ingvar, M. Placebo in Emotional Processing—Induced Expectations of Anxiety Relief Activate a Generalized Modulatory Network. Neuron 2005, 46, 957–969.eng
dcterms.referencesDuarte, D.F. Uma Breve História Do Ópio e Dos Opióides. Rev. Bras. Anestesiol. 2005, 55, 135–146.eng
dcterms.referencesRosenblum, A.; Marsch, L.A.; Joseph, H.; Portenoy, R.K. Opioids and the Treatment of Chronic Pain: Controversies, Current Status, and Future Directions. Exp. Clin. Psychopharmacol. 2008, 16, 405–416.eng
dcterms.referencesHughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of Two Related Pentapeptides from the Brain with Potent Opiate Agonist Activity. Nature 1975, 258, 577–580.eng
dcterms.referencesGrossman, A.; Clement-Jones, V. Opiate Receptors: Enkephalins and Endorphins. Clin. Endocrinol. Metab. 1983, 12, 31–56.eng
dcterms.referencesGu, Z.-H.; Wang, B.; Kou, Z.-Z.; Bai, Y.; Chen, T.; Dong, Y.-L.; Li, H.; Li, Y.-Q. Endomorphins: Promising Endogenous Opioid Peptides for the Development of Novel Analgesics. Neurosignals 2017, 25, 98–116eng
dcterms.referencesSchwarzer, C. 30 Years of Dynorphins—New Insights on Their Functions in Neuropsychiatric Diseases. Pharmacol. Ther. 2009, 123, 353–370.eng
dcterms.referencesManglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal Structure of the Μ-Opioid Receptor Bound to a Morphinan Antagonist. Nature 2012, 485, 321–326.eng
dcterms.referencesGranier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the δ-Opioid Receptor Bound to Naltrindole. Nature 2012, 485, 400–404.eng
dcterms.referencesWu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.-P.; Carroll, F.I.; et al. Structure of the Human κ-Opioid Receptor in Complex with JDTic. Nature 2012, 485, 327–332.eng
dcterms.referencesPeng, J.; Sarkar, S.; Chang, S.L. Opioid Receptor Expression in Human Brain and Peripheral Tissues Using Absolute Quantitative Real-Time RT-PCR. Drug Alcohol Depend. 2012, 124, 223–228.eng
dcterms.referencesPathan, H.; Williams, J. Basic Opioid Pharmacology: An Update. Br. J. Pain 2012, 6, 11–16.eng
dcterms.referencesStein, C. Opioid Receptors. Annu. Rev. Med. 2016, 67, 433–451.eng
dcterms.referencesLevine, J.D.; Gordon, N.C.; Fields, H.L. The Mechanism of Placebo Analgesia. Lancet 1978, 2, 654–657.eng
dcterms.referencesEippert, F.; Bingel, U.; Schoell, E.D.; Yacubian, J.; Klinger, R.; Lorenz, J.; Büchel, C. Activation of the Opioidergic Descending Pain Control System Underlies Placebo Analgesia. Neuron 2009, 63, 533–543eng
dcterms.referencesLipman, J.J.; Miller, B.E.; Mays, K.S.; Miller, M.N.; North, W.C.; Byrne, W.L. Peak B Endorphin Concentration in Cerebrospinal Fluid: Reduced in Chronic Pain Patients and Increased during the Placebo Response. Psychopharmacology 1990, 102, 112–116.eng
dcterms.referencesZhang, R.-R.; Zhang, W.-C.; Wang, J.-Y.; Guo, J.-Y. The Opioid Placebo Analgesia Is Mediated Exclusively through μ-Opioid Receptor in Rat. Int. J. Neuropsychopharmacol. 2013, 16, 849–856.eng
dcterms.referencesPeciña, M.; Love, T.; Stohler, C.S.; Goldman, D.; Zubieta, J.-K. Effects of the Mu Opioid Receptor Polymorphism (OPRM1 A118G) on Pain Regulation, Placebo Effects and Associated Personality Trait Measures. Neuropsychopharmacology 2015, 40, 957–965.eng
dcterms.referencesZubieta, J.-K. Placebo Effects Mediated by Endogenous Opioid Activity on-Opioid Receptors. J. Neurosci. 2005, 25, 7754–7762.eng
dcterms.referencesScott, D.J.; Stohler, C.S.; Egnatuk, C.M.; Wang, H.; Koeppe, R.A.; Zubieta, J.-K. Placebo and Nocebo Effects Are Defined by Opposite Opioid and Dopaminergic Responses. Arch. Gen. Psychiatry 2008, 65, 220.eng
dcterms.referencesZubieta, J.-K.; Stohler, C.S. Neurobiological Mechanisms of Placebo Responses. Ann. N. Y. Acad. Sci. 2009, 1156, 198–210.eng
dcterms.referencesAtlas, L.Y.; Wager, T.D. A Meta-Analysis of Brain Mechanisms of Placebo Analgesia: Consistent Findings and Unanswered Questions. In Placebo Handbook of Experimental Pharmacology; Benedetti, F., Enck, P., Frisaldi, E., Schedlowski, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 225, pp. 37–69. ISBN 978-3-662-44518-1.eng
dcterms.referencesEippert, F.; Finsterbusch, J.; Bingel, U.; Büchel, C. Direct Evidence for Spinal Cord Involvement in Placebo Analgesia. Science 2009, 326, 404.eng
dcterms.referencesAmanzio, M.; Benedetti, F. Neuropharmacological Dissection of Placebo Analgesia: Expectation-Activated Opioid Systems versus Conditioning-Activated Specific Subsystems. J. Neurosci. 1999, 19, 484–494.eng
dcterms.referencesVase, L.; Robinson, M.E.; Verne, N.G.; Price, D.D. Increased Placebo Analgesia over Time in Irritable Bowel Syndrome (IBS) Patients Is Associated with Desire and Expectation but Not Endogenous Opioid Mechanisms. Pain 2005, 115, 338–347.eng
dcterms.referencesGuo, J.-Y.; Wang, J.-Y.; Luo, F. Dissection of Placebo Analgesia in Mice: The Conditions for Activation of Opioid and Non-Opioid Systems. J. Psychopharmacol. 2010, 24, 1561–1567.eng
dcterms.referencesLee, I.-S.; Lee, B.; Park, H.-J.; Olausson, H.; Enck, P.; Chae, Y. A New Animal Model of Placebo Analgesia: Involvement of the Dopaminergic System in Reward Learning. Sci. Rep. 2015, 5, 17140.eng
dcterms.referencesMackie, K. Distribution of Cannabinoid Receptors in the Central and Peripheral Nervous System. Handb. Exp. Pharmacol. 2005, 168, 299–325.eng
dcterms.referencesDhopeshwarkar, A.; Mackie, K. Cannabinoid Receptors as a Therapeutic Target—What Does the Future Hold? Mol. Pharmacol. 2014, 86, 430–437.eng
dcterms.referencesWoodhams, S.G.; Chapman, V.; Finn, D.P.; Hohmann, A.G.; Neugebauer, V. The Cannabinoid System and Pain. Neuropharmacology 2017, 124, 105–120.eng
dcterms.referencesBenedetti, F.; Amanzio, M.; Rosato, R.; Blanchard, C. Nonopioid Placebo Analgesia Is Mediated by CB1 Cannabinoid Receptors. Nat. Med. 2011, 17, 1228–1230.eng
dcterms.referencesPeciña, M.; Martínez-Jauand, M.; Hodgkinson, C.; Stohler, C.S.; Goldman, D.; Zubieta, J.K. FAAH Selectively Influences Placebo Effects. Mol. Psychiatry 2014, 19, 385–391.eng
dcterms.referencesBrodermann, H.M. Pain, Pleasure and Placebo: The Cannabinoids in Reward Processing and the Perception of Pain. Ment. Health Addict. Res. 2016, 1, 59–63.eng
dcterms.referencesKlein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol. Neurobiol. 2019, 39, 31–59.eng
dcterms.referencesBeaulieu, J.-M.; Gainetdinov, R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol. Rev. 2011, 63, 182–217.eng
dcterms.referencesBeaulieu, J.-M.; Espinoza, S.; Gainetdinov, R.R. Dopamine Receptors—IUPHAR Review 13: Dopamine Receptors. Br. J. Pharmacol. 2015, 172, 1–23.eng
dcterms.referencesIrizarry, K.J.L.; Licinio, J. An Explanation for the Placebo Effect? Science 2005, 307, 1411–1412.eng
dcterms.referencesPeciña, M.; Zubieta, J.-K. Molecular Mechanisms of Placebo Responses in Humans. Mol. Psychiatry 2015, 20, 416–423.eng
dcterms.referencesJarcho, J.M.; Feier, N.A.; Labus, J.S.; Naliboff, B.; Smith, S.R.; Hong, J.-Y.; Colloca, L.; Tillisch, K.; Mandelkern, M.A.; Mayer, E.A.; et al. Placebo Analgesia: Self-Report Measures and Preliminary Evidence of Cortical Dopamine Release Associated with Placebo Response. NeuroImage Clin. 2016, 10, 107–114.eng
dcterms.referencesKaasinen, V.; Aalto, S.; Nagren, K.; Rinne, J.O. Expectation of Caffeine Induces Dopaminergic Responses in Humans. Eur. J. Neurosci. 2004, 19, 2352–2356.eng
dcterms.referencesSchulz-Schaeffer, W. Is Cell Death Primary or Secondary in the Pathophysiology of Idiopathic Parkinson’s Disease? Biomolecules 2015, 5, 1467–1479.eng
dcterms.referencesDe la Fuente-Fernández, R.; Ruth, T.J.; Sossi, V.; Schulzer, M.; Calne, D.B.; Stoessl, A.J. Expectation and Dopamine Release: Mechanism of the Placebo Effect in Parkinson’s Disease. Science 2001, 293, 1164–1166.eng
dcterms.referencesDe la Fuente-Fernández, R.; Phillips, A.G.; Zamburlini, M.; Sossi, V.; Calne, D.B.; Ruth, T.J.; Stoessl, A.J. Dopamine Release in Human Ventral Striatum and Expectation of Reward. Behav. Brain Res. 2002, 136, 359–363.eng
dcterms.referencesStrafella, A.P.; Ko, J.H.; Monchi, O. Therapeutic Application of Transcranial Magnetic Stimulation in Parkinson’s Disease: The Contribution of Expectation. NeuroImage 2006, 31, 1666–1672.eng
dcterms.referencesLidstone, S.C.; Schulzer, M.; Dinelle, K.; Mak, E.; Sossi, V.; Ruth, T.J.; de la Fuente-Fernández, R.; Phillips, A.G.; Stoessl, A.J. Effects of Expectation on Placebo-Induced Dopamine Release in Parkinson Disease. Arch. Gen. Psychiatry 2010, 67, 857.eng
dcterms.referencesQuattrone, A.; Barbagallo, G.; Cerasa, A.; Stoessl, A.J. Neurobiology of Placebo Effect in Parkinson’s Disease: What We Have Learned and Where We Are Going: Placebo Effect in PD. Mov. Disord. 2018, 33, 1213–1227.eng
dcterms.referencesHaour, F. Mechanisms of the Placebo Effect and of Conditioning. Neuroimmunomodulation 2005, 12,eng
dcterms.referencesVinar, O. Addiction to Placebo. Am. J. Psychiatry 1978, 135, 1000.eng
dcterms.referencesKessner, S.; Sprenger, C.; Wrobel, N.; Wiech, K.; Bingel, U. Effect of Oxytocin on Placebo Analgesia: A Randomized Study. JAMA 2013, 310, 1733–1735.eng
dcterms.referencesSkvortsova, A.; Veldhuijzen, D.S.; Van Middendorp, H.; Van den Bergh, O.; Evers, A.W.M. Enhancing Placebo Effects in Somatic Symptoms Through Oxytocin. Psychosom. Med. 2018, 80, 353–360.eng
dcterms.referencesColloca, L.; Pine, D.S.; Ernst, M.; Miller, F.G.; Grillon, C. Vasopressin Boosts Placebo Analgesic Effects in Women: A Randomized Trial. Biol. Psychiatry 2016, 79, 794–802.eng
dcterms.referencesBoggero, I.A.; Segerstrom, S.C. Human Psychoneuroimmunology. In Encyclopedia of Mental Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 343–349. ISBN 978-0-12-397753-3eng
dcterms.referencesDhabhar, F.S.; Malarkey, W.B.; Neri, E.; McEwen, B.S. Stress-Induced Redistribution of Immune Cells—From Barracks to Boulevards to Battlefields: A Tale of Three Hormones—Curt Richter Award Winner. Psychoneuroendocrinology 2012, 37, 1345–1368.eng
dcterms.referencesRohleder, N. Acute and Chronic Stress Induced Changes in Sensitivity of Peripheral Inflammatory Pathways to the Signals of Multiple Stress Systems—2011 Curt Richter Award Winner. Psychoneuroendocrinology 2012, 37, 307–316.eng
dcterms.referencesMorey, J.N.; Boggero, I.A.; Scott, A.B.; Segerstrom, S.C. Current Directions in Stress and Human Immune Function. Curr. Opin. Psychol. 2015, 5, 13–17.eng
dcterms.referencesHerkenham, M.; Kigar, S.L. Contributions of the Adaptive Immune System to Mood Regulation: Mechanisms and Pathways of Neuroimmune Interactions. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 49–57eng
dcterms.referencesBonaz, B.; Sinniger, V.; Pellissier, S. Anti-Inflammatory Properties of the Vagus Nerve: Potential Therapeutic Implications of Vagus Nerve Stimulation: Anti-Inflammatory Effect of Vagus Nerve Stimulation. J. Physiol. 2016, 594, 5781–5790.eng
dcterms.referencesMadden, K.S. Sympathetic Neural-Immune Interactions Regulate Hematopoiesis, Thermoregulation and Inflammation in Mammals. Dev. Comp. Immunol. 2017, 66, 92–97.eng
dcterms.referencesBonaz, B.; Sinniger, V.; Pellissier, S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front. Immunol. 2017, 8, 1452.eng
dcterms.referencesErickson, M.A.; Banks, W.A. Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol. Rev. 2018, 70, 278–314.eng
dcterms.referencesQuan, N. In-Depth Conversation: Spectrum and Kinetics of Neuroimmune Afferent Pathways. Brain Behav. Immun. 2014, 40, 1–8.eng
dcterms.referencesProssin, A.; Koch, A.; Campbell, P.; Laumet, G.; Stohler, C.S.; Dantzer, R.; Zubieta, J.-K. Effects of Placebo Administration on Immune Mechanisms and Relationships with Central Endogenous Opioid Neurotransmission. Mol. Psychiatry 2021, in press.eng
dcterms.referencesHadamitzky, M.; Sondermann, W.; Benson, S.; Schedlowski, M. Placebo Effects in the Immune System. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 138, pp. 39–59. ISBN 978-0-12-814325-4.eng
dcterms.referencesExton, M.S.; von Hörsten, S.; Schult, M.; Vöge, J.; Strubel, T.; Donath, S.; Steinmüller, C.; Seeliger, H.; Nagel, E.; Westermann, J.; et al. Behaviorally Conditioned Immunosuppression Using Cyclosporine A: Central Nervous System Reduces IL-2 Production via Splenic Innervation. J. Neuroimmunol. 1998, 88, 182–191.eng
dcterms.referencesExton, M.S.; Schult, M.; Donath, S.; Strubel, T.; Bode, U.; del Rey, A.; Westermann, J.; Schedlowski, M. Conditioned Immunosuppression Makes Subtherapeutic Cyclosporin Effective via Splenic Innervation. Am. J. Physiol. 1999, 276, R1710–R1717.eng
dcterms.referencesXie, Y.; Frede, S.; Harnish, M.J.; Exton, M.S.; Schedlowski, M. Beta-Adrenoceptor-Induced Inhibition of Rat Splenocyte Proliferation: Cytokine Gene Transcription as the Target of Action. Immunobiology 2002, 206, 345–353.eng
dcterms.referencesExton, M.S.; Gierse, C.; Meier, B.; Mosen, M.; Xie, Y.; Frede, S.; Goebel, M.U.; Limmroth, V.; Schedlowski, M. Behaviorally Conditioned Immunosuppression in the Rat Is Regulated via Noradrenaline and Beta-Adrenoceptors. J. Neuroimmunol. 2002, 131, 21–30.eng
dcterms.referencesPacheco-López, G.; Doenlen, R.; Krügel, U.; Arnold, M.; Wirth, T.; Riether, C.; Engler, A.; Niemi, M.-B.; Christians, U.; Engler, H.; et al. Neurobehavioural Activation during Peripheral Immunosuppression. Int. J. Neuropsychopharmacol. 2013, 16, 137–149eng
dcterms.referencesHörbelt, T.; Hetze, S.; Schedlowski, M.; Lückemann, L. Die gelernte Placeboantwort im Immunsystem. Nervenarzt 2020, 91, 667–674.eng
dcterms.referencesWirth, T.; Ober, K.; Prager, G.; Vogelsang, M.; Benson, S.; Witzke, O.; Kribben, A.; Engler, H.; Schedlowski, M. Repeated Recall of Learned Immunosuppression: Evidence from Rats and Men. Brain Behav. Immun. 2011, 25, 1444–1451.eng
dcterms.referencesKirchhof, J.; Petrakova, L.; Brinkhoff, A.; Benson, S.; Schmidt, J.; Unteroberdörster, M.; Wilde, B.; Kaptchuk, T.J.; Witzke, O.; Schedlowski, M. Learned Immunosuppressive Placebo Responses in Renal Transplant Patients. Proc. Natl. Acad. Sci. USA 2018, 115, 4223–4227.eng
dcterms.referencesLueckemann, L.; Bösche, K.; Engler, H.; Schwitalla, J.-C.; Hadamitzky, M.; Schedlowski, M. Pre-Exposure to the Unconditioned or Conditioned Stimulus Does Not Affect Learned Immunosuppression in Rats. Brain Behav. Immun. 2016, 51, 252–257.eng
dcterms.referencesBuske-Kirschbaum, A.; Kirschbaum, C.; Stierle, H.; Lehnert, H.; Hellhammer, D. Conditioned Increase of Natural Killer Cell Activity (NKCA) in Humans. Psychosom. Med. 1992, 54, 123–132.eng
dcterms.referencesBuske-Kirschbaum, A.; Kirschbaum, C.; Stierle, H.; Jabaij, L.; Hellhammer, D. Conditioned Manipulation of Natural Killer (NK) Cells in Humans Using a Discriminative Learning Protocol. Biol. Psychol. 1994, 38, 143–155eng
dcterms.referencesGrigoleit, J.-S.; Kullmann, J.S.; Winkelhaus, A.; Engler, H.; Wegner, A.; Hammes, F.; Oberbeck, R.; Schedlowski, M. Single-Trial Conditioning in a Human Taste-Endotoxin Paradigm Induces Conditioned Odor Aversion but Not Cytokine Responses. Brain Behav. Immun. 2012, 26, 234–238.eng
dcterms.referencesCoover, G.D.; Sutton, B.R.; Heybach, J.P. Conditioning Decreases in Plasma Corticosterone Level in Rats by Paring Stimuli with Daily Feedings. J. Comp. Physiol. Psychol. 1977, 91, 716–726.eng
dcterms.referencesBenedetti, F.; Pollo, A.; Lopiano, L.; Lanotte, M.; Vighetti, S.; Rainero, I. Conscious Expectation and Unconscious Conditioning in Analgesic, Motor, and Hormonal Placebo/Nocebo Responses. J. Neurosci. 2003, 23, 4315–4323.eng
dcterms.referencesBarreto, R.E.; Volpato, G.L. Evaluating Feeding as Unconditioned Stimulus for Conditioning of an Endocrine Effect in Nile Tilapia. Physiol. Behav. 2007, 92, 867–872.eng
dcterms.referencesAder, R. Conditioned Adrenocortical Steroid Elevations in the Rat. J. Comp. Physiol. Psychol. 1976, 90, 1156–1163.eng
dcterms.referencesHall, G.; Stockhorst, U.; Enck, P.; Klosterhalfen, S. Overshadowing and Latent Inhibition in Nausea-Based Context Conditioning in Humans: Theoretical and Practical Implications. Q. J. Exp. Psychol. 2016, 69, 1227–1238.eng
dcterms.referencesSabbioni, M.E.; Bovbjerg, D.H.; Mathew, S.; Sikes, C.; Lasley, B.; Stokes, P.E. Classically Conditioned Changes in Plasma Cortisol Levels Induced by Dexamethasone in Healthy Men. FASEB J. 1997, 11, 1291–1296.eng
dcterms.referencesDavis, K.W.; Cepeda-Benito, A.; Harraid, J.H.; Wellman, P.J. Plasma Corticosterone in the Rat in Response to Nicotine and Saline Injections in a Context Previously Paired or Unpaired with Nicotine. Psychopharmacology 2005, 180, 466–472.eng
dcterms.referencesStockhorst, U.; Gritzmann, E.; Klopp, K.; Schottenfeld-Naor, Y.; Hubinger, A.; Berresheim, H.-W.; Steingruber, H.-J.; Gries, F.A. Classical Conditioning of Insulin Effects in Healthy Humans. Psychosom. Med. 1999, 61, 424–435.eng
dcterms.referencesDetke, M.J.; Brandon, S.E.; Weingarten, H.P.; Rodin, J.; Wagner, A.R. Modulation of Behavioral and Insulin Responses by Contextual Stimuli Paired with Food. Physiol. Behav. 1989, 45, 845–851.eng
dcterms.referencesRoozendaal, B.; Oldenburger, W.P.; Strubbe, J.H.; Koolhaas, J.M.; Bohus, B. The Central Amygdala Is Involved in the Conditioned but Not in the Meal-Induced Cephalic Insulin Response in the Rat. Neurosci. Lett. 1990, 116, 210–215.eng
dcterms.referencesStockhorst, U.; Mahl, N.; Krueger, M.; Huenig, A.; Schottenfeld-Naor, Y.; Huebinger, A.; Berresheim, H.-W.; Steingrueber, H.-J.; Scherbaum, W.A. Classical Conditioning and Conditionability of Insulin and Glucose Effects in Healthy Humans. Physiol. Behav. 2004, 81, 375–388.eng
dcterms.referencesStockhorst, U.; de Fries, D.; Steingrueber, H.-J.; Scherbaum, W.A. Unconditioned and Conditioned Effects of Intranasally Administered Insulin vs. Placebo in Healthy Men: A Randomised Controlled Trial. Diabetologia 2011, 54, 1502–1506.eng
dcterms.referencesOverduin, J.; Jansen, A. Conditioned Insulin and Blood Sugar Responses in Humans in Relation to Binge Eating. Physiol. Behav. 1997, 61, 569–575.eng
dcterms.referencesOnaka, T.; Yagi, K. Oxytocin Release from the Neurohypophysis after the Taste Stimuli Previously Paired with Intravenous Cholecystokinin in Anaesthetized Rats. J. Neuroendocrinol. 1998, 10, 309–316.eng
dcterms.referencesTancin, V.; Kraetzl, W.-D.; Schams, D.; Bruckmaier, R.M. The Effects of Conditioning to Suckling, Milking and of Calf Presence on the Release of Oxytocin in Dairy Cows. Appl. Anim. Behav. Sci. 2001, 72, 235–246.eng
dcterms.referencesGraham, J.M.; Desjardins, C. Classical Conditioning: Induction of Luteinizing Hormone and Testosterone Secretion in Anticipation of Sexual Activity. Science 1980, 210, 1039–1041.eng
dcterms.referencesGolombek, D.A.; Chuluyan, H.E.; Kanterewicz, B.I.; Cardinali, D.P. Increased Pineal Melatonin Content Coupled to Restricted Water Availability in a Pavlovian Conditioning Paradigm in Rats. J. Neural Transm. 1994, 98, 237–246.eng
dcterms.referencesKeller, A.; Akintola, T.; Colloca, L. Placebo Analgesia in Rodents: Current and Future Research. Int. Rev. Neurobiol. 2018, 138, 1–15.eng
dcterms.referencesAnnoni, M.; Miller, F.G. Placebos in Clinical Practice: An Ethical Overview. Douleur Analg. 2014, 27, 215–220eng
dcterms.referencesAmerican Medical Association. American Medical Association Code of Ethics Opinion 8.083 (2006) Placebo Use in Clinical Practice; American Medical Association: Chicago, IL, USA, 2006.eng
dcterms.referencesCharlesworth, J.E.G.; Petkovic, G.; Kelley, J.M.; Hunter, M.; Onakpoya, I.; Roberts, N.; Miller, F.G.; Howick, J. Effects of Placebos without Deception Compared with No Treatment: A Systematic Review and Meta-Analysis. J. Evid. Based Med. 2017, 10, 97–107.eng
dcterms.referencesCarvalho, C.; Caetano, J.M.; Cunha, L.; Rebouta, P.; Kaptchuk, T.J.; Kirsch, I. Open-Label Placebo Treatment in Chronic Low Back Pain: A Randomized Controlled Trial. Pain 2016, 157, 2766–2772.eng
dcterms.referencesKaptchuk, T.J.; Friedlander, E.; Kelley, J.M.; Sanchez, M.N.; Kokkotou, E.; Singer, J.P.; Kowalczykowski, M.; Miller, F.G.; Kirsch, I.; Lembo, A.J. Placebos without Deception: A Randomized Controlled Trial in Irritable Bowel Syndrome. PLoS ONE 2010, 5, e15591.eng
dcterms.referencesKelley, J.M.; Kaptchuk, T.J.; Cusin, C.; Lipkin, S.; Fava, M. Open-Label Placebo for Major Depressive Disorder: A Pilot Randomized Controlled Trial. Psychother. Psychosom. 2012, 81, 312–314.eng
dcterms.referencesKam-Hansen, S.; Jakubowski, M.; Kelley, J.M.; Kirsch, I.; Hoaglin, D.C.; Kaptchuk, T.J.; Burstein, R. Altered Placebo and Drug Labeling Changes the Outcome of Episodic Migraine Attacks. Sci. Transl. Med. 2014, 6, 218ra5.eng
dcterms.referencesKrueger, G.G.; Elewski, B.; Papp, K.; Wang, A.; Zitnik, R.; Jahreis, A. Patients with Psoriasis Respond to Continuous Open-Label Etanercept Treatment after Initial Incomplete Response in a Randomized, Placebo-Controlled Trial. J. Am. Acad. Dermatol. 2006, 54, S112–S119.eng
dcterms.referencesSandler, A.D.; Bodfish, J.W. Open-Label Use of Placebos in the Treatment of ADHD: A Pilot Study. Child Care Health Dev. 2008, 34, 104–110.eng
dcterms.referencesJacobs, L.D.; Cookfair, D.L.; Rudick, R.A.; Herndon, R.M.; Richert, J.R.; Salazar, A.M.; Fischer, J.S.; Goodkin, D.E.; Granger, C.V.; Simon, J.H.; et al. Intramuscular Interferon Beta-1a for Disease Progression in Relapsing Multiple Sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 1996, 39, 285–294.eng
dcterms.referencesFaria, V.; Gingnell, M.; Hoppe, J.M.; Hjorth, O.; Alaie, I.; Frick, A.; Hultberg, S.; Wahlstedt, K.; Engman, J.; Månsson, K.N.T.; et al. Do You Believe It? Verbal Suggestions Influence the Clinical and Neural Effects of Escitalopram in Social Anxiety Disorder: A Randomized Trial. EBio Med. 2017, 24, 179–188eng
dcterms.referencesGoebel, M.U.; Meykadeh, N.; Kou, W.; Schedlowski, M.; Hengge, U.R. Behavioral Conditioning of Antihistamine Effects in Patients with Allergic Rhinitis. Psychother. Psychosom. 2008, 77, 227–234.eng
dcterms.referencesGoebel, M.U.; Meykadeh, N.; Kou, W.; Schedlowski, M.; Hengge, U.R. Behavioral Conditioning of Antihistamine Effects in Patients with Allergic Rhinitis. Psychother. Psychosom. 2008, 77, 227–234.eng
dcterms.referencesBardo, M.T.; Valone, J.M. Morphine-Conditioned Analgesia Using a Taste Cue: Dissociation of Taste Aversion and Analgesia. Psychopharmacology 1994, 114, 269–274.eng
dcterms.referencesMiller, J.S.; Kelly, K.S.; Neisewander, J.L.; McCoy, D.F.; Bardo, M.T. Conditioning of Morphine-Induced Taste Aversion and Analgesia. Psychopharmacology 1990, 101, 472–480.eng
dcterms.referencesValone, J.M.; Randall, C.K.; Kraemer, P.J.; Bardo, M.T. Olfactory Cues and Morphine-Induced Conditioned Analgesia in Rats. Pharmacol. Biochem. Behav. 1998, 60, 115–118eng
dcterms.referencesAkintola, T.; Tricou, C.; Raver, C.; Castro, A.; Colloca, L.; Keller, A. In Search of a Rodent Model of Placebo Analgesia in Chronic Orofacial Neuropathic Pain. Neurobiol. Pain 2019, 6, 100033.eng
dcterms.referencesMcNabb, C.T.; White, M.M.; Harris, A.L.; Fuchs, P.N. The Elusive Rat Model of Conditioned Placebo Analgesia. Pain 2014, 155, 2022–2032.eng
dcterms.referencesZeng, Y.; Hu, D.; Yang, W.; Hayashinaka, E.; Wada, Y.; Watanabe, Y.; Zeng, Q.; Cui, Y. A Voxel-Based Analysis of Neurobiological Mechanisms in Placebo Analgesia in Rats. Neuroimage 2018, 178, 602–612.eng
dcterms.referencesMbizvo, G.K.; Nolan, S.J.; Nurmikko, T.J.; Goebel, A. Placebo Responses in Long-Standing Complex Regional Pain Syndrome: A Systematic Review and Meta-Analysis. J. Pain 2015, 16, 99–115.eng
dcterms.referencesLoder, E.; Goldstein, R.; Biondi, D. Placebo Effects in Oral Triptan Trials: The Scientific and Ethical Rationale for Continued Use of Placebo Controls. Cephalalgia 2005, 25, 124–131.eng
dcterms.referencesMeissner, K.; Fässler, M.; Rücker, G.; Kleijnen, J.; Hróbjartsson, A.; Schneider, A.; Antes, G.; Linde, K. Differential Effectiveness of Placebo Treatments: A Systematic Review of Migraine Prophylaxis. JAMA Intern. Med. 2013, 173, 1941–1951.eng
dcterms.referencesCragg, J.J.; Warner, F.M.; Finnerup, N.B.; Jensen, M.P.; Mercier, C.; Richards, J.S.; Wrigley, P.; Soler, D.; Kramer, J.L.K. Meta-Analysis of Placebo Responses in Central Neuropathic Pain: Impact of Subject, Study, and Pain Characteristics. Pain 2016, 157, 530–540.eng
dcterms.referencesCastelnuovo, G.; Giusti, E.M.; Manzoni, G.M.; Saviola, D.; Gabrielli, S.; Lacerenza, M.; Pietrabissa, G.; Cattivelli, R.; Spatola, C.A.M.; Rossi, A.; et al. What Is the Role of the Placebo Effect for Pain Relief in Neurorehabilitation? Clinical Implications from the Italian Consensus Conference on Pain in Neurorehabilitation. Front. Neurol. 2018, 9, 310.eng
dcterms.referencesCepeda, M.S.; Berlin, J.A.; Gao, C.Y.; Wiegand, F.; Wada, D.R. Placebo Response Changes Depending on the Neuropathic Pain Syndrome: Results of a Systematic Review and Meta-Analysis. Pain Med. 2012, 13, 575–595.eng
dcterms.referencesHäuser, W.; Sarzi-Puttini, P.; Tölle, T.R.; Wolfe, F. Placebo and Nocebo Responses in Randomised Controlled Trials of Drugs Applying for Approval for Fibromyalgia Syndrome Treatment: Systematic Review and Meta-Analysis. Clin. Exp. Rheumatol. 2012, 30, 78–87eng
dcterms.referencesMacedo, A.; Baños, J.-E.; Farré, M. Placebo Response in the Prophylaxis of Migraine: A Meta-Analysis. Eur. J. Pain 2008, 12, 68–75.eng
dcterms.referencesSchneider, T.; Luethi, J.; Mauermann, E.; Bandschapp, O.; Ruppen, W. Pain Response to Open Label Placebo in Induced Acute Pain in Healthy Adult Males. Anesthesiology 2020, 132, 571–580.eng
dcterms.referencesDamien, J.; Colloca, L.; Bellei-Rodriguez, C.-É.; Marchand, S. Pain Modulation: From Conditioned Pain Modulation to Placebo and Nocebo Effects in Experimental and Clinical Pain. Int. Rev. Neurobiol. 2018, 139, 255–296.eng
dcterms.referencesKlinger, R.; Stuhlreyer, J.; Schwartz, M.; Schmitz, J.; Colloca, L. Clinical Use of Placebo Effects in Patients with Pain Disorders. Int. Rev. Neurobiol. 2018, 139, 107–128.eng
dcterms.referencesDarnall, B.D.; Colloca, L. Optimizing Placebo and Minimizing Nocebo to Reduce Pain, Catastrophizing, and Opioid Use: A Review of the Science and an Evidence-Informed Clinical Toolkit. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 139, pp. 129–157. ISBN 978-0-12-815416-8.eng
dcterms.referencesDiederich, N.J.; Goetz, C.G. The Placebo Treatments in Neurosciences: New Insights from Clinical and Neuroimaging Studies. Neurology 2008, 71, 677–684.eng
dcterms.referencesKim, J.Y.; Chung, E.J.; Lee, W.Y.; Shin, H.Y.; Lee, G.H.; Choe, Y.-S.; Choi, Y.; Kim, B.J. Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation in Parkinson’s Disease: Analysis of [11C] Raclopride PET Study. Mov. Disord. 2008, 23, 207–211.eng
dcterms.referencesKo, J.H.; Feigin, A.; Mattis, P.J.; Tang, C.C.; Ma, Y.; Dhawan, V.; During, M.J.; Kaplitt, M.G.; Eidelberg, D. Network Modulation Following Sham Surgery in Parkinson’s Disease. J. Clin. Investig. 2014, 124, 3656–3666.eng
dcterms.referencesSchmidt, L.; Braun, E.K.; Wager, T.D.; Shohamy, D. Mind Matters: Placebo Enhances Reward Learning in Parkinson’s Disease. Nat. Neurosci. 2014, 17, 1793–1797.eng
dcterms.referencesEspay, A.J.; Norris, M.M.; Eliassen, J.C.; Dwivedi, A.; Smith, M.S.; Banks, C.; Allendorfer, J.B.; Lang, A.E.; Fleck, D.E.; Linke, M.J.; et al. Placebo Effect of Medication Cost in Parkinson Disease: A Randomized Double-Blind Study. Neurology 2015, 84, 794–802.eng
dcterms.referencesShetty, N.; Friedman, J.H.; Kieburtz, K.; Marshall, F.J.; Oakes, D. The Placebo Response in Parkinson’s Disease. Parkinson Study Group. Clin. Neuropharmacol. 1999, 22, 207–212.eng
dcterms.referencesDiamond, S.G.; Markham, C.H.; Treciokas, L.J. Double-Blind Trial of Pergolide for Parkinson’s Disease. Neurology 1985, 35, 291–295.eng
dcterms.referencesGoetz, C.G.; Leurgans, S.; Raman, R.; Stebbins, G.T. Objective Changes in Motor Function during Placebo Treatment in PD. Neurology 2000, 54, 710–714.eng
dcterms.referencesGoetz, C.G.; Wuu, J.; McDermott, M.P.; Adler, C.H.; Fahn, S.; Freed, C.R.; Hauser, R.A.; Olanow, W.C.; Shoulson, I.; Tandon, P.K.; et al. Placebo Response in Parkinson’s Disease: Comparisons among 11 Trials Covering Medical and Surgical Interventions. Mov. Disord. 2008, 23, 690–699.eng
dcterms.referencesGoetz, C.G.; Leurgans, S.; Raman, R. Parkinson Study Group Placebo-Associated Improvements in Motor Function: Comparison of Subjective and Objective Sections of the UPDRS in Early Parkinson’s Disease. Mov. Disord. 2002, 17, 283–288.eng
dcterms.referencesBenedetti, F.; Frisaldi, E.; Carlino, E.; Giudetti, L.; Pampallona, A.; Zibetti, M.; Lanotte, M.; Lopiano, L. Teaching Neurons to Respond to Placebos. J. Physiol. 2016, 594, 5647–5660.eng
dcterms.referencesDumitriu, A.; Popescu, B.O. Placebo Effects in Neurological Diseases. J. Med. Life 2010, 3, 114–121.eng
dcterms.referencesOken, B.S. Placebo Effects: Clinical Aspects and Neurobiology. Brain 2008, 131, 2812–2823.eng
dcterms.referencesBeyenburg, S.; Stavem, K.; Schmidt, D. Placebo-Corrected Efficacy of Modern Antiepileptic Drugs for Refractory Epilepsy: Systematic Review and Meta-Analysis. Epilepsia 2010, 51, 7–26.eng
dcterms.referencesMarson, A.G.; Kadir, Z.A.; Chadwick, D.W. New Antiepileptic Drugs: A Systematic Review of Their Efficacy and Tolerability. BMJ 1996, 313, 1169–1174.eng
dcterms.referencesGuekht, A.B.; Korczyn, A.D.; Bondareva, I.B.; Gusev, E.I. Placebo Responses in Randomized Trials of Antiepileptic Drugs. Epilepsy Behav. 2010, 17, 64–69.eng
dcterms.referencesBrown, W.A. Placebo as a Treatment for Depression. Neuropsychopharmacology 1994, 10, 265–269.eng
dcterms.referencesRobinson, L.A.; Berman, J.S.; Neimeyer, R.A. Psychotherapy for the Treatment of Depression: A Comprehensive Review of Controlled Outcome Research. Psychol. Bull. 1990, 108, 30–49.eng
dcterms.referencesRief, W.; Nestoriuc, Y.; Weiss, S.; Welzel, E.; Barsky, A.J.; Hofmann, S.G. Meta-Analysis of the Placebo Response in Antidepressant Trials. J. Affect. Disord. 2009, 118, 1–8.eng
dcterms.referencesMavissakalian, M. The Placebo Effect in Agoraphobia. J. Nerv. Ment. Dis. 1987, 175, 95–99.eng
dcterms.referencesMellergård, M.; Rosenberg, N.K. Patterns of Response during Placebo Treatment of Panic Disorder. Acta Psychiatry Scand. 1990, 81, 340–344.eng
dcterms.referencesPiercy, M.A.; Sramek, J.J.; Kurtz, N.M.; Cutler, N.R. Placebo Response in Anxiety Disorders. Ann. Pharmacother. 1996, 30, 1013–1019.eng
dcterms.referencesHuppert, J.D.; Schultz, L.T.; Foa, E.B.; Barlow, D.H.; Davidson, J.R.T.; Gorman, J.M.; Shear, M.K.; Simpson, H.B.; Woods, S.W. Differential Response to Placebo among Patients with Social Phobia, Panic Disorder, and Obsessive-Compulsive Disorder. Am. J. Psychiatry 2004, 161, 1485–1487.eng
dcterms.referencesKhan, A.; Kolts, R.L.; Rapaport, M.H.; Krishnan, K.R.R.; Brodhead, A.E.; Browns, W.A. Magnitude of Placebo Response and Drug-Placebo Differences across Psychiatric Disorders. Psychol. Med. 2005, 35, 743–749eng
dcterms.referencesStein, D.J.; Baldwin, D.S.; Dolberg, O.T.; Despiegel, N.; Bandelow, B. Which Factors Predict Placebo Response in Anxiety Disorders and Major Depression? An Analysis of Placebo-Controlled Studies of Escitalopram. J. Clin. Psychiatry 2006, 67, 1741–1746.eng
dcterms.referencesPecknold, J.C.; Swinson, R.P.; Kuch, K.; Lewis, C.P. Alprazolam in Panic Disorder and Agoraphobia: Results from a Multicenter Trial. III. Discontinuation Effects. Arch. Gen. Psychiatry 1988, 45, 429–436.eng
dcterms.referencesBallenger, J.C.; Burrows, G.D.; DuPont, R.L.; Lesser, I.M.; Noyes, R.; Pecknold, J.C.; Rifkin, A.; Swinson, R.P. Alprazolam in Panic Disorder and Agoraphobia: Results from a Multicenter Trial. I. Efficacy in Short-Term Treatment. Arch. Gen. Psychiatry 1988, 45, 413–422.eng
dcterms.referencesWeiss, R.D.; O’malley, S.S.; Hosking, J.D.; Locastro, J.S.; Swift, R.; COMBINE Study Research Group. Do Patients with Alcohol Dependence Respond to Placebo? Results from the COMBINE Study. J. Stud. Alcohol Drugs 2008, 69, 878–884.eng
dcterms.referencesAder, R.; Cohen, N. Behaviorally Conditioned Immunosuppression and Murine Systemic Lupus Erythematosus. Science 1982, 215, 1534–1536.eng
dcterms.referencesKlosterhalfen, W.; Klosterhalfen, S. Pavlovian Conditioning of Immunosuppression Modifies Adjuvant Arthritis in Rats. Behav. Neurosci. 1983, 97, 663–666.eng
dcterms.referencesKemeny, M.E.; Rosenwasser, L.J.; Panettieri, R.A.; Rose, R.M.; Berg-Smith, S.M.; Kline, J.N. Placebo Response in Asthma: A Robust and Objective Phenomenon. J. Allergy Clin. Immunol. 2007, 119, 1375–1381.eng
dcterms.referencesKaptchuk, T.J.; Kelley, J.M.; Deykin, A.; Wayne, P.M.; Lasagna, L.C.; Epstein, I.O.; Kirsch, I.; Wechsler, M.E. Do “Placebo Responders” Exist? Contemp. Clin. Trials 2008, 29, 587–595.eng
dcterms.referencesOlness, K.; Ader, R. Conditioning as an Adjunct in the Pharmacotherapy of Lupus Erythematosus. J. Dev. Behav. Pediatr. 1992, 13, 124–125.eng
dcterms.referencesVits, S.; Cesko, E.; Benson, S.; Rueckert, A.; Hillen, U.; Schadendorf, D.; Schedlowski, M. Cognitive Factors Mediate Placebo Responses in Patients with House Dust Mite Allergy. PLoS ONE 2013, 8, e79576.eng
dcterms.referencesMeissner, K.; Bingel, U.; Colloca, L.; Wager, T.D.; Watson, A.; Flaten, M.A. The Placebo Effect: Advances from Different Methodological Approaches. J. Neurosci. 2011, 31, 16117–16124.eng
dcterms.referencesVits, S.; Cesko, E.; Enck, P.; Hillen, U.; Schadendorf, D.; Schedlowski, M. Behavioural Conditioning as the Mediator of Placebo Responses in the Immune System. Philos. Trans. R Soc. Lond. B Biol. Sci. 2011, 366, 1799–1807.eng
dcterms.referencesSchaefer, M.; Harke, R.; Denke, C. Open-Label Placebos Improve Symptoms in Allergic Rhinitis: A Randomized Controlled Trial. Psychother. Psychosom. 2016, 85, 373–374.eng
dcterms.referencesMay, O.; Hansen, N.C. Comparison of Terbutaline, Isotonic Saline, Ambient Air and Non-Treatment in Patients with Reversible Chronic Airway Obstruction. Eur. Respir. J. 1988, 1, 527–530.eng
dcterms.referencesIsenberg, S.A.; Lehrer, P.M.; Hochron, S. The Effects of Suggestion on Airways of Asthmatic Subjects Breathing Room Air as a Suggested Bronchoconstrictor and Bronchodilator. J. Psychosom. Res. 1992, 36, 769–776.eng
dcterms.referencesWechsler, M.E.; Kelley, J.M.; Boyd, I.O.E.; Dutile, S.; Marigowda, G.; Kirsch, I.; Israel, E.; Kaptchuk, T.J. Active Albuterol or Placebo, Sham Acupuncture, or No Intervention in Asthma. N. Engl. J. Med. 2011, 365, 119–126.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones