Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Garavito De Egea, Gloria | |
dc.contributor.author | Domínguez‑Vargas, Alex | |
dc.contributor.author | Fang, Luis | |
dc.contributor.author | Pereira‑Sanandrés, Nicole | |
dc.contributor.author | Rodríguez, Jonathan | |
dc.contributor.author | Aroca‑Martinez, Gustavo | |
dc.contributor.author | Espítatela, Zilac | |
dc.contributor.author | Malagón, Clara | |
dc.contributor.author | Iglesias‑Gamarra, Antonio | |
dc.contributor.author | Moreno‑Woo, Ana | |
dc.contributor.author | López‑Lluch, Guillermo | |
dc.contributor.author | Egea, Eduardo | |
dc.date.accessioned | 2024-03-15T20:31:19Z | |
dc.date.available | 2024-03-15T20:31:19Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Background Adiponectin and leptin are pivotal in the regulation of metabolism. Pediatric lupus nephritis (pLN), a manifestation of childhood systemic lupus erythematosus (SLE) affecting the kidneys, is associated with impaired adipokine levels, suggesting a role in pLN pathogenesis. The aim of this study was to explore the potential relationship between specific single-nucleotide polymorphisms (SNPs)—methylenetetrahydrofolate reductase (MTHFR) rs1801131 and fibrinogen gamma chain (FGG) rs2066865—and the serum levels of leptin and adiponectin in patients with pLN. Methods Ninety-eight pLN patients and one hundred controls were enrolled in the study. Serum leptin and adiponectin levels were measured using ELISA. DNA extraction and real-time PCR genotyping were performed for MTHFR rs1801131 and FGG rs2066865 SNPs. Results Compared to healthy controls, pLN patients exhibited significantly greater serum leptin (11.3 vs. 18.2 ng/ mL, p < 0.001) and adiponectin (18.2 vs. 2.7 ug/mL, p < 0.001). Adiponectin levels were positively correlated with proteinuria (p < 0.05), while leptin levels positively correlated with proteinuria, SLE disease activity index-2000 (SLEDAI-2K), and cyclophosphamide usage (all p < 0.05). There was no significant association between MTHFR rs1801131 or FGG rs2066865 SNPs and pLN in either codominant or allelic models (all p > 0.05). However, the AG genotype of FGG gene rs2066865 SNP was significantly associated with high leptin levels (> 15 ng/mL) (p = 0.01). Conclusion Serum adiponectin and leptin levels are associated with pathological manifestations of pLN. High leptin levels are associated with the AG genotype of FGG rs2066865 SNP in pLN patients, suggesting direct involvement in disease progression and potential utility as a disease biomarker. | eng |
dc.format.mimetype | spa | |
dc.identifier.citation | De Egea, G.G., Domínguez-Vargas, A., Fang, L. et al. Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study. Egypt J Med Hum Genet 25, 34 (2024). https://doi.org/10.1186/s43042-024-00507-4 | eng |
dc.identifier.doi | https://doi.org/10.1186/s43042-024-00507-4 | |
dc.identifier.issn | 20902441 (electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14374 | |
dc.identifier.url | https://jmhg.springeropen.com/articles/10.1186/s43042-024-00507-4 | |
dc.language.iso | eng | eng |
dc.publisher | Springer Nature | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Egyptian Journal of Medical Human Genetics | eng |
dc.source | Vol. 25 N° 34, (2024) | |
dc.subject | Pediatric lupus nephritis | eng |
dc.subject | Adiponectin | eng |
dc.subject | Leptin | eng |
dc.subject | MTHFR | eng |
dc.subject | FGG | eng |
dc.subject | Polymorphism | eng |
dc.title | Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23(7):615–635. https://doi.org/10.1016/j.molmed.2017.05.006 | eng |
dcterms.references | Pinto Peñaranda LF, Castro Mercado IL, Duque Caballero V, Márquez Hernández JD, Velásquez Franco CJ (2014) Factores de riesgo predictores de falla a la terapia de inducción de nefritis lúpica en una cohorte de pacientes colombianos. Reumatol Clínica 10(3):147–151. https://doi.org/10.1016/j.reuma.2013.09.005 | spa |
dcterms.references | Valdivielso JM, Rodríguez-Puyol D, Pascual J et al (2019) Atherosclerosis in chronic kidney disease. Arterioscler Thromb Vasc Biol 39(10):1938–1966. https://doi.org/10.1161/ATVBAHA.119.312705 | eng |
dcterms.references | Selzer F, Sutton-Tyrrell K, Fitzgerald SG et al (2004) Comparison of risk factors for vascular disease in the carotid artery and aorta in women with systemic lupus erythematosus. Arthritis Rheum 50(1):151–159. https://doi.org/10.1002/art.11418 | eng |
dcterms.references | Bruce IN, Urowitz MB, Gladman DD, Ibañez D, Steiner G (2003) Risk factors for coronary heart disease in women with systemic lupus erythematosus: the Toronto risk factor study. Arthritis Rheum 48(11):3159–3167. https://doi.org/10.1002/art.11296 | eng |
dcterms.references | Doria A (2003) Risk factors for subclinical atherosclerosis in a prospective cohort of patients with systemic lupus erythematosus. Ann Rheum Dis 62(11):1071–1077. https://doi.org/10.1136/ard.62.11.1071 | eng |
dcterms.references | Sozeri B, Deveci M, Dincel N, Mir S (2013) The early cardiovascular changes in pediatric patients with systemic lupus erythematosus. Pediatr Nephrol 28(3):471–476. https://doi.org/10.1007/s00467-012-2342-2 | eng |
dcterms.references | de Souza Barbosa V, Francescantônio PL, da Silva NA (2015) Leptin and adiponectin in patients with systemic lupus erythematosus: clinical and laboratory correlations. Rev Bras Reumatol (Engl Ed) 55(2):140–145. https://doi.org/10.1016/j.rbre.2014.08.013 | eng |
dcterms.references | Zhang TP, Li HM, Leng RX et al (2016) Plasma levels of adipokines in systemic lupus erythematosus patients. Cytokine 86:15–20. https://doi.org/10.1016/j.cyto.2016.07.008 | eng |
dcterms.references | Giannelou M, Nezos A, Fragkioudaki S et al (2018) Contribution of MTHFR gene variants in lupus related subclinical atherosclerosis. Clin Immunol 193:110–117. https://doi.org/10.1016/j.clim.2018.02.014 | eng |
dcterms.references | Li HM, Zhang TP, Leng RX et al (2016) Emerging role of adipokines in systemic lupus erythematosus. Immunol Res 64(4):820–830. https://doi.org/10.1007/s12026-016-8808-8 | eng |
dcterms.references | Petri M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg IH (1996) Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 348(9035):1120–1124. https://doi.org/10.1016/S0140-6736(96)03032-2 | eng |
dcterms.references | Santilli F, Davì G, Patrono C (2016) Homocysteine, methylenetetrahydrofolate reductase, folate status and atherothrombosis: a mechanistic and clinical perspective. Vascul Pharmacol 78:1–9. https://doi.org/10.1016/j.vph.2015.06.009 | eng |
dcterms.references | Zhou HY, Yuan M (2020) MTHFR polymorphisms (rs1801133) and systemic lupus erythematosus risk: a meta-analysis. Medicine 99(40):E22614. https://doi.org/10.1097/MD.0000000000022614 | eng |
dcterms.references | Dias S, Adam S, Rheeder P, Pheiffer C (2021) No association between ADIPOQ or MTHFR polymorphisms and gestational diabetes mellitus in South African women. Diabetes Metab Syndr Obes 14:791–800. https://doi.org/10.2147/DMSO.S294328 | eng |
dcterms.references | Luo Z, Lu Z, Muhammad I et al (2018) Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis 17(1):191. https://doi.org/10.1186/s12944-018-0837-y | eng |
dcterms.references | Kaiser R, Li Y, Chang M et al (2012) Genetic risk factors for thrombosis in systemic lupus erythematosus. J Rheumatol 39(8):1603–1610. https://doi.org/10.3899/jrheum.111451 | eng |
dcterms.references | Uitte De Willige S, Rietveld IM, Visser Mch De, Vos HL, Bertina RM (2007) Polymorphism 10034C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen γ′/γA mRNA ratio. J Thromb Haemost 5(6):1243–1249. https://doi.org/10.1111/j.1538-7836.2007.02566.x | eng |
dcterms.references | Drizlionoka K, Zariņš J, Ozoliņa A, Ņikitina-Zaķe L, Mamaja B (2019) Polymorphism rs2066865 in the fibrinogen gamma chain (FGG) gene increases plasma fibrinogen concentration and is associated with an increased microvascular thrombosis rate. Medicina. https://doi.org/10.3390/medicina55090563 | eng |
dcterms.references | Ozgokce C, Elci E, Yildizhan R (2020) C-reactive protein, fibrinogen, leptin, and adiponectin levels in women with polycystic ovary syndrome. J Obstet Gynecol India 70(6):490–496. https://doi.org/10.1007/s13224-020-01331-7 | eng |
dcterms.references | Hahn BH, McMahon MA, Wilkinson A et al (2012) American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 64(6):797–808. https://doi.org/10.1002/acr.21664 | eng |
dcterms.references | Ruiz Irastorza G, Espinosa G, Frutos MA et al (2012) Diagnosis and treatment of lupus nephritis consensus document from the systemic auto-immune disease group (GEAS) of the Spanish Society of Internal Medicine (SEMI) and Spanish Society of Nephrology (SEN). Nefrologia 32(Suppl 1):1–35. https://doi.org/10.3265/Nefrologia.pre2011.Dec.11298 | eng |
dcterms.references | Simón E, Del Barrio AS (2002) Leptina y obesidad. An Sist Sanit Navar 25(SUPPL. 1):53–64 | eng |
dcterms.references | Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: More than just another fat cell hormone? Diabetes Care 26(8):2442–2450. https://doi.org/10.2337/diacare.26.8.2442 | eng |
dcterms.references | Abella V, Scotece M, Conde J et al (2017) Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 13(2):100–109. https://doi.org/10.1038/nrrheum.2016.209 | eng |
dcterms.references | Almaani S, Meara A, Rovin BH (2017) Update on lupus nephritis. Clin J Am Soc Nephrol 12(5):825–835. https://doi.org/10.2215/CJN.05780616 | eng |
dcterms.references | Schwartzman-Morris J, Putterman C (2012) Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin Dev Immunol 2012:604892. https://doi.org/10.1155/2012/604892 | eng |
dcterms.references | Smekal A, Vaclavik J (2017) Adipokines and cardiovascular disease: a comprehensive review. Biomed Pap 161(1):31–40. https://doi.org/10.5507/bp.2017.002 | eng |
dcterms.references | Freitas Lima LC, Braga VDA, do Socorro de França Silva M et al (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. https://doi.org/10.3389/fphys.2015.00304 | eng |
dcterms.references | Abulaban KM, Brunner HI (2015) Biomarkers for childhood-onset systemic lupus erythematosus. Curr Rheumatol Rep 17(1):471. https://doi.org/10.1007/s11926-014-0471-2 | eng |
dcterms.references | Barbosa VD, Francescantônio PL, Silva NA (2015) Leptina e adiponectina no lúpus eritematoso sistêmico: correlações clínicas e laboratoriais. Rev Bras Reumatol 55(2):140–145. https://doi.org/10.1016/j.rbr.2014.08.014 | eng |
dcterms.references | Fantuzzi G (2008) Adiponectin and inflammation: consensus and controversy. J Allergy Clin Immunol 121(2):326–330. https://doi.org/10.1016/j.jaci.2007.10.018 | eng |
dcterms.references | Sada KE, Yamasaki Y, Maruyama M et al (2006) Altered levels of adipocytokines in association with insulin resistance in patients with systemic lupus erythematosus. J Rheumatol 33(8):1545–1552 | eng |
dcterms.references | Toussirot É, Gaugler B, Bouhaddi M, Nguyen NU, Saas P, Dumoulin G (2010) Elevated adiponectin serum levels in women with systemic autoimmune diseases. Mediat Inflamm 2010:1–6. https://doi.org/10.1155/2010/938408 | eng |
dcterms.references | Hutcheson J, Ye Y, Han J et al (2015) Resistin as a potential marker of renal disease in lupus nephritis. Clin Exp Immunol 179(3):435–443. https://doi.org/10.1111/cei.12473 | eng |
dcterms.references | Fujita H, Morii T, Koshimura J et al (2006) Possible relationship between adiponectin and renal tubular injury in diabetic nephropathy. Endocr J 53(6):745–752. https://doi.org/10.1507/endocrj.K06-016 | eng |
dcterms.references | Tsioufis C, Dimitriadis K, Chatzis D et al (2005) Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol 96(7):946–951. https://doi.org/10.1016/j.amjcard.2005.05.052 | eng |
dcterms.references | Rovin BH, Song H, Hebert LA et al (2005) Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int 68(4):1825–1833. https://doi.org/10.1111/j.1523-1755.2005.00601.x | eng |
dcterms.references | Kamel SM, Abdel Azeem ME, Mohamed RA, Kamel MM, Abdel Aleem EA (2023) High serum leptin and adiponectin levels as biomarkers of disease progression in Egyptian patients with active systemic lupus erythematosus. Int J Immunopathol Pharmacol 37:3946320231154988. https://doi.org/10.1177/03946320231154988 | eng |
dcterms.references | Reagan M, Salim NA, Junaidi, Hermansyah (2019) Comparison of leptin serum levels between systemic lupus erythematosus (SLE) and non-SLE patients at Mohammad Hoesin Hospital Palembang. J Phys Conf Ser 1246(1):012046. https://doi.org/10.1088/1742-6596/1246/1/012046 | eng |
dcterms.references | Wisłowska M, Rok M, Stępień K, Kuklo-Kowalska A (2008) Serum leptin in systemic lupus erythematosus. Rheumatol Int 28(5):467–473. https://doi.org/10.1007/s00296-008-0526-7 | eng |
dcterms.references | Lee YH, Song GG (2018) Association between circulating leptin levels and systemic lupus erythematosus: an updated meta-analysis. Lupus 27(3):428–435. https://doi.org/10.1177/0961203317725587 | eng |
dcterms.references | McMahon M, Skaggs BJ, Sahakian L et al (2011) High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids. Ann Rheum Dis 70(9):1619–1624. https://doi.org/10.1136/ard.2010.142737 | eng |
dcterms.references | Vadacca M, Zardi EM, Margiotta D et al (2013) Leptin, adiponectin and vascular stiffness parameters in women with systemic lupus erythematosus. Intern Emerg Med 8(8):705–712. https://doi.org/10.1007/s11739-011-0726-0 | eng |
dcterms.references | Tam LS, Fan B, Li EK et al (2003) Patients with systemic lupus erythematosus show increased platelet activation and endothelial dysfunction induced by acute hyperhomocysteinemia. J Rheumatol 30(7):1479–1484 | eng |
dcterms.references | Salimi S, Keshavarzi F, Mohammadpour-Gharehbagh A et al (2017) Polymorphisms of the folate metabolizing enzymes: association with SLE susceptibility and in silico analysis. Gene 637:161–172. https://doi.org/10.1016/j.gene.2017.09.037 | eng |
dcterms.references | Ossa H, Aquino J, Pereira R et al (2016) Outlining the ancestry landscape of colombian admixed populations. PLoS ONE 11(10):e0164414. https://doi.org/10.1371/journal.pone.0164414 | eng |
dcterms.references | Von Feldt JM, Scalzi LV, Cucchiara AJ et al (2006) Homocysteine levels and disease duration independently correlate with coronary artery calcification in patients with systemic lupus erythematosus. Arthritis Rheum 54(7):2220–2227. https://doi.org/10.1002/art.21967 | eng |
dcterms.references | Rua-Figueroa I, Arencibia-Mireles O, Elvira M et al (2010) Factors involved in the progress of preclinical atherosclerosis associated with systemic lupus erythematosus: a 2-year longitudinal study. Ann Rheum Dis 69(6):1136–1139. https://doi.org/10.1136/ard.2008.104349 | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | spa |