SGLT2 Inhibitors and how they work beyond the glucosuric effect. State of the art

datacite.rightshttp://purl.org/coar/access_right/c_14cb
dc.contributor.authorAristizábal‑Colorado, David
dc.contributor.authorOcampo‑Posada, Martín
dc.contributor.authorRivera‑Martínez, Wilfredo Antonio
dc.contributor.authorCorredor‑Rengifo, David
dc.contributor.authorRico‑Fontalvo, Jorge
dc.contributor.authorGómez‑Mesa, Juan Esteban
dc.contributor.authorDuque‑Ossman, John Jairo
dc.contributor.authorAbreu‑Lomba, Alin
dc.date.accessioned2024-08-26T22:11:31Z
dc.date.available2024-08-26T22:11:31Z
dc.date.issued2024
dc.description.abstractType 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group’s mechanism of action.eng
dc.format.mimetypepdf
dc.identifier.citationAristizábal-Colorado, D., Ocampo-Posada, M., Rivera-Martínez, W.A. et al. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs (2024). https://doi.org/10.1007/s40256-024-00673-1eng
dc.identifier.doihttps://doi.org/10.1007/s40256-024-00673-1
dc.identifier.issn1179187X (En línea)
dc.identifier.issn11753277 (Impreso)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/15416
dc.identifier.urlhttps://link.springer.com/article/10.1007/s40256-024-00673-1
dc.language.isoeng
dc.publisherSpringereng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceAmerican Journal of Cardiovascular Drugseng
dc.sourceAm J Cardiovasc Drugseng
dc.titleSGLT2 Inhibitors and how they work beyond the glucosuric effect. State of the arteng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científico
dcterms.referencesLiu L, Simon B, Shi J, Mallhi AK, Eisen HJ. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality: Evidence on health outcomes and antidiabetic treatment in United States adults. World J Diabetes. 2016;7:449–61. https://doi.org/10.4239/wjd.v7.i18.449.eng
dcterms.referencesNational Kidney Foundation. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis Off J Natl Kidney Found. 2012;60:850–86. https://doi.org/10.1053/j.ajkd.2012.07.005.eng
dcterms.referencesWu B, Bell K, Stanford A, Kern DM, Tunceli O, Vupputuri S, et al. Understanding CKD among patients with T2DM: prevalence, temporal trends, and treatment patterns—NHANES 2007–2012. BMJ Open Diabetes Res Care. 2016;4: e000154. https://doi.org/10.1136/bmjdrc-2015-000154.eng
dcterms.referencesMarso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827.eng
dcterms.referencesZinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720.eng
dcterms.referencesPerkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306. https://doi.org/10.1056/NEJMoa1811744.eng
dcterms.referencesMarx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur Heart J. 2023. https://doi.org/10.1093/eurheartj/ehad192.eng
dcterms.referencesMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.eng
dcterms.referencesCowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17:761–72. https://doi.org/10.1038/s41569-020-0406-8.eng
dcterms.referencesNeal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:2099. https://doi.org/10.1056/NEJMc1712572.eng
dcterms.referencesWiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57. https://doi.org/10.1056/NEJMoa1812389.eng
dcterms.referencesZelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet. 2019;393:31–9. https://doi.org/10.1016/S0140-6736(18)32590-X.eng
dcterms.referencesWright EM, Loo DD, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B, et al. “Active” sugar transport in eukaryotes. J Exp Biol. 1994;196:197–212. https://doi.org/10.1242/jeb.196.1.197.eng
dcterms.referencesBiegus J, Fudim M, Salah HM, Heerspink HJL, Voors AA, Ponikowski P. Sodium–glucose cotransporter-2 inhibitors in heart failure: Potential decongestive mechanisms and current clinical studies. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2967.eng
dcterms.referencesPacker M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023;20:443–62. https://doi.org/10.1038/s41569-022-00824-4.eng
dcterms.referencesSalvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022;23:3651. https://doi.org/10.3390/ijms23073651.eng
dcterms.referencesPalmiero G, Cesaro A, Vetrano E, Pafundi PC, Galiero R, Caturano A, et al. Impact of SGLT2 inhibitors on heart failure: from pathophysiology to clinical effects. Int J Mol Sci. 2021;22:5863. https://doi.org/10.3390/ijms22115863.eng
dcterms.referencesPabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 inhibitors and their mode of action in heart failure-has the mystery been unravelled? Curr Heart Fail Rep. 2021;18:315–28. https://doi.org/10.1007/s11897-021-00529-8.eng
dcterms.referencesTsai K-F, Chen Y-L, Chiou TT-Y, Chu T-H, Li L-C, Ng H-Y, et al. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxid Basel Switz. 2021;10:1166. https://doi.org/10.3390/antiox10081166.eng
dcterms.referencesStorgaard H, Gluud LL, Bennett C, Grøndahl MF, Christensen MB, Knop FK, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2016;11: e0166125. https://doi.org/10.1371/journal.pone.0166125.eng
dcterms.referencesRajeev SP, Cuthbertson DJ, Wilding JPH. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes Metab. 2016;18:125–34. https://doi.org/10.1111/dom.12578.eng
dcterms.referencesCefalu WT, Leiter LA, Yoon K-H, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet Lond Engl. 2013;382:941–50. https://doi.org/10.1016/S0140-6736(13)60683-2.eng
dcterms.referencesYagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017;9:78. https://doi.org/10.1186/s13098-017-0275-4.eng
dcterms.referencesXu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing m2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49. https://doi.org/10.1016/j.ebiom.2017.05.028.eng
dcterms.referencesYoussef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the full potential of SGLT2 inhibitors: expanding applications beyond glycemic control. Int J Mol Sci. 2023;24:6039. https://doi.org/10.3390/ijms24076039.eng
dcterms.referencesJin Z, Yuan Y, Zheng C, Liu S, Weng H. Effects of sodium-glucose co-transporter 2 inhibitors on liver fibrosis in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: an updated meta-analysis of randomized controlled trials. J Diabetes Complications. 2023;37: 108558. https://doi.org/10.1016/j.jdiacomp.2023.108558.eng
dcterms.referencesSzekeres Z, Sandor B, Bognar Z, Ramadan FHJ, Palfi A, Bodis B, et al. Clinical study of metabolic parameters, leptin and the SGLT2 inhibitor empagliflozin among patients with obesity and type 2 diabetes. Int J Mol Sci. 2023;24:4405. https://doi.org/10.3390/ijms24054405.eng
dcterms.referencesYaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Sodium-glucose co-transporter-2 inhibitors and epicardial adiposity. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2023;180: 106322. https://doi.org/10.1016/j.ejps.2022.106322.eng
dcterms.referencesGreulich S, Maxhera B, Vandenplas G, de Wiza DH, Smiris K, Mueller H, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation. 2012;126:2324–34. https://doi.org/10.1161/CIRCULATIONAHA.111.039586.eng
dcterms.referencesCamarena V, Sant D, Mohseni M, Salerno T, Zaleski ML, Wang G, et al. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr Metab Cardiovasc Dis NMCD. 2017;27:739–50. https://doi.org/10.1016/j.numecd.2017.05.010.eng
dcterms.referencesIacobellis G, Barbaro G. Epicardial adipose tissue feeding and overfeeding the heart. Nutr Burbank Los Angel Cty Calif. 2019;59:1–6. https://doi.org/10.1016/j.nut.2018.07.002.eng
dcterms.referencesPatel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22:889–902. https://doi.org/10.1007/s10741-017-9644-1.eng
dcterms.referencesSattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia. 2018;61:2155–63. https://doi.org/10.1007/s00125-018-4702-3.eng
dcterms.referencesScheen AJ. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: a common comorbidity associated with severe complications. Diabetes Metab. 2019;45:213–23. https://doi.org/10.1016/j.diabet.2019.01.008.eng
dcterms.referencesBajaj HS, Brown RE, Bhullar L, Sohi N, Kalra S, Aronson R. SGLT2 inhibitors and incretin agents: associations with alanine aminotransferase activity in type 2 diabetes. Diabetes Metab. 2018;44:493–9. https://doi.org/10.1016/j.diabet.2018.08.001.eng
dcterms.referencesBurns KD, Cherney D. Renal angiotensinogen and sodium-glucose cotransporter-2 inhibition: insights from experimental diabetic kidney disease. Am J Nephrol. 2019;49:328–30. https://doi.org/10.1159/000499598.eng
dcterms.referencesBaker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262-275.e9. https://doi.org/10.1016/j.jash.2014.01.007.eng
dcterms.referencesTeo YH, Teo YN, Syn NL, Kow CS, Yoong CSY, Tan BYQ, et al. Effects of sodium/glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular and metabolic outcomes in patients without diabetes mellitus: a systematic review and meta-analysis of randomized-controlled trials. J Am Heart Assoc. 2021;10: e019463. https://doi.org/10.1161/JAHA.120.019463.eng
dcterms.referencesFioretto P, Mansfield TA, Ptaszynska A, Yavin Y, Johnsson E, Parikh S. Long-term safety of dapagliflozin in older patients with type 2 diabetes mellitus: a pooled analysis of phase IIb/III studies. Drugs Aging. 2016;33:511–22. https://doi.org/10.1007/s40266-016-0382-1.eng
dcterms.referencesOshima N, Onimaru H, Yamashiro A, Goto H, Tanoue K, Fukunaga T, et al. SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats. Hypertens Res Off J Jpn Soc Hypertens. 2024;47:46–54. https://doi.org/10.1038/s41440-023-01417-5.eng
dcterms.referencesAhwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res. 2024;47:2094–103. https://doi.org/10.1038/s41440-024-01723-6.eng
dcterms.referencesBarnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84. https://doi.org/10.1016/S2213-8587(13)70208-0.eng
dcterms.referencesJoannidis M, Klein SJ, Ostermann M. 10 myths about frusemide. Intensive Care Med. 2019;45:545–8. https://doi.org/10.1007/s00134-018-5502-4.eng
dcterms.referencesAristizabal D, Torres JMH, Ramirez N. Reconociendo la Congestión en Insuficiencia Cardiaca Aguda, Terapéuticas del Primer Mundo Adaptadas Para el Tercer Mundo. Interdiscip J Epidemiol Public Health 2022;5.spa
dcterms.referencesScheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019;18:295–311. https://doi.org/10.1080/14740338.2019.1602116.eng
dcterms.referencesLi N, Lv D, Zhu X, Wei P, Gui Y, Liu S, et al. Effects of SGLT2 Inhibitors on Renal Outcomes in Patients With Chronic Kidney Disease: A Meta-Analysis. Front Med. 2021. https://doi.org/10.3389/fmed.2021.728089.eng
dcterms.referencesVallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol JASN. 1999;10:2569–76. https://doi.org/10.1681/ASN.V10122569.eng
dcterms.referencesAlicic RZ, Johnson EJ, Tuttle KR. SGLT2 inhibition for the prevention and treatment of diabetic kidney disease: a review. Am J Kidney Dis Off J Natl Kidney Found. 2018;72:267–77. https://doi.org/10.1053/j.ajkd.2018.03.022.eng
dcterms.referencesCassis P, Locatelli M, Cerullo D, Corna D, Buelli S, Zanchi C, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018;3(e98720):98720. https://doi.org/10.1172/jci.insight.98720.eng
dcterms.referencesVallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306:F194-204. https://doi.org/10.1152/ajprenal.00520.2013.eng
dcterms.referencesBae JH, Park E-G, Kim S, Kim SG, Hahn S, Kim NH. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2019;9:13009. https://doi.org/10.1038/s41598-019-49525-y.eng
dcterms.referencesTuttle KR. Digging deep into cells to find mechanisms of kidney protection by SGLT2 inhibitors. J Clin Invest. 2023. https://doi.org/10.1172/JCI167700.eng
dcterms.referencesRohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55. https://doi.org/10.1016/j.immuni.2021.12.013.eng
dcterms.referencesHan JH, Oh TJ, Lee G, Maeng HJ, Lee DH, Kim KM, et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE -/- mice fed a western diet. Diabetologia. 2017;60:364–76. https://doi.org/10.1007/s00125-016-4158-2.eng
dcterms.referencesWang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, et al. Mechanisms of cardiorenal protection with SGLT2 inhibitors in patients with T2DM based on network pharmacology. Front Cardiovasc Med. 2022;9.eng
dcterms.referencesLiu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, et al. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics. 2021;11:4502–15. https://doi.org/10.7150/thno.54498.eng
dcterms.referencesWang DD, Naumova AV, Isquith D, Sapp J, Huynh KA, Tucker I, et al. Dapagliflozin reduces systemic inflammation in patients with type 2 diabetes without known heart failure. Cardiovasc Diabetol. 2024;23:197. https://doi.org/10.1186/s12933-024-02294-z.eng
dcterms.referencesPeng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. Prog Biophys Mol Biol. 2023;179:26–37. https://doi.org/10.1016/j.pbiomolbio.2023.03.003.eng
dcterms.referencesPacker M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail. 2023;25:1199–212. https://doi.org/10.1002/ejhf.2972.eng
dcterms.referencesPacker M. Fetal reprogramming of nutrient surplus signaling, O-glcnacylation, and the evolution of CKD. J Am Soc Nephrol. 2023;34:1480. https://doi.org/10.1681/ASN.0000000000000177.eng
dcterms.referencesZhang P, Sun H, Cheng X, Li Y, Zhao Y, Mei W, et al. Dietary intake of fructose increases purine de novo synthesis: A crucial mechanism for hyperuricemia. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.1045805.eng
dcterms.referencesVimercati C, Qanud K, Mitacchione G, Sosnowska D, Ungvari Z, Sarnari R, et al. Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol-Heart Circ Physiol. 2014;306:H709–17. https://doi.org/10.1152/ajpheart.00783.2013.eng
dcterms.referencesChen Y, Chen C, Dong B, Xing F, Huang H, Yao F, et al. AMPK attenuates ventricular remodeling and dysfunction following aortic banding in mice via the Sirt3/Oxidative stress pathway. Eur J Pharmacol. 2017;814:335–42. https://doi.org/10.1016/j.ejphar.2017.08.042.eng
dcterms.referencesPacker M. Hyperuricemia and gout reduction by SGLT2 inhibitors in diabetes and heart failure. J Am Coll Cardiol. 2024;83:371–81. https://doi.org/10.1016/j.jacc.2023.10.030.eng
dcterms.referencesYip ASY, Leong S, Teo YH, Teo YN, Syn NLX, See RM, et al. Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and meta-regression of 43 randomized controlled trials. Ther Adv Chronic Dis. 2022;13:20406223221083508. https://doi.org/10.1177/20406223221083509.eng
dcterms.referencesDoehner W, Anker SD, Butler J, Zannad F, Filippatos G, Ferreira JP, et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur Heart J. 2022;43:3435–46. https://doi.org/10.1093/eurheartj/ehac320.eng
dcterms.referencesLi P, Zhang L, Zhang M, Zhou C, Lin N. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction. Int J Mol Med. 2016;37:989–97. https://doi.org/10.3892/ijmm.2016.2491.eng
dcterms.referencesFadini GP, Ciciliot S, Albiero M. Concise review: perspectives and clinical implications of bone marrow and circulating stem cell defects in diabetes. Stem Cells Dayt Ohio. 2017;35:106–16. https://doi.org/10.1002/stem.2445.eng
dcterms.referencesBonora BM, Cappellari R, Albiero M, Avogaro A, Fadini GP. Effects of SGLT2 inhibitors on circulating stem and progenitor cells in patients with type 2 diabetes. J Clin Endocrinol Metab. 2018;103:3773–82. https://doi.org/10.1210/jc.2018-00824.eng
dcterms.referencesWilliamson K, Stringer S, Alexander Y. endothelial progenitor cells enter the aging arena. Front Physiol. 2012. https://doi.org/10.3389/fphys.2012.00030.eng
dcterms.referencesDabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The cardioprotective and anticancer effects of SGLT2 inhibitors. JACC CardioOncology. 2024;6:159–82. https://doi.org/10.1016/j.jaccao.2024.01.007.eng
dcterms.referencesChen B, Guo J, Ye H, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Mol Med Rep. 2024;29:1–18. https://doi.org/10.3892/mmr.2024.13197.eng
dcterms.referencesZhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46. https://doi.org/10.1016/j.redox.2017.12.019.eng
dcterms.referencesNugrahaningrum DA, Marcelina O, Liu C, Wu S, Kasim V. Dapagliflozin promotes neovascularization by improving paracrine function of skeletal muscle cells in diabetic hindlimb ischemia mice through PHD2/HIF-1α axis. Front Pharmacol. 2020;11:1104. https://doi.org/10.3389/fphar.2020.01104.eng
dcterms.referencesNakao M, Shimizu I, Katsuumi G, Yoshida Y, Suda M, Hayashi Y, et al. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci Rep. 2021;11:18384. https://doi.org/10.1038/s41598-021-97787-2.eng
dcterms.referencesCai C, Guo Z, Chang X, Li Z, Wu F, He J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022;52: 102288. https://doi.org/10.1016/j.redox.2022.102288.eng
dcterms.referencesLiu L, Ni Y-Q, Zhan J-K, Liu Y-S. The role of SGLT2 inhibitors in vascular aging. Aging Dis. 2021;12:1323–36. https://doi.org/10.14336/AD.2020.1229.eng
dcterms.referencesFerrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–5. https://doi.org/10.2337/db15-1356.eng
dcterms.referencesBays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab. 2004;89:463–78. https://doi.org/10.1210/jc.2003-030723.eng
dcterms.referencesDeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95. https://doi.org/10.2337/db09-9028.eng
dcterms.referencesFerrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508. https://doi.org/10.1172/JCI72227.eng
dcterms.referencesFerrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39:1108–14. https://doi.org/10.2337/dc16-0330.eng
dcterms.referencesCotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304:H1060-1076. https://doi.org/10.1152/ajpheart.00646.2012.eng
dcterms.referencesLaffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26. https://doi.org/10.1002/(sici)1520-7560(199911/12)15:6%3c412::aid-dmrr72%3e3.0.co;2-8.eng
dcterms.referencesVerma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108–17. https://doi.org/10.1007/s00125-018-4670-7.eng
dcterms.referencesClancy CE, Chen-Izu Y, Bers DM, Belardinelli L, Boyden PA, Csernoch L, et al. Deranged sodium to sudden death. J Physiol. 2015;593:1331–45. https://doi.org/10.1113/jphysiol.2014.281204.eng
dcterms.referencesBaartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568–73. https://doi.org/10.1007/s00125-016-4134-x.eng
dcterms.referencesUthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61:722–6. https://doi.org/10.1007/s00125-017-4509-7.eng
dcterms.referencesLin K, Yang N, Luo W, Qian J-F, Zhu W-W, Ye S-J, et al. Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling. Acta Pharmacol Sin. 2022;43:2624–35. https://doi.org/10.1038/s41401-022-00885-8.eng
dcterms.referencesPacker M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail. 2020;22:618–28. https://doi.org/10.1002/ejhf.1732.eng
dcterms.referencesPessoa TD, Campos LCG, Carraro-Lacroix L, Girardi ACC, Malnic G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol JASN. 2014;25:2028–39. https://doi.org/10.1681/ASN.2013060588.eng
dcterms.referencesOnishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, et al. Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice. Am J Physiol Ren Physiol. 2019;317:F419–34. https://doi.org/10.1152/ajprenal.00497.2018.eng
dcterms.referencesSano M. A role of sodium-glucose co-transporter 2 in cardiorenal anemia iron deficiency syndrome. Int J Mol Sci. 2023;24:5983. https://doi.org/10.3390/ijms24065983.eng
dcterms.referencesPacker M. Potential interactions when prescribing SGLT2 inhibitors and intravenous iron in combination in heart failure. JACC Heart Fail. 2023;11:106–14. https://doi.org/10.1016/j.jchf.2022.10.004.eng
dcterms.referencesPacker M. How can sodium-glucose cotransporter 2 inhibitors stimulate erythrocytosis in patients who are iron-deficient? Implications for understanding iron homeostasis in heart failure. Eur J Heart Fail. 2022;24:2287–96. https://doi.org/10.1002/ejhf.2731.eng
dcterms.referencesDocherty KF, McMurray JJV, Kalra PR, Cleland JGF, Lang NN, Petrie MC, et al. Intravenous iron and SGLT2 inhibitors in iron-deficient patients with heart failure and reduced ejection fraction. ESC Heart Fail. 2024. https://doi.org/10.1002/ehf2.14742.eng
dcterms.referencesFuchs Andersen C, Omar M, Glenthøj A, El Fassi D, Møller HJ, Lindholm Kurtzhals JA, et al. Effects of empagliflozin on erythropoiesis in heart failure: data from the Empire HF trial. Eur J Heart Fail. 2023;25:226–34. https://doi.org/10.1002/ejhf.2735.eng
dcterms.referencesRequena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Vargas-Delgado AP, Mancini D, Sartori S, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM Study. JACC Heart Fail. 2021;9:578–89. https://doi.org/10.1016/j.jchf.2021.04.014.eng
dcterms.referencesSano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation. 2019;139:1985–7. https://doi.org/10.1161/CIRCULATIONAHA.118.038881.eng
dcterms.referencesCases A, Cigarrán S, Luis Górriz J, Nuñez J. Effect of SGLT2 inhibitors on anemia and their possible clinical implications. Nefrologia. 2024;44:165–72. https://doi.org/10.1016/j.nefroe.2024.03.011.eng
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones