SGLT2 Inhibitors and how they work beyond the glucosuric effect. State of the art
datacite.rights | http://purl.org/coar/access_right/c_14cb | |
dc.contributor.author | Aristizábal‑Colorado, David | |
dc.contributor.author | Ocampo‑Posada, Martín | |
dc.contributor.author | Rivera‑Martínez, Wilfredo Antonio | |
dc.contributor.author | Corredor‑Rengifo, David | |
dc.contributor.author | Rico‑Fontalvo, Jorge | |
dc.contributor.author | Gómez‑Mesa, Juan Esteban | |
dc.contributor.author | Duque‑Ossman, John Jairo | |
dc.contributor.author | Abreu‑Lomba, Alin | |
dc.date.accessioned | 2024-08-26T22:11:31Z | |
dc.date.available | 2024-08-26T22:11:31Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Type 2 diabetes mellitus (T2DM) is associated with a heightened risk of cardiovascular and renal complications. While glycemic control remains essential, newer therapeutic options, such as SGLT2 inhibitors, offer additional benefits beyond glucose reduction. This review delves into the mechanisms underlying the cardio-renal protective effects of SGLT2 inhibitors. By inducing relative hypoglycemia, these agents promote ketogenesis, optimize myocardial energy metabolism, and reduce lipotoxicity. Additionally, SGLT2 inhibitors exert renoprotective actions by enhancing renal perfusion, attenuating inflammation, and improving iron metabolism. These pleiotropic effects, including modulation of blood pressure, reduction of uric acid, and improved endothelial function, collectively contribute to the cardiovascular and renal benefits observed with SGLT2 inhibitor therapy. This review will provide clinicians with essential knowledge, understanding, and a clear recollection of this pharmacological group’s mechanism of action. | eng |
dc.format.mimetype | ||
dc.identifier.citation | Aristizábal-Colorado, D., Ocampo-Posada, M., Rivera-Martínez, W.A. et al. SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. Am J Cardiovasc Drugs (2024). https://doi.org/10.1007/s40256-024-00673-1 | eng |
dc.identifier.doi | https://doi.org/10.1007/s40256-024-00673-1 | |
dc.identifier.issn | 1179187X (En línea) | |
dc.identifier.issn | 11753277 (Impreso) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/15416 | |
dc.identifier.url | https://link.springer.com/article/10.1007/s40256-024-00673-1 | |
dc.language.iso | eng | |
dc.publisher | Springer | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.source | American Journal of Cardiovascular Drugs | eng |
dc.source | Am J Cardiovasc Drugs | eng |
dc.title | SGLT2 Inhibitors and how they work beyond the glucosuric effect. State of the art | eng |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | Liu L, Simon B, Shi J, Mallhi AK, Eisen HJ. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality: Evidence on health outcomes and antidiabetic treatment in United States adults. World J Diabetes. 2016;7:449–61. https://doi.org/10.4239/wjd.v7.i18.449. | eng |
dcterms.references | National Kidney Foundation. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J Kidney Dis Off J Natl Kidney Found. 2012;60:850–86. https://doi.org/10.1053/j.ajkd.2012.07.005. | eng |
dcterms.references | Wu B, Bell K, Stanford A, Kern DM, Tunceli O, Vupputuri S, et al. Understanding CKD among patients with T2DM: prevalence, temporal trends, and treatment patterns—NHANES 2007–2012. BMJ Open Diabetes Res Care. 2016;4: e000154. https://doi.org/10.1136/bmjdrc-2015-000154. | eng |
dcterms.references | Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827. | eng |
dcterms.references | Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. https://doi.org/10.1056/NEJMoa1504720. | eng |
dcterms.references | Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306. https://doi.org/10.1056/NEJMoa1811744. | eng |
dcterms.references | Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur Heart J. 2023. https://doi.org/10.1093/eurheartj/ehad192. | eng |
dcterms.references | McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368. | eng |
dcterms.references | Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17:761–72. https://doi.org/10.1038/s41569-020-0406-8. | eng |
dcterms.references | Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:2099. https://doi.org/10.1056/NEJMc1712572. | eng |
dcterms.references | Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57. https://doi.org/10.1056/NEJMoa1812389. | eng |
dcterms.references | Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet. 2019;393:31–9. https://doi.org/10.1016/S0140-6736(18)32590-X. | eng |
dcterms.references | Wright EM, Loo DD, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B, et al. “Active” sugar transport in eukaryotes. J Exp Biol. 1994;196:197–212. https://doi.org/10.1242/jeb.196.1.197. | eng |
dcterms.references | Biegus J, Fudim M, Salah HM, Heerspink HJL, Voors AA, Ponikowski P. Sodium–glucose cotransporter-2 inhibitors in heart failure: Potential decongestive mechanisms and current clinical studies. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2967. | eng |
dcterms.references | Packer M. SGLT2 inhibitors: role in protective reprogramming of cardiac nutrient transport and metabolism. Nat Rev Cardiol. 2023;20:443–62. https://doi.org/10.1038/s41569-022-00824-4. | eng |
dcterms.references | Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022;23:3651. https://doi.org/10.3390/ijms23073651. | eng |
dcterms.references | Palmiero G, Cesaro A, Vetrano E, Pafundi PC, Galiero R, Caturano A, et al. Impact of SGLT2 inhibitors on heart failure: from pathophysiology to clinical effects. Int J Mol Sci. 2021;22:5863. https://doi.org/10.3390/ijms22115863. | eng |
dcterms.references | Pabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 inhibitors and their mode of action in heart failure-has the mystery been unravelled? Curr Heart Fail Rep. 2021;18:315–28. https://doi.org/10.1007/s11897-021-00529-8. | eng |
dcterms.references | Tsai K-F, Chen Y-L, Chiou TT-Y, Chu T-H, Li L-C, Ng H-Y, et al. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxid Basel Switz. 2021;10:1166. https://doi.org/10.3390/antiox10081166. | eng |
dcterms.references | Storgaard H, Gluud LL, Bennett C, Grøndahl MF, Christensen MB, Knop FK, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2016;11: e0166125. https://doi.org/10.1371/journal.pone.0166125. | eng |
dcterms.references | Rajeev SP, Cuthbertson DJ, Wilding JPH. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes Metab. 2016;18:125–34. https://doi.org/10.1111/dom.12578. | eng |
dcterms.references | Cefalu WT, Leiter LA, Yoon K-H, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet Lond Engl. 2013;382:941–50. https://doi.org/10.1016/S0140-6736(13)60683-2. | eng |
dcterms.references | Yagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017;9:78. https://doi.org/10.1186/s13098-017-0275-4. | eng |
dcterms.references | Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing m2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49. https://doi.org/10.1016/j.ebiom.2017.05.028. | eng |
dcterms.references | Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S. Unlocking the full potential of SGLT2 inhibitors: expanding applications beyond glycemic control. Int J Mol Sci. 2023;24:6039. https://doi.org/10.3390/ijms24076039. | eng |
dcterms.references | Jin Z, Yuan Y, Zheng C, Liu S, Weng H. Effects of sodium-glucose co-transporter 2 inhibitors on liver fibrosis in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: an updated meta-analysis of randomized controlled trials. J Diabetes Complications. 2023;37: 108558. https://doi.org/10.1016/j.jdiacomp.2023.108558. | eng |
dcterms.references | Szekeres Z, Sandor B, Bognar Z, Ramadan FHJ, Palfi A, Bodis B, et al. Clinical study of metabolic parameters, leptin and the SGLT2 inhibitor empagliflozin among patients with obesity and type 2 diabetes. Int J Mol Sci. 2023;24:4405. https://doi.org/10.3390/ijms24054405. | eng |
dcterms.references | Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. Sodium-glucose co-transporter-2 inhibitors and epicardial adiposity. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2023;180: 106322. https://doi.org/10.1016/j.ejps.2022.106322. | eng |
dcterms.references | Greulich S, Maxhera B, Vandenplas G, de Wiza DH, Smiris K, Mueller H, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation. 2012;126:2324–34. https://doi.org/10.1161/CIRCULATIONAHA.111.039586. | eng |
dcterms.references | Camarena V, Sant D, Mohseni M, Salerno T, Zaleski ML, Wang G, et al. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr Metab Cardiovasc Dis NMCD. 2017;27:739–50. https://doi.org/10.1016/j.numecd.2017.05.010. | eng |
dcterms.references | Iacobellis G, Barbaro G. Epicardial adipose tissue feeding and overfeeding the heart. Nutr Burbank Los Angel Cty Calif. 2019;59:1–6. https://doi.org/10.1016/j.nut.2018.07.002. | eng |
dcterms.references | Patel VB, Shah S, Verma S, Oudit GY. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017;22:889–902. https://doi.org/10.1007/s10741-017-9644-1. | eng |
dcterms.references | Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia. 2018;61:2155–63. https://doi.org/10.1007/s00125-018-4702-3. | eng |
dcterms.references | Scheen AJ. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: a common comorbidity associated with severe complications. Diabetes Metab. 2019;45:213–23. https://doi.org/10.1016/j.diabet.2019.01.008. | eng |
dcterms.references | Bajaj HS, Brown RE, Bhullar L, Sohi N, Kalra S, Aronson R. SGLT2 inhibitors and incretin agents: associations with alanine aminotransferase activity in type 2 diabetes. Diabetes Metab. 2018;44:493–9. https://doi.org/10.1016/j.diabet.2018.08.001. | eng |
dcterms.references | Burns KD, Cherney D. Renal angiotensinogen and sodium-glucose cotransporter-2 inhibition: insights from experimental diabetic kidney disease. Am J Nephrol. 2019;49:328–30. https://doi.org/10.1159/000499598. | eng |
dcterms.references | Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: A systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262-275.e9. https://doi.org/10.1016/j.jash.2014.01.007. | eng |
dcterms.references | Teo YH, Teo YN, Syn NL, Kow CS, Yoong CSY, Tan BYQ, et al. Effects of sodium/glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular and metabolic outcomes in patients without diabetes mellitus: a systematic review and meta-analysis of randomized-controlled trials. J Am Heart Assoc. 2021;10: e019463. https://doi.org/10.1161/JAHA.120.019463. | eng |
dcterms.references | Fioretto P, Mansfield TA, Ptaszynska A, Yavin Y, Johnsson E, Parikh S. Long-term safety of dapagliflozin in older patients with type 2 diabetes mellitus: a pooled analysis of phase IIb/III studies. Drugs Aging. 2016;33:511–22. https://doi.org/10.1007/s40266-016-0382-1. | eng |
dcterms.references | Oshima N, Onimaru H, Yamashiro A, Goto H, Tanoue K, Fukunaga T, et al. SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats. Hypertens Res Off J Jpn Soc Hypertens. 2024;47:46–54. https://doi.org/10.1038/s41440-023-01417-5. | eng |
dcterms.references | Ahwin P, Martinez D. The relationship between SGLT2 and systemic blood pressure regulation. Hypertens Res. 2024;47:2094–103. https://doi.org/10.1038/s41440-024-01723-6. | eng |
dcterms.references | Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–84. https://doi.org/10.1016/S2213-8587(13)70208-0. | eng |
dcterms.references | Joannidis M, Klein SJ, Ostermann M. 10 myths about frusemide. Intensive Care Med. 2019;45:545–8. https://doi.org/10.1007/s00134-018-5502-4. | eng |
dcterms.references | Aristizabal D, Torres JMH, Ramirez N. Reconociendo la Congestión en Insuficiencia Cardiaca Aguda, Terapéuticas del Primer Mundo Adaptadas Para el Tercer Mundo. Interdiscip J Epidemiol Public Health 2022;5. | spa |
dcterms.references | Scheen AJ. An update on the safety of SGLT2 inhibitors. Expert Opin Drug Saf. 2019;18:295–311. https://doi.org/10.1080/14740338.2019.1602116. | eng |
dcterms.references | Li N, Lv D, Zhu X, Wei P, Gui Y, Liu S, et al. Effects of SGLT2 Inhibitors on Renal Outcomes in Patients With Chronic Kidney Disease: A Meta-Analysis. Front Med. 2021. https://doi.org/10.3389/fmed.2021.728089. | eng |
dcterms.references | Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol JASN. 1999;10:2569–76. https://doi.org/10.1681/ASN.V10122569. | eng |
dcterms.references | Alicic RZ, Johnson EJ, Tuttle KR. SGLT2 inhibition for the prevention and treatment of diabetic kidney disease: a review. Am J Kidney Dis Off J Natl Kidney Found. 2018;72:267–77. https://doi.org/10.1053/j.ajkd.2018.03.022. | eng |
dcterms.references | Cassis P, Locatelli M, Cerullo D, Corna D, Buelli S, Zanchi C, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight. 2018;3(e98720):98720. https://doi.org/10.1172/jci.insight.98720. | eng |
dcterms.references | Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol. 2014;306:F194-204. https://doi.org/10.1152/ajprenal.00520.2013. | eng |
dcterms.references | Bae JH, Park E-G, Kim S, Kim SG, Hahn S, Kim NH. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci Rep. 2019;9:13009. https://doi.org/10.1038/s41598-019-49525-y. | eng |
dcterms.references | Tuttle KR. Digging deep into cells to find mechanisms of kidney protection by SGLT2 inhibitors. J Clin Invest. 2023. https://doi.org/10.1172/JCI167700. | eng |
dcterms.references | Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55. https://doi.org/10.1016/j.immuni.2021.12.013. | eng |
dcterms.references | Han JH, Oh TJ, Lee G, Maeng HJ, Lee DH, Kim KM, et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE -/- mice fed a western diet. Diabetologia. 2017;60:364–76. https://doi.org/10.1007/s00125-016-4158-2. | eng |
dcterms.references | Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, et al. Mechanisms of cardiorenal protection with SGLT2 inhibitors in patients with T2DM based on network pharmacology. Front Cardiovasc Med. 2022;9. | eng |
dcterms.references | Liu Z, Ma X, Ilyas I, Zheng X, Luo S, Little PJ, et al. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics. 2021;11:4502–15. https://doi.org/10.7150/thno.54498. | eng |
dcterms.references | Wang DD, Naumova AV, Isquith D, Sapp J, Huynh KA, Tucker I, et al. Dapagliflozin reduces systemic inflammation in patients with type 2 diabetes without known heart failure. Cardiovasc Diabetol. 2024;23:197. https://doi.org/10.1186/s12933-024-02294-z. | eng |
dcterms.references | Peng G, Yan J, Chen L, Li L. Glycometabolism reprogramming: Implications for cardiovascular diseases. Prog Biophys Mol Biol. 2023;179:26–37. https://doi.org/10.1016/j.pbiomolbio.2023.03.003. | eng |
dcterms.references | Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail. 2023;25:1199–212. https://doi.org/10.1002/ejhf.2972. | eng |
dcterms.references | Packer M. Fetal reprogramming of nutrient surplus signaling, O-glcnacylation, and the evolution of CKD. J Am Soc Nephrol. 2023;34:1480. https://doi.org/10.1681/ASN.0000000000000177. | eng |
dcterms.references | Zhang P, Sun H, Cheng X, Li Y, Zhao Y, Mei W, et al. Dietary intake of fructose increases purine de novo synthesis: A crucial mechanism for hyperuricemia. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.1045805. | eng |
dcterms.references | Vimercati C, Qanud K, Mitacchione G, Sosnowska D, Ungvari Z, Sarnari R, et al. Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol-Heart Circ Physiol. 2014;306:H709–17. https://doi.org/10.1152/ajpheart.00783.2013. | eng |
dcterms.references | Chen Y, Chen C, Dong B, Xing F, Huang H, Yao F, et al. AMPK attenuates ventricular remodeling and dysfunction following aortic banding in mice via the Sirt3/Oxidative stress pathway. Eur J Pharmacol. 2017;814:335–42. https://doi.org/10.1016/j.ejphar.2017.08.042. | eng |
dcterms.references | Packer M. Hyperuricemia and gout reduction by SGLT2 inhibitors in diabetes and heart failure. J Am Coll Cardiol. 2024;83:371–81. https://doi.org/10.1016/j.jacc.2023.10.030. | eng |
dcterms.references | Yip ASY, Leong S, Teo YH, Teo YN, Syn NLX, See RM, et al. Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and meta-regression of 43 randomized controlled trials. Ther Adv Chronic Dis. 2022;13:20406223221083508. https://doi.org/10.1177/20406223221083509. | eng |
dcterms.references | Doehner W, Anker SD, Butler J, Zannad F, Filippatos G, Ferreira JP, et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur Heart J. 2022;43:3435–46. https://doi.org/10.1093/eurheartj/ehac320. | eng |
dcterms.references | Li P, Zhang L, Zhang M, Zhou C, Lin N. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction. Int J Mol Med. 2016;37:989–97. https://doi.org/10.3892/ijmm.2016.2491. | eng |
dcterms.references | Fadini GP, Ciciliot S, Albiero M. Concise review: perspectives and clinical implications of bone marrow and circulating stem cell defects in diabetes. Stem Cells Dayt Ohio. 2017;35:106–16. https://doi.org/10.1002/stem.2445. | eng |
dcterms.references | Bonora BM, Cappellari R, Albiero M, Avogaro A, Fadini GP. Effects of SGLT2 inhibitors on circulating stem and progenitor cells in patients with type 2 diabetes. J Clin Endocrinol Metab. 2018;103:3773–82. https://doi.org/10.1210/jc.2018-00824. | eng |
dcterms.references | Williamson K, Stringer S, Alexander Y. endothelial progenitor cells enter the aging arena. Front Physiol. 2012. https://doi.org/10.3389/fphys.2012.00030. | eng |
dcterms.references | Dabour MS, George MY, Daniel MR, Blaes AH, Zordoky BN. The cardioprotective and anticancer effects of SGLT2 inhibitors. JACC CardioOncology. 2024;6:159–82. https://doi.org/10.1016/j.jaccao.2024.01.007. | eng |
dcterms.references | Chen B, Guo J, Ye H, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Mol Med Rep. 2024;29:1–18. https://doi.org/10.3892/mmr.2024.13197. | eng |
dcterms.references | Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46. https://doi.org/10.1016/j.redox.2017.12.019. | eng |
dcterms.references | Nugrahaningrum DA, Marcelina O, Liu C, Wu S, Kasim V. Dapagliflozin promotes neovascularization by improving paracrine function of skeletal muscle cells in diabetic hindlimb ischemia mice through PHD2/HIF-1α axis. Front Pharmacol. 2020;11:1104. https://doi.org/10.3389/fphar.2020.01104. | eng |
dcterms.references | Nakao M, Shimizu I, Katsuumi G, Yoshida Y, Suda M, Hayashi Y, et al. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci Rep. 2021;11:18384. https://doi.org/10.1038/s41598-021-97787-2. | eng |
dcterms.references | Cai C, Guo Z, Chang X, Li Z, Wu F, He J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol. 2022;52: 102288. https://doi.org/10.1016/j.redox.2022.102288. | eng |
dcterms.references | Liu L, Ni Y-Q, Zhan J-K, Liu Y-S. The role of SGLT2 inhibitors in vascular aging. Aging Dis. 2021;12:1323–36. https://doi.org/10.14336/AD.2020.1229. | eng |
dcterms.references | Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65:1190–5. https://doi.org/10.2337/db15-1356. | eng |
dcterms.references | Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab. 2004;89:463–78. https://doi.org/10.1210/jc.2003-030723. | eng |
dcterms.references | DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95. https://doi.org/10.2337/db09-9028. | eng |
dcterms.references | Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508. https://doi.org/10.1172/JCI72227. | eng |
dcterms.references | Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39:1108–14. https://doi.org/10.2337/dc16-0330. | eng |
dcterms.references | Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304:H1060-1076. https://doi.org/10.1152/ajpheart.00646.2012. | eng |
dcterms.references | Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26. https://doi.org/10.1002/(sici)1520-7560(199911/12)15:6%3c412::aid-dmrr72%3e3.0.co;2-8. | eng |
dcterms.references | Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61:2108–17. https://doi.org/10.1007/s00125-018-4670-7. | eng |
dcterms.references | Clancy CE, Chen-Izu Y, Bers DM, Belardinelli L, Boyden PA, Csernoch L, et al. Deranged sodium to sudden death. J Physiol. 2015;593:1331–45. https://doi.org/10.1113/jphysiol.2014.281204. | eng |
dcterms.references | Baartscheer A, Schumacher CA, Wüst RCI, Fiolet JWT, Stienen GJM, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568–73. https://doi.org/10.1007/s00125-016-4134-x. | eng |
dcterms.references | Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61:722–6. https://doi.org/10.1007/s00125-017-4509-7. | eng |
dcterms.references | Lin K, Yang N, Luo W, Qian J-F, Zhu W-W, Ye S-J, et al. Direct cardio-protection of Dapagliflozin against obesity-related cardiomyopathy via NHE1/MAPK signaling. Acta Pharmacol Sin. 2022;43:2624–35. https://doi.org/10.1038/s41401-022-00885-8. | eng |
dcterms.references | Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail. 2020;22:618–28. https://doi.org/10.1002/ejhf.1732. | eng |
dcterms.references | Pessoa TD, Campos LCG, Carraro-Lacroix L, Girardi ACC, Malnic G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol JASN. 2014;25:2028–39. https://doi.org/10.1681/ASN.2013060588. | eng |
dcterms.references | Onishi A, Fu Y, Darshi M, Crespo-Masip M, Huang W, Song P, et al. Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice. Am J Physiol Ren Physiol. 2019;317:F419–34. https://doi.org/10.1152/ajprenal.00497.2018. | eng |
dcterms.references | Sano M. A role of sodium-glucose co-transporter 2 in cardiorenal anemia iron deficiency syndrome. Int J Mol Sci. 2023;24:5983. https://doi.org/10.3390/ijms24065983. | eng |
dcterms.references | Packer M. Potential interactions when prescribing SGLT2 inhibitors and intravenous iron in combination in heart failure. JACC Heart Fail. 2023;11:106–14. https://doi.org/10.1016/j.jchf.2022.10.004. | eng |
dcterms.references | Packer M. How can sodium-glucose cotransporter 2 inhibitors stimulate erythrocytosis in patients who are iron-deficient? Implications for understanding iron homeostasis in heart failure. Eur J Heart Fail. 2022;24:2287–96. https://doi.org/10.1002/ejhf.2731. | eng |
dcterms.references | Docherty KF, McMurray JJV, Kalra PR, Cleland JGF, Lang NN, Petrie MC, et al. Intravenous iron and SGLT2 inhibitors in iron-deficient patients with heart failure and reduced ejection fraction. ESC Heart Fail. 2024. https://doi.org/10.1002/ehf2.14742. | eng |
dcterms.references | Fuchs Andersen C, Omar M, Glenthøj A, El Fassi D, Møller HJ, Lindholm Kurtzhals JA, et al. Effects of empagliflozin on erythropoiesis in heart failure: data from the Empire HF trial. Eur J Heart Fail. 2023;25:226–34. https://doi.org/10.1002/ejhf.2735. | eng |
dcterms.references | Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Vargas-Delgado AP, Mancini D, Sartori S, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM Study. JACC Heart Fail. 2021;9:578–89. https://doi.org/10.1016/j.jchf.2021.04.014. | eng |
dcterms.references | Sano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation. 2019;139:1985–7. https://doi.org/10.1161/CIRCULATIONAHA.118.038881. | eng |
dcterms.references | Cases A, Cigarrán S, Luis Górriz J, Nuñez J. Effect of SGLT2 inhibitors on anemia and their possible clinical implications. Nefrologia. 2024;44:165–72. https://doi.org/10.1016/j.nefroe.2024.03.011. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: