Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography

dc.contributor.authorValbuena, O
dc.contributor.authorVera, M
dc.contributor.authorVera, M I
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorHuérfano, Y
dc.contributor.authorBorrero, M
dc.contributor.authorSalazar-Torres, J
dc.contributor.authorSalazar, W
dc.date.accessioned2020-04-15T04:56:40Z
dc.date.available2020-04-15T04:56:40Z
dc.date.issued2019
dc.description.abstractPathological ovary is categorized into cystic tumors, solid tumors and mixed, according to the content of the affected ovary. Accordingly, the degree of benignity or malignity thereof is established. The imaging study for the preliminary morphological assessment of PO is ultrasound, in its pelvic and transvaginal modalities, for which wellestablished criteria are available. Once the ultrasound findings suggest malignancy, complementary studies such as abdominal-pelvic tomography images and tumor markers are requested. This type of images has challenging problems called noise, artifacts and low contrast. In this paper, in order to address these problems, a computational technique is proposed to characterize a pathological ovary. To do this, a thresholding and the median and gradient magnitude filters are applied, preliminarily, to complete the preprocessing stage. Then, during the segmentation, the algorithm of region growing is used to extract the threedimensional morphology of the pathological ovary. Using this morphology, the volume of the pathological ovary is calculated and it allows selecting the surgical-medical behavior to approach this kind of ovary. The validation of the proposed technique indicates that the results are promising. This technique can be useful in the detection and monitoring the diseases linked to pathological ovary.eng
dc.format.mimetypepdfspa
dc.identifier.issn17426596
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5113
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1403 (2019)eng
dc.source.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012020eng
dc.titleVolumetric quantification in ovarian pathology using abdomino-pelvic computed tomographyeng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesBlaustein A 1977 Pathology of the female genital tract ed A Blaustein (New York: Springer) Anatomy and histology of the human ovary 438 Chapter 15eng
dcterms.referencesLu H, Arshad M, Thornton A, Avesani G, Cunnea P, Curry E, Kanavati F, Liang J, Nixon K, Williams S T, Ali Hassan M, Bowtell D D L, Gabra H, Fotopoulou C, Rockall A and Aboagye E O 2019 A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic and molecular-phenotypes of epithelial ovarian cancer Nature Communications 10 764eng
dcterms.referencesCigale B and Zazula D 2004 Segmentation of ovarian ultrasound images using cellular neural networks International Journal of Pattern Recognition and Artificial Intelligence 18 563eng
dcterms.referencesRamya M and Kiruthika V 2014 Fifth International Conference on Signal and Image Processing (Bangalore: IEEE) Automatic segmentation of ovarian follicle using k-meanseng
dcterms.referencesSonigo C, Jankowski S, Yoo O, Trassard O, Bousquet N, Grynberg M, Beau I and Binart N 2018 High-throughput ovarian follicle counting by an innovative deep learning approach Scientific Reports 8 13499eng
dcterms.referencesPratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)eng
dcterms.referencesGonzález R and Woods R 2001 Digital image processing (New Jersey: Prentice Hall)eng
dcterms.referencesPetrou M and Bosdogianni P 2003 Image processing the fundamentals (New York: John Wiley & Sons Inc)eng
dcterms.referencesHuérfano Y, Vera M, Mar A and Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation Journal of Physics: Conference Series 1160 012003eng
dcterms.referencesBurden R and Faires D 2010 Numerical analysis (Mexico: Cengage Learning)eng
dcterms.referencesSaénz F, Vera M, Huérfano Y, Molina V, Martinez L, Vera MI, Salazar W, Gelvez E, Salazar J, Valbuena O, Robles H, Bautista M and Arango J 2018 Brain Hematoma Computational Segmentation Journal of Physics: Conference Series 1126 012071eng
dcterms.referencesDice L 1945 Measures of the amount of ecologic association between species Ecology 26 29eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
549.25 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones