High grade glioma segmentation in magnetic resonance imaging

dc.contributor.authorVera, Miguel
dc.contributor.authorHuérfano, Yoleidy
dc.contributor.authorMartínez, Luis Javier
dc.contributor.authorContreras, Yudith
dc.contributor.authorSalazar, Williams
dc.contributor.authorVera, María Isabel
dc.contributor.authorValbuena, Oscar
dc.contributor.authorBorrero, Maryury
dc.contributor.authorHernández, Carlos
dc.contributor.authorBarrera, Doris
dc.contributor.authorMolina, Ángel Valentín
dc.contributor.authorSalazar, Juan
dc.contributor.authorGelvez, Elkin
dc.contributor.authorSáenz, Frank
dc.contributor.authorHoyos, Diego
dc.contributor.authorArias, Yeny
dc.date.accessioned2019-01-25T16:42:23Z
dc.date.available2019-01-25T16:42:23Z
dc.date.issued2018
dc.description.abstractThrough this work we propose a computational technique for the segmentation of magnetic resonance images (MRI) of a brain tumor, identified as high grade glioma (HGG), specifically grade III anaplastic astrocytoma. This technique consists of 3 stages developed in the threedimensional domain. They are: pre-processing, segmentation and post-processing. The pre-processing stage uses a thresholding technique, morphological erosion filter (MEF), in gray scale, followed by a median filter and a gradient magnitude algorithm. On the other hand, in order to obtain a HGG preliminary segmentation, during the segmentation stage a clustering algorithm called region growing (RG) is implemented and it is applied to the preprocessed images. The RG requires, for its initialization, a seed voxel whose coordinates are obtained, automatically, through the training and validation of an intelligent operator based on support vector machines (SVM). Due to the high sensitivity of the RG to the location of the seed, the SVM is implemented as a highly selective binary classifier. During the post-processing stage, a morphological dilation filter is applied to preliminary segmentation generated by RG. The percent relative error (PrE) is considered by comparing the segmentations of the HGG, generated manually by a neuro-oncologist, with the dilated segmentations of the HGG, obtained automatically. The combination of parameters linked to the lowest PrE, allows establishing the optimal parameters of each computational algorithms that make up the proposed computational technique. The obtained results allow reporting a PrE of 11.10%, which indicates a good correlation between the manual segmentations and those produced by the computational technique developed.eng
dc.description.abstractA través de este trabajo se propone una técnica computacional para la segmentación de un tumor cerebral, identificado como un glioma de alto grado (HGG) de tipo astrocitoma anaplásico de grado III, que está presente en las imágenes de resonancia magnética (MRI). Esta técnica consta de 3 etapas desarrolladas en el dominio tridimensional. Ellas son: preprocesamiento, segmentación y postprocesamiento. La etapa de preprocesamiento utiliza una técnica de umbralización, un filtro de erosión morfológica (MEF), en escala de grises, seguido de un filtro de mediana y de un algoritmo de magnitud de gradiente. Por otro lado, con el propósito de generar una segmentación preliminar del HGG, durante la etapa de segmentación se implementa un algoritmo de agrupamiento, llamado crecimiento de regiones (RG), que se aplica a las imágenes preprocesadas. El RG requiere para su inicialización la ubicación de un vóxel semilla cuyas coordenadas se obtienen, automáticamente, a través del entrenamiento y la validación de un operador inteligente basado en máquinas de vectores de soporte (SVM). Debido a la alta sensibilidad del RG a la ubicación de la semilla, la SVM se implementa como un clasificador binario altamente selectivo. Durante la etapa de post-procesamiento, se aplica un filtro de dilatación morfológica a la segmentación preliminar, generada por RG. El error relativo porcentual (PrE) se considera para comparar las segmentaciones de la HGG generadas de forma manual por un neurooncólogo, con las segmentaciones dilatadas de la HGG, obtenidas automáticamente. La combinación de parámetros vinculados al PrE más bajo permite establecer los parámetros óptimos de cada uno de los algoritmos computacionales que componen la técnica computacional propuesta. Los resultados obtenidos permiten reportar un PrE de 11.10%, lo cual indica una buena correlación entre las segmentaciones manuales y las producidas por la técnica computacional desarrollada.spa
dc.identifier.issn18564550
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2528
dc.language.isoengeng
dc.publisherSociedad Latinoamericana de Hipertensiónspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 13, No. 4 (2018)spa
dc.source.urihttp://www.revhipertension.com/rlh_4_2018/3_high_grade_glioma_segmentation.pdfeng
dc.subjectMagnetic resonance brain imagingeng
dc.subjectCerebral tumoreng
dc.subjectHigh grade gliomaeng
dc.subjectGrade III anaplastic astrocytomaeng
dc.subjectComputational techniqueeng
dc.subjectSegmentationeng
dc.subjectImágenes cerebrales por resonancia magnéticaspa
dc.subjectTumor cerebralspa
dc.subjectGliomas de alto gradospa
dc.subjectAstrocitoma anaplásico de grado IIIspa
dc.subjectTécnica computacionalspa
dc.subjectSegmentaciónspa
dc.titleHigh grade glioma segmentation in magnetic resonance imagingeng
dc.title.alternativeSegmentación de glioma de alto grado en imágenes de resonancia magnéticaspa
dc.typearticleeng
dcterms.referencesStelzer K. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013;4(Suppl 4):S192-202.eng
dcterms.referencesMcneill K. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981- 998.eng
dcterms.referencesAmerican Brain Tumor Association (ABTA). About Brain Tumors: A Primer for Patients and Caregivers. 9ª Edition. 2015 ABTA.eng
dcterms.referencesWHO (2007). Cavenee W, Louis D, Ohgaki H et al. Eds. WHO Classification of Tumours of the Central Nervous System. WHO Regional Office Europe.eng
dcterms.referencesWu W., Lamborn K., Buckner J., Novotny P., Chang S., O’Fallon J., Jaeckle K., Prados M. Joint NCCTG and NABTC prognostic factors analysis for high-grade recurrent glioma. Neuro-oncology, 2010;12(2):164-172.eng
dcterms.referencesBjoern H. Menze et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE transactions on medical imaging, 2015; 34(10):1993-2024.eng
dcterms.referencesOstrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 2015 Oct;17 Suppl 4:iv1-iv62 PubMed ID 26511214.eng
dcterms.referencesVera M. Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multi-corte. Ph.D Thesis, Universidad de los Andes, Mérida-Venezuela, 2014.spa
dcterms.referencesGudbjartsson H. y Patz S.The rician distribution of noisy MRI data, Magn. Reson. Med. 1995;34 (1):910-914.eng
dcterms.referencesMacovski A. Noise in MRI, Magn. Reson. Med. 1996:36 (1) 494-497.eng
dcterms.referencesJones T., Bymes T., Yang G. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-Oncology. 2015;17(3):466–476.eng
dcterms.referencesCho H., Park H. (2017). Classification of low-grade and high-grade glioma using multi-modal image radiomics features. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 3081 – 3084.eng
dcterms.referencesSezgin M., Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 2004; 13(1):146–165.eng
dcterms.referencesSerra J. Image Analysis Using Mathematical Morphology. London, England: Academic Press, 1982.eng
dcterms.referencesGonzález R., Woods R. Digital Image Processing. USA: Prentice Hall, 2001.eng
dcterms.referencesMukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement. Signal Processing. 2000; 80(4): 685–696.eng
dcterms.referencesYu Z., Wei G., Zhen C., Jing T., Ling L. Medical images edge detection based on mathematical morphology. In Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai– China, September 2005; 6492–6495.eng
dcterms.referencesW. Pratt. Digital Image Processing. USA: John Wiley & Sons Inc, 2007.eng
dcterms.referencesFischer M., Paredes J., Arce G. Weighted median image sharpeners for the world wide web. IEEE Transactions on Image Processing. 2002;11(7):717-27.eng
dcterms.referencesV. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, 1998.eng
dcterms.referencesE. Osuna, R. Freund, y F. Girosi. Training support vector machines: an application to face detection. In Conference on Computer Vision and Pattern Recognition (CVPR ’97), San Juan, Puerto Rico, 1997, 130–136.eng
dcterms.referencesA. Smola. Learning with kernels. Ph.D Thesis, Technische Universitt Berlin,Germany, 1998.eng
dcterms.referencesB. Scholkopf y A. Smola, Learning with Kernels: Support Vector Machines, Regularization,Optimization, and Beyond. Cambridge, MA , USA: The MIT Press, 2002.eng
dcterms.referencesJ. Suykens, T. V. Gestel, y J. D. Brabanter, Least Squares Support Vector Machines.UK: World Scientific Publishing Co., 2002.eng
dcterms.referencesM. Oren, C. Papageorgiou, P. Sinha, E. Osuna, y T. Poggio. Pedestrian detection using wavelet templates. In CVPR ’97: Conference on Computer Vision and Pattern Recognition (CVPR ’97). Washington, DC, USA: IEEE Computer Society, 1997,193–200.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
High grade glioma segmentation.pdf
Tamaño:
604.93 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones