From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorGonzalez-Garcia, Pablo
dc.contributor.authorFiorillo Moreno, Ornella
dc.contributor.authorPacheco Lugo, Lisandro
dc.contributor.authorAcosta Hoyos, Antonio
dc.contributor.authorVillarreal Camacho, José Luis
dc.contributor.authorNavarro Quiroz, Roberto
dc.contributor.authorPacheco Londoño, Leonardo
dc.contributor.authorAroca Martínez, Gustavo
dc.contributor.authorMoares, Noelia
dc.contributor.authorGabucio, Antonio
dc.contributor.authorFernández-Ponce, Cecilia
dc.contributor.authorGarcia-Cozar, Francisco
dc.contributor.authorNavarro Quiroz, Elkin
dc.date.accessioned2023-04-27T22:07:52Z
dc.date.available2023-04-27T22:07:52Z
dc.date.issued2023
dc.description.abstractSevere Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection triggers var-ious events from the molecular to the tissue level, which in turn is given by the intrinsic character-istics of each patient. Given the molecular diversity characteristic of each cellular phenotype, the possible cytopathic, tissue, and clinical effects are difficult to predict, which determines the hetero-geneity of COVID-19 symptoms. The purpose of this article is to provide a comprehensive review of the cytopathic effects of SARS-CoV-2 on various cell types, focusing on the development of COVID-19, which in turn may lead, in some patients, to the persistence of symptoms after recovery from the disease, a condition known as long COVID. We describe the molecular mechanisms un-derlying virus–host interactions, including alterations in protein expression, intracellular signaling pathways, and immune responses. In particular, the article highlights the potential impact of these cytopathies on cellular function and clinical outcomes, such as immune dysregulation, neuropsy-chiatric disorders, and organ damage. The article concludes by discussing future directions for re-search and implications for the management and treatment of COVID-19 and long COVID.eng
dc.format.mimetypepdfspa
dc.identifier.citationGonzalez-Garcia, P.; Fiorillo Moreno, O.; Peñate, E.Z.; Calderon-Villalba, A.; Pacheco Lugo, L.; Hoyos, A.A.; Camacho, J.L.V.; Quiroz, R.N.; Londoño, L.P.; Aroca Martinez, G.; et al. From Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVID. Int. J. Mol. Sci. 2023, 24, x. https://doi.org/10.3390/xxxxxspa
dc.identifier.doihttp://dx.doi.org/10.3390/xxxxx
dc.identifier.issn14220067
dc.identifier.urihttps://hdl.handle.net/20.500.12442/12310
dc.identifier.urlhttps://www.mdpi.com/journal/ijms
dc.language.isoengeng
dc.publisherMDPIspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Molecular Scienceseng
dc.sourceint. J. Mol. Sci.eng
dc.sourceVol 24, No X, (2023)
dc.subjectCOVID-19spa
dc.subjectSARS-CoV-2eng
dc.subjectLong COVIDeng
dc.subjectCytopathyeng
dc.subjectCytokine stormeng
dc.subjectSequelaeeng
dc.subjectPASCeng
dc.subjectCoronaviruseng
dc.subjectAngiotensin-converting enzyme 2eng
dc.subjectCell dysfunctioneng
dc.titleFrom Cell to Symptoms: The Role of SARS-CoV-2 Cytopathic Effects in the Pathogenesis of COVID-19 and Long COVIDeng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesLu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8.eng
dcterms.referencesWu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome Composition and Divergence of the Novel Coronavirus (2019-NCoV) Originating in China. Cell Host Microbe 2020, 27, 325–328. https://doi.org/10.1016/j.chom.2020.02.001.eng
dcterms.referencesHartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The Molecular Virology of Coronaviruses. J. Biol. Chem. 2020, 295, 12910–12934. https://doi.org/10.1074/jbc.REV120.013930.eng
dcterms.referencesKim, D.; Lee, J.-Y.; Yang, J.-S.; Kim, J.W.; Kim, V.N.; Chang, H. The Architecture of SARS-CoV-2 Transcriptome. Cell 2020, 181, 914–921.e10. https://doi.org/10.1016/j.cell.2020.04.011.eng
dcterms.referencesMarzi, A.; Gramberg, T.; Simmons, G.; Möller, P.; Rennekamp, A.J.; Krumbiegel, M.; Geier, M.; Eisemann, J.; Turza, N.; Saunier, B.; et al. DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg Virus and the S Protein of Severe Acute Respira-tory Syndrome Coronavirus. J. Virol. 2004, 78, 12090–12095. https://doi.org/10.1128/JVI.78.21.12090-12095.2004.eng
dcterms.referencesWong, A.H.M.; Zhou, D.; Rini, J.M. The X-ray Crystal Structure of Human Aminopeptidase N Reveals a Novel Dimer and the Basis for Peptide Processing. J. Biol. Chem. 2012, 287, 36804–36813. https://doi.org/10.1074/jbc.M112.398842.eng
dcterms.referencesZhang, S.; Zhou, P.; Wang, P.; Li, Y.; Jiang, L.; Jia, W.; Wang, H.; Fan, A.; Wang, D.; Shi, X.; et al. Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein. Cell Rep. 2018, 24, 441–452. https://doi.org/10.1016/j.celrep.2018.06.041.eng
dcterms.referencesCantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Ana-stasina, M.; et al. Neuropilin-1 Facilitates SARS-CoV-2 Cell Entry and Infectivity. Science 2020, 370, 856–860. https://doi.org/10.1126/science.abd2985.eng
dcterms.referencesDaly, J.L.; Simonetti, B.; Klein, K.; Chen, K.-E.; Williamson, M.K.; Antón-Plágaro, C.; Shoemark, D.K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R.; et al. Neuropilin-1 Is a Host Factor for SARS-CoV-2 Infection. Science 2020, 370, 861–865. https://doi.org/10.1126/science.abd3072.eng
dcterms.referencesZelus, B.D.; Schickli, J.H.; Blau, D.M.; Weiss, S.R.; Holmes, K.V. Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37 °C Either by Soluble Murine CEACAM1 Receptors or by PH 8. J. Virol. 2003, 77, 830–840. https://doi.org/10.1128/JVI.77.2.830-840.2003.eng
dcterms.referencesHoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052.eng
dcterms.referencesMomtazi-Borojeni, A.A.; Banach, M.; Reiner, Ž.; Pirro, M.; Bianconi, V.; Al-Rasadi, K.; Sahebkar, A. Interaction Between Coro-navirus S-Protein and Human ACE2: Hints for Exploring Efficient Therapeutic Targets to Treat COVID-19. Angiology 2021, 72, 122–130. https://doi.org/10.1177/0003319720952284.eng
dcterms.referencesShi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of Ferrets, Cats, Dogs, and Other Domesticated Animals to SARS-Coronavirus 2. Science 2020, 368, 1016–1020. https://doi.org/10.1126/sci-ence.abb7015.eng
dcterms.referencesGlowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; et al. Evidence That TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J. Virol. 2011, 85, 4122–4134. https://doi.org/10.1128/JVI.02232-10.eng
dcterms.referencesBayati, A.; Kumar, R.; Francis, V.; McPherson, P.S. SARS-CoV-2 Infects Cells after Viral Entry via Clathrin-Mediated Endocyto-sis. J. Biol. Chem. 2021, 296, 100306. https://doi.org/10.1016/j.jbc.2021.100306.eng
dcterms.referencesJackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. https://doi.org/10.1038/s41580-021-00418-x.eng
dcterms.referencesBoson, B.; Legros, V.; Zhou, B.; Siret, E.; Mathieu, C.; Cosset, F.-L.; Lavillette, D.; Denolly, S. The SARS-CoV-2 Envelope and Membrane Proteins Modulate Maturation and Retention of the Spike Protein, Allowing Assembly of Virus-like Particles. J. Biol. Chem. 2021, 296, 100111. https://doi.org/10.1074/jbc.RA120.016175.eng
dcterms.referencesKhan, M.T.; Irfan, M.; Ahsan, H.; Ahmed, A.; Kaushik, A.C.; Khan, A.S.; Chinnasamy, S.; Ali, A.; Wei, D.-Q. Structures of SARS-CoV-2 RNA-Binding Proteins and Therapeutic Targets. Intervirology 2021, 64, 55–68. https://doi.org/10.1159/000513686.eng
dcterms.referencesWu, H.-Y.; Brian, D.A. Subgenomic Messenger RNA Amplification in Coronaviruses. Proc. Natl. Acad. Sci. USA 2010, 107, 12257–12262. https://doi.org/10.1073/pnas.1000378107.eng
dcterms.referencesGupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary Manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. https://doi.org/10.1038/s41591-020-0968-3.eng
dcterms.referencesDelorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subrama-nian, A.; Montoro, D.T.; et al. COVID-19 Tissue Atlases Reveal SARS-CoV-2 Pathology and Cellular Targets. Nature 2021, 595, 107–113. https://doi.org/10.1038/s41586-021-03570-8.eng
dcterms.referencesWang, X.-M.; Mannan, R.; Xiao, L.; Abdulfatah, E.; Qiao, Y.; Farver, C.; Myers, J.L.; Zelenka-Wang, S.; McMurry, L.; Su, F.; et al. Characterization of SARS-CoV-2 and Host Entry Factors Distribution in a COVID-19 Autopsy Series. Commun. Med. 2021, 1, 24. https://doi.org/10.1038/s43856-021-00025-z.eng
dcterms.referencesDavis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. https://doi.org/10.1038/s41579-022-00846-2.eng
dcterms.referencesNalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Seh-rawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. https://doi.org/10.1038/s41591-021-01283-z.eng
dcterms.referencesJavadov, S.; Kozlov, A.V.; Camara, A.K.S. Mitochondria in Health and Diseases. Cells 2020, 9, 1177. https://doi.org/10.3390/cells9051177.eng
dcterms.referencesNunn, A.V.W.; Guy, G.W.; Brysch, W.; Bell, J.D. Understanding Long COVID; Mitochondrial Health and Adaptation—Old Pathways, New Problems. Biomedicines 2022, 10, 3113. https://doi.org/10.3390/biomedicines10123113.eng
dcterms.referencesMorita, M.; Ler, L.W.; Fabian, M.R.; Siddiqui, N.; Mullin, M.; Henderson, V.C.; Alain, T.; Fonseca, B.D.; Karashchuk, G.; Bennett, C.F.; et al. A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development. Mol. Cell. Biol. 2012, 32, 3585–3593. https://doi.org/10.1128/MCB.00455-12.eng
dcterms.referencesZhao, G.; Shi, S.-Q.; Yang, Y.; Peng, J.-P. M and N Proteins of SARS Coronavirus Induce Apoptosis in HPF Cells. Cell Biol. Toxicol. 2006, 22, 313–322. https://doi.org/10.1007/s10565-006-0077-1.eng
dcterms.referencesGao, S.; Zhang, L. ACE2 Partially Dictates the Host Range and Tropism of SARS-CoV-2. Comput. Struct. Biotechnol. J. 2020, 18, 4040–4047. https://doi.org/10.1016/j.csbj.2020.11.032.eng
dcterms.referencesArcher, S.L.; Dasgupta, A.; Chen, K.-H.; Wu, D.; Baid, K.; Mamatis, J.E.; Gonzalez, V.; Read, A.; Bentley, R.E.; Martin, A.Y.; et al. SARS-CoV-2 Mitochondriopathy in COVID-19 Pneumonia Exacerbates Hypoxemia. Redox Biol. 2022, 58, 102508. https://doi.org/10.1016/j.redox.2022.102508.eng
dcterms.referencesDu, J.; Zhou, Y.; Su, X.; Yu, J.J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J.H.; Choi, B.H.; et al. Sirt5 Is a NAD-Dependent Protein Lysine Demalonylase and Desuccinylase. Science 2011, 334, 806–809. https://doi.org/10.1126/science.1207861.eng
dcterms.referencesWalter, M.; Chen, I.P.; Vallejo-Gracia, A.; Kim, I.-J.; Bielska, O.; Lam, V.L.; Hayashi, J.M.; Cruz, A.; Shah, S.; Soveg, F.W.; et al. SIRT5 Is a Proviral Factor That Interacts with SARS-CoV-2 Nsp14 Protein. PLoS Pathog. 2022, 18, e1010811. https://doi.org/10.1371/journal.ppat.1010811.eng
dcterms.referencesBatra, N.; De Souza, C.; Batra, J.; Raetz, A.G.; Yu, A.-M. The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). Int. J. Mol. Sci. 2020, 21, 6412. https://doi.org/10.3390/ijms21176412.eng
dcterms.referencesWang, T.; Cao, Y.; Zhang, H.; Wang, Z.; Man, C.H.; Yang, Y.; Chen, L.; Xu, S.; Yan, X.; Zheng, Q.; et al. COVID-19 Metabolism: Mechanisms and Therapeutic Targets. MedComm 2022, 3, e157. https://doi.org/10.1002/mco2.157.eng
dcterms.referencesGordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; et al. A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature 2020, 583, 459–468. https://doi.org/10.1038/s41586-020-2286-9.eng
dcterms.referencesNeupane, N.; Rajendran, J.; Kvist, J.; Harjuhaahto, S.; Hu, B.; Kinnunen, V.; Yang, Y.; Nieminen, A.I.; Tyynismaa, H. Inter-Organellar and Systemic Responses to Impaired Mitochondrial Matrix Protein Import in Skeletal Muscle. Commun. Biol. 2022, 5, 1060. https://doi.org/10.1038/s42003-022-04034-z.eng
dcterms.referencesJiang, H.-W.; Zhang, H.-N.; Meng, Q.-F.; Xie, J.; Li, Y.; Chen, H.; Zheng, Y.-X.; Wang, X.-N.; Qi, H.; Zhang, J.; et al. SARS-CoV-2 Orf9b Suppresses Type I Interferon Responses by Targeting TOM70. Cell. Mol. Immunol. 2020, 17, 998–1000. https://doi.org/10.1038/s41423-020-0514-8.eng
dcterms.referencesLiu, Q.; Chang, C.E.; Wooldredge, A.C.; Fong, B.; Kennedy, B.K.; Zhou, C. Tom70-Based Transcriptional Regulation of Mito-chondrial Biogenesis and Aging. eLife 2022, 11, e75658. https://doi.org/10.7554/eLife.75658.eng
dcterms.referencesMiller, K.; McGrath, M.E.; Hu, Z.; Ariannejad, S.; Weston, S.; Frieman, M.; Jackson, W.T. Coronavirus Interactions with the Cellular Autophagy Machinery. Autophagy 2020, 16, 2131–2139. https://doi.org/10.1080/15548627.2020.1817280.eng
dcterms.referencesShi, C.-S.; Qi, H.-Y.; Boularan, C.; Huang, N.-N.; Abu-Asab, M.; Shelhamer, J.H.; Kehrl, J.H. SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome. J. Immunol. 2014, 193, 3080–3089. https://doi.org/10.4049/jimmunol.1303196.eng
dcterms.referencesWang, T.; Cao, Y.; Zhang, H.; Wang, Z.; Man, C.H.; Yang, Y.; Chen, L.; Xu, S.; Yan, X.; Zheng, Q.; et al. COVID-19 Metabolism: Mechanisms and Therapeutic Targets. MedComm 2022, 3, e157. https://doi.org/10.1002/mco2.157.eng
dcterms.referencesDu, C.; Liu, W.-J.; Yang, J.; Zhao, S.-S.; Liu, H.-X. The Role of Branched-Chain Amino Acids and Branched-Chain α-Keto Acid Dehydrogenase Kinase in Metabolic Disorders. Front. Nutr. 2022, 9, 932670. https://doi.org/10.3389/fnut.2022.932670.eng
dcterms.referencesZhang, S.; Wang, J.; Wang, L.; Aliyari, S.; Cheng, G. SARS-CoV-2 Virus NSP14 Impairs NRF2/HMOX1 Activation by Targeting Sirtuin 1. Cell. Mol. Immunol. 2022, 19, 872–882. https://doi.org/10.1038/s41423-022-00887-w.eng
dcterms.referencesFeng, Y.; Tang, K.; Lai, Q.; Liang, J.; Feng, M.; Zhou, Z.-W.; Cui, H.; Du, X.; Zhang, H.; Sun, L. The Landscape of Aminoacyl-TRNA Synthetases Involved in Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Front. Physiol. 2021, 12, 818297. https://doi.org/10.3389/fphys.2021.818297.eng
dcterms.referencesGhosh, N.; Saha, I.; Sharma, N. Interactome of Human and SARS-CoV-2 Proteins to Identify Human Hub Proteins Associated with Comorbidities. Comput. Biol. Med. 2021, 138, 104889. https://doi.org/10.1016/j.compbiomed.2021.104889.eng
dcterms.referencesStefano, G.B.; Büttiker, P.; Weissenberger, S.; Martin, A.; Ptacek, R.; Kream, R.M. Editorial: The Pathogenesis of Long-Term Neuropsychiatric COVID-19 and the Role of Microglia, Mitochondria, and Persistent Neuroinflammation: A Hypothesis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e933015. https://doi.org/10.12659/MSM.933015.eng
dcterms.referencesPaul, B.D.; Lemle, M.D.; Komaroff, A.L.; Snyder, S.H. Redox Imbalance Links COVID-19 and Myalgic Encephalomyeli-tis/Chronic Fatigue Syndrome. Proc. Natl. Acad. Sci. USA 2021, 118, e2024358118. https://doi.org/10.1073/pnas.2024358118.eng
dcterms.referencesWood, E.; Hall, K.H.; Tate, W. Role of Mitochondria, Oxidative Stress and the Response to Antioxidants in Myalgic Encephalo-myelitis/Chronic Fatigue Syndrome: A Possible Approach to SARS-CoV-2 ‘Long-haulers’? Chronic Dis. Transl. Med. 2021, 7, 14–26. https://doi.org/10.1016/j.cdtm.2020.11.002.eng
dcterms.referencesRosa-Fernandes, L.; Lazari, L.C.; da Silva, J.M.; de Morais Gomes, V.; Machado, R.R.G.; dos Santos, A.F.; Araujo, D.B.; Coutinho, J.V.P.; Arini, G.S.; Angeli, C.B.; et al. SARS-CoV-2 Activates ER Stress and Unfolded Protein Response. bioRxiv 2021. https://doi.org/10.1101/2021.06.21.449284.eng
dcterms.referencesAoe, T. Pathological Aspects of COVID-19 as a Conformational Disease and the Use of Pharmacological Chaperones as a Po-tential Therapeutic Strategy. Front. Pharmacol. 2020, 11, 1095. https://doi.org/10.3389/fphar.2020.01095.eng
dcterms.referencesSureda, A.; Alizadeh, J.; Nabavi, S.F.; Berindan-Neagoe, I.; Cismaru, C.A.; Jeandet, P.; Łos, M.J.; Clementi, E.; Nabavi, S.M.; Ghavami, S. Endoplasmic Reticulum as a Potential Therapeutic Target for Covid-19 Infection Management? Eur. J. Pharmacol. 2020, 882, 173288. https://doi.org/10.1016/j.ejphar.2020.173288.eng
dcterms.referencesUpadhyay, M.; Gupta, S. Endoplasmic Reticulum Secretory Pathway: Potential Target against SARS-CoV-2. Virus Res. 2022, 320, 198897. https://doi.org/10.1016/j.virusres.2022.198897.eng
dcterms.referencesZhang, Z.; Nomura, N.; Muramoto, Y.; Ekimoto, T.; Uemura, T.; Liu, K.; Yui, M.; Kono, N.; Aoki, J.; Ikeguchi, M.; et al. Structure of SARS-CoV-2 Membrane Protein Essential for Virus Assembly. Nat. Commun. 2022, 13, 4399. https://doi.org/10.1038/s41467-022-32019-3.eng
dcterms.referencesRashid, F.; Dzakah, E.E.; Wang, H.; Tang, S. The ORF8 Protein of SARS-CoV-2 Induced Endoplasmic Reticulum Stress and Mediated Immune Evasion by Antagonizing Production of Interferon Beta. Virus Res. 2021, 296, 198350. https://doi.org/10.1016/j.virusres.2021.198350.eng
dcterms.referencesWang, S.; Tukachinsky, H.; Romano, F.B.; Rapoport, T.A. Cooperation of the ER-Shaping Proteins Atlastin, Lunapark, and Re-ticulons to Generate a Tubular Membrane Network. eLife 2016, 5, e18605. https://doi.org/10.7554/eLife.18605.eng
dcterms.referencesYao, L.; Xie, D.; Geng, L.; Shi, D.; Huang, J.; Wu, Y.; Lv, F.; Liang, D.; Li, L.; Liu, Y.; et al. REEP5 (Receptor Accessory Protein 5) Acts as a Sarcoplasmic Reticulum Membrane Sculptor to Modulate Cardiac Function. J. Am. Heart Assoc. 2018, 7, e007205. https://doi.org/10.1161/JAHA.117.007205.eng
dcterms.referencesBjörk, S.; Hurt, C.M.; Ho, V.K.; Angelotti, T. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity. PLoS ONE 2013, 8, e76366. https://doi.org/10.1371/jour-nal.pone.0076366.eng
dcterms.referencesSon, Y.; Choi, C.; Saha, A.; Park, J.-H.; Im, H.; Cho, Y.K.; Seong, J.K.; Burl, R.B.; Rondini, E.A.; Granneman, J.G.; et al. REEP6 Knockout Leads to Defective β-Adrenergic Signaling in Adipocytes and Promotes Obesity-Related Metabolic Dysfunction. Me-tabolism 2022, 130, 155159. https://doi.org/10.1016/j.metabol.2022.155159.eng
dcterms.referencesFeng, L.; Yin, Y.-Y.; Liu, C.-H.; Xu, K.-R.; Li, Q.-R.; Wu, J.-R.; Zeng, R. Proteome-Wide Data Analysis Reveals Tissue-Specific Network Associated with SARS-CoV-2 Infection. J. Mol. Cell Biol. 2021, 12, 946–957. https://doi.org/10.1093/jmcb/mjaa033.eng
dcterms.referencesPark, C.R.; You, D.-J.; Park, S.; Mander, S.; Jang, D.-E.; Yeom, S.-C.; Oh, S.-H.; Ahn, C.; Lee, S.H.; Seong, J.Y.; et al. The Accessory Proteins REEP5 and REEP6 Refine CXCR1-Mediated Cellular Responses and Lung Cancer Progression. Sci. Rep. 2016, 6, 39041. https://doi.org/10.1038/srep39041.eng
dcterms.referencesHayashi, T.; Su, T.-P. Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Sur-vival. Cell 2007, 131, 596–610. https://doi.org/10.1016/j.cell.2007.08.036.eng
dcterms.referencesvan Waarde, A.; Rybczynska, A.A.; Ramakrishnan, N.K.; Ishiwata, K.; Elsinga, P.H.; Dierckx, R.A.J.O. Potential Applications for Sigma Receptor Ligands in Cancer Diagnosis and Therapy. Biochim. Biophys. Acta BBA-Biomembr. 2015, 1848, 2703–2714. https://doi.org/10.1016/j.bbamem.2014.08.022.eng
dcterms.referencesHuang, Y.-S.; Lu, H.-L.; Zhang, L.-J.; Wu, Z. Sigma-2 Receptor Ligands and Their Perspectives in Cancer Diagnosis and Therapy: Sigma-2 Receptor Ligands. Med. Res. Rev. 2014, 34, 532–566. https://doi.org/10.1002/med.21297.eng
dcterms.referencesRosen, D.A.; Seki, S.M.; Fernández-Castañeda, A.; Beiter, R.M.; Eccles, J.D.; Woodfolk, J.A.; Gaultier, A. Modulation of the Sigma-1 Receptor–IRE1 Pathway Is Beneficial in Preclinical Models of Inflammation and Sepsis. Sci. Transl. Med. 2019, 11, eaau5266. https://doi.org/10.1126/scitranslmed.aau5266.eng
dcterms.referencesAlon, A.; Schmidt, H.R.; Wood, M.D.; Sahn, J.J.; Martin, S.F.; Kruse, A.C. Identification of the Gene That Codes for the σ2 Recep-tor. Proc. Natl. Acad. Sci. USA 2017, 114, 7160–7165. https://doi.org/10.1073/pnas.1705154114.eng
dcterms.referencesSkuza, G. Potential Antidepressant Activity of Sigma Ligands. Pol. J. Pharmacol. 2003, 55, 923–934.eng
dcterms.referencesTang, S.W.; Leonard, B.E.; Helmeste, D.M. Long COVID, Neuropsychiatric Disorders, Psychotropics, Present and Future. Acta Neuropsychiatr. 2022, 34, 109–126. https://doi.org/10.1017/neu.2022.6.eng
dcterms.referencesHashimoto, K. Repurposing of CNS Drugs to Treat COVID-19 Infection: Targeting the Sigma-1 Receptor. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 249–258. https://doi.org/10.1007/s00406-020-01231-x.eng
dcterms.referencesMartin-Montalvo, A.; Sun, Y.; Diaz-Ruiz, A.; Ali, A.; Gutierrez, V.; Palacios, H.H.; Curtis, J.; Siendones, E.; Ariza, J.; Abulwerdi, G.A.; et al. Cytochrome B5 Reductase and the Control of Lipid Metabolism and Healthspan. NPJ Aging Mech. Dis. 2016, 2, 16006. https://doi.org/10.1038/npjamd.2016.6.eng
dcterms.referencesNagasawa, M.; Kanzaki, M.; Iino, Y.; Morishita, Y.; Kojima, I. Identification of a Novel Chloride Channel Expressed in the En-doplasmic Reticulum, Golgi Apparatus, and Nucleus. J. Biol. Chem. 2001, 276, 20413–20418. https://doi.org/10.1074/jbc.M100366200.eng
dcterms.referencesWang, C.; Yoo, Y.; Fan, H.; Kim, E.; Guan, K.-L.; Guan, J.-L. Regulation of Integrin β 1 Recycling to Lipid Rafts by Rab1a to Promote Cell Migration. J. Biol. Chem. 2010, 285, 29398–29405. https://doi.org/10.1074/jbc.M110.141440.eng
dcterms.referencesReggiori, F.; Monastyrska, I.; Verheije, M.H.; Calì, T.; Ulasli, M.; Bianchi, S.; Bernasconi, R.; de Haan, C.A.M.; Molinari, M. Coronaviruses Hijack the LC3-I-Positive EDEMosomes, ER-Derived Vesicles Exporting Short-Lived ERAD Regulators, for Rep-lication. Cell Host Microbe 2010, 7, 500–508. https://doi.org/10.1016/j.chom.2010.05.013.eng
dcterms.referencesSicari, D.; Chatziioannou, A.; Koutsandreas, T.; Sitia, R.; Chevet, E. Role of the Early Secretory Pathway in SARS-CoV-2 Infection. J. Cell Biol. 2020, 219, e202006005. https://doi.org/10.1083/jcb.202006005.eng
dcterms.referencesYiang, G.-T.; Wu, C.-C.; Lu, C.-L.; Hu, W.-C.; Tsai, Y.-J.; Huang, Y.-M.; Su, W.-L.; Lu, K.-C. Endoplasmic Reticulum Stress in Elderly Patients with COVID-19: Potential of Melatonin Treatment. Viruses 2023, 15, 156. https://doi.org/10.3390/v15010156.eng
dcterms.referencesCortese, M.; Lee, J.-Y.; Cerikan, B.; Neufeldt, C.J.; Oorschot, V.M.J.; Köhrer, S.; Hennies, J.; Schieber, N.L.; Ronchi, P.; Mizzon, G.; et al. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe 2020, 28, 853–866.e5. https://doi.org/10.1016/j.chom.2020.11.003.eng
dcterms.referencesZhang, J.; Kennedy, A.; Xing, L.; Bui, S.; Reid, W.; Joppich, J.; Ahat, E.; Rose, M.; Tang, Q.; Tai, A.W.; et al. SARS-CoV-2 Triggers Golgi Fragmentation via down-Regulation of GRASP55 to Facilitate Viral Trafficking. bioRxiv 2022.eng
dcterms.referencesLiu, J.; Huang, Y.; Li, T.; Jiang, Z.; Zeng, L.; Hu, Z. The Role of the Golgi Apparatus in Disease (Review). Int. J. Mol. Med. 2021, 47, 38. https://doi.org/10.3892/ijmm.2021.4871.eng
dcterms.referencesWang, Y.; Gandy, S. The Golgi Apparatus: Site for Convergence of COVID-19 Brain Fog and Alzheimer’s Disease? Mol. Neuro-degener. 2022, 17, 67. https://doi.org/10.1186/s13024-022-00568-2.eng
dcterms.referencesDevergnas, S.; Chimienti, F.; Naud, N.; Pennequin, A.; Coquerel, Y.; Chantegrel, J.; Favier, A.; Seve, M. Differential Regulation of Zinc Efflux Transporters ZnT-1, ZnT-5 and ZnT-7 Gene Expression by Zinc Levels: A Real-Time RT-PCR Study. Biochem. Pharmacol. 2004, 68, 699–709. https://doi.org/10.1016/j.bcp.2004.05.024.eng
dcterms.referencesKirschke, C.P.; Huang, L. ZnT7, a Novel Mammalian Zinc Transporter, Accumulates Zinc in the Golgi Apparatus. J. Biol. Chem. 2003, 278, 4096–4102. https://doi.org/10.1074/jbc.M207644200.eng
dcterms.referencesMatern, H.; Yang, X.; Andrulis, E.; Sternglanz, R.; Trepte, H.H.; Gallwitz, D. A Novel Golgi Membrane Protein Is Part of a GTPase-Binding Protein Complex Involved in Vesicle Targeting. EMBO J. 2000, 19, 4485–4492. https://doi.org/10.1093/em-boj/19.17.4485.eng
dcterms.referencesSchulz, J.; Avci, D.; Queisser, M.A.; Gutschmidt, A.; Dreher, L.-S.; Fenech, E.J.; Volkmar, N.; Hayashi, Y.; Hoppe, T.; Christianson, J.C. Conserved Cytoplasmic Domains Promote Hrd1 Ubiquitin Ligase Complex Formation for ER-Associated Degradation (ERAD). J. Cell Sci. 2017, 130, 3322–3335. https://doi.org/10.1242/jcs.206847.eng
dcterms.referencesvan de Weijer, M.L.; Krshnan, L.; Liberatori, S.; Guerrero, E.N.; Robson-Tull, J.; Hahn, L.; Lebbink, R.J.; Wiertz, E.J.H.J.; Fischer, R.; Ebner, D.; et al. Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex. Mol. Cell 2020, 79, 768–781.e7. https://doi.org/10.1016/j.molcel.2020.07.009.eng
dcterms.referencesJin, C.; Zhang, Y.; Zhu, H.; Ahmed, K.; Fu, C.; Yao, X. Human Yip1A Specifies the Localization of Yif1 to the Golgi Apparatus. Biochem. Biophys. Res. Commun. 2005, 334, 16–22. https://doi.org/10.1016/j.bbrc.2005.06.051.eng
dcterms.referencesAdelino, J.E.; Addobbati, C.; Pontillo, A.; Fragoso, T.S.; Duarte, Â.; Crovella, S.; De Azevedo Silva, J.; Sandrin-Garcia, P. A Genetic Variant within SLC30A6 Has a Protective Role in the Severity of Rheumatoid Arthritis. Scand. J. Rheumatol. 2017, 46, 326–327. https://doi.org/10.1080/03009742.2016.1209551.eng
dcterms.referencesFukunaka, A.; Suzuki, T.; Kurokawa, Y.; Yamazaki, T.; Fujiwara, N.; Ishihara, K.; Migaki, H.; Okumura, K.; Masuda, S.; Yama-guchi-Iwai, Y.; et al. Demonstration and Characterization of the Heterodimerization of ZnT5 and ZnT6 in the Early Secretory Pathway. J. Biol. Chem. 2009, 284, 30798–30806. https://doi.org/10.1074/jbc.M109.026435.eng
dcterms.referencesWessels, I.; Rolles, B.; Rink, L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front. Immunol. 2020, 11, 1712. https://doi.org/10.3389/fimmu.2020.01712.eng
dcterms.referencesMahmoud, M.M.; Abuohashish, H.M.; Khairy, D.A.; Bugshan, A.S.; Khan, A.M.; Moothedath, M.M. Pathogenesis of Dysgeusia in COVID-19 Patients: A Scoping Review. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1114–1134. https://doi.org/10.26355/eurrev_202101_24683.eng
dcterms.referencesLarocca, M.C.; Shanks, R.A.; Tian, L.; Nelson, D.L.; Stewart, D.M.; Goldenring, J.R. AKAP350 Interaction with Cdc42 Interacting Protein 4 at the Golgi Apparatus. Mol. Biol. Cell 2004, 15, 2771–2781. https://doi.org/10.1091/mbc.e03-10-0757.eng
dcterms.referencesPuthenveedu, M.A.; Bachert, C.; Puri, S.; Lanni, F.; Linstedt, A.D. GM130 and GRASP65-Dependent Lateral Cisternal Fusion Allows Uniform Golgi-Enzyme Distribution. Nat. Cell Biol. 2006, 8, 238–248. https://doi.org/10.1038/ncb1366.eng
dcterms.referencesWitczak, O.; Skålhegg, B.S.; Keryer, G.; Bornens, M.; Taskén, K.; Jahnsen, T.; Orstavik, S. Cloning and Characterization of a CDNA Encoding an A-Kinase Anchoring Protein Located in the Centrosome, AKAP450. EMBO J. 1999, 18, 1858–1868. https://doi.org/10.1093/emboj/18.7.1858.eng
dcterms.referencesWu, J.; de Heus, C.; Liu, Q.; Bouchet, B.P.; Noordstra, I.; Jiang, K.; Hua, S.; Martin, M.; Yang, C.; Grigoriev, I.; et al. Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev. Cell 2016, 39, 44–60. https://doi.org/10.1016/j.devcel.2016.08.009.eng
dcterms.referencesMunro, S. The Golgin Coiled-Coil Proteins of the Golgi Apparatus. Cold Spring Harb. Perspect. Biol. 2011, 3, a005256. https://doi.org/10.1101/cshperspect.a005256.eng
dcterms.referencesLowe, M. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front. Cell Dev. Biol. 2019, 7, 94. https://doi.org/10.3389/fcell.2019.00094.eng
dcterms.referencesWeiss, R.J.; Spahn, P.N.; Toledo, A.G.; Chiang, A.W.T.; Kellman, B.P.; Li, J.; Benner, C.; Glass, C.K.; Gordts, P.L.S.M.; Lewis, N.E.; et al. ZNF263 Is a Transcriptional Regulator of Heparin and Heparan Sulfate Biosynthesis. Proc. Natl. Acad. Sci. USA 2020, 117, 9311–9317. https://doi.org/10.1073/pnas.1920880117.eng
dcterms.referencesKloc, M.; Uosef, A.; Wosik, J.; Kubiak, J.Z.; Ghobrial, R.M. Virus Interactions with the Actin Cytoskeleton—What We Know and Do Not Know about SARS-CoV-2. Arch. Virol. 2022, 167, 737–749. https://doi.org/10.1007/s00705-022-05366-1.eng
dcterms.referencesAminpour, M.; Hameroff, S.; Tuszynski, J.A. How COVID-19 Hijacks the Cytoskeleton: Therapeutic Implications. Life 2022, 12, 814. https://doi.org/10.3390/life12060814.eng
dcterms.referencesMathew, D.; Giles, J.R.; Baxter, A.E.; Greenplate, A.R.; Wu, J.E.; Alanio, C.; Oldridge, D.A.; Kuri-Cervantes, L.; Pampena, M.B.; D’Andrea, K.; et al. Deep Immune Profiling of COVID-19 Patients Reveals Patient Heterogeneity and Distinct Immunotypes with Implications for Therapeutic Interventions. Science 2020, 369, eabc8511.eng
dcterms.referencesMichie, K.A.; Bermeister, A.; Robertson, N.O.; Goodchild, S.C.; Curmi, P.M.G. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Int. J. Mol. Sci. 2019, 20, 1996. https://doi.org/10.3390/ijms20081996.eng
dcterms.referencesPasapera, A.M.; Heissler, S.M.; Eto, M.; Nishimura, Y.; Fischer, R.S.; Thiam, H.R.; Waterman, C.M. MARK2 Regulates Directed Cell Migration through Modulation of Myosin II Contractility and Focal Adhesion Organization. Curr. Biol. 2022, 32, 2704–2718.e6. https://doi.org/10.1016/j.cub.2022.04.088.eng
dcterms.referencesThies, E.; Mandelkow, E.-M. Missorting of Tau in Neurons Causes Degeneration of Synapses That Can Be Rescued by the Kinase MARK2/Par-1. J. Neurosci. 2007, 27, 2896–2907. https://doi.org/10.1523/JNEUROSCI.4674-06.2007.eng
dcterms.referencesMatenia, D.; Hempp, C.; Timm, T.; Eikhof, A.; Mandelkow, E.-M. Microtubule Affinity-Regulating Kinase 2 (MARK2) Turns on Phosphatase and Tensin Homolog (PTEN)-Induced Kinase 1 (PINK1) at Thr-313, a Mutation Site in Parkinson Disease. J. Biol. Chem. 2012, 287, 8174–8186. https://doi.org/10.1074/jbc.M111.262287.eng
dcterms.referencesPera, T.; Tompkins, E.; Katz, M.; Wang, B.; Deshpande, D.A.; Weinman, E.J.; Penn, R.B. Specificity of NHERF1 Regulation of GPCR Signaling and Function in Human Airway Smooth Muscle. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 9008–9016. https://doi.org/10.1096/fj.201900323R.eng
dcterms.referencesYoun, J.-Y.; Dunham, W.H.; Hong, S.J.; Knight, J.D.R.; Bashkurov, M.; Chen, G.I.; Bagci, H.; Rathod, B.; MacLeod, G.; Eng, S.W.M.; et al. High-Density Proximity Mapping Reveals the Subcellular Organization of MRNA-Associated Granules and Bod-ies. Mol. Cell 2018, 69, 517–532.e11. https://doi.org/10.1016/j.molcel.2017.12.020.eng
dcterms.referencesSzymanski, D. Tubulin Folding Cofactors: Half a Dozen for a Dimer. Curr. Biol. CB 2002, 12, R767–R769. https://doi.org/10.1016/s0960-9822(02)01288-5.eng
dcterms.referencesWang, Y.; Zhan, Q. Cell Cycle-Dependent Expression of Centrosomal Ninein-like Protein in Human Cells Is Regulated by the Anaphase-Promoting Complex. J. Biol. Chem. 2007, 282, 17712–17719. https://doi.org/10.1074/jbc.M701350200.eng
dcterms.referencesBachmann-Gagescu, R.; Dona, M.; Hetterschijt, L.; Tonnaer, E.; Peters, T.; de Vrieze, E.; Mans, D.A.; van Beersum, S.E.C.; Phelps, I.G.; Arts, H.H.; et al. The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Ves-icle Trafficking. PLoS Genet. 2015, 11, e1005575. https://doi.org/10.1371/journal.pgen.1005575.spa
dcterms.referencesDona, M.; Bachmann-Gagescu, R.; Texier, Y.; Toedt, G.; Hetterschijt, L.; Tonnaer, E.L.; Peters, T.A.; van Beersum, S.E.C.; Bergboer, J.G.M.; Horn, N.; et al. NINL and DZANK1 Co-Function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genet. 2015, 11, e1005574. https://doi.org/10.1371/journal.pgen.1005574.eng
dcterms.referencesvan Wijk, E.; Kersten, F.F.J.; Kartono, A.; Mans, D.A.; Brandwijk, K.; Letteboer, S.J.F.; Peters, T.A.; Märker, T.; Yan, X.; Cremers, C.W.R.J.; et al. Usher Syndrome and Leber Congenital Amaurosis Are Molecularly Linked via a Novel Isoform of the Centro-somal Ninein-like Protein. Hum. Mol. Genet. 2009, 18, 51–64. https://doi.org/10.1093/hmg/ddn312.eng
dcterms.referencesWang, L.; Liu, C.; Yang, B.; Zhang, H.; Jiao, J.; Zhang, R.; Liu, S.; Xiao, S.; Chen, Y.; Liu, B.; et al. SARS-CoV-2 ORF10 Impairs Cilia by Enhancing CUL2ZYG11B Activity. J. Cell Biol. 2022, 221, e202108015. https://doi.org/10.1083/jcb.202108015.eng
dcterms.referencesWaters, A.M.; Asfahani, R.; Carroll, P.; Bicknell, L.; Lescai, F.; Bright, A.; Chanudet, E.; Brooks, A.; Christou-Savina, S.; Osman, G.; et al. The Kinetochore Protein, CENPF, Is Mutated in Human Ciliopathy and Microcephaly Phenotypes. J. Med. Genet. 2015, 52, 147–156. https://doi.org/10.1136/jmedgenet-2014-102691.eng
dcterms.referencesWhitsett, J.A. Airway Epithelial Differentiation and Mucociliary Clearance. Ann. Am. Thorac. Soc. 2018, 15, S143–S148. https://doi.org/10.1513/AnnalsATS.201802-128AW.eng
dcterms.referencesChristie, D.A.; Mitsopoulos, P.; Blagih, J.; Dunn, S.D.; St-Pierre, J.; Jones, R.G.; Hatch, G.M.; Madrenas, J. Stomatin-like Protein 2 Deficiency in T Cells Is Associated with Altered Mitochondrial Respiration and Defective CD4+ T Cell Responses. J. Immunol. 2012, 189, 4349–4360. https://doi.org/10.4049/jimmunol.1103829.eng
dcterms.referencesOnnis, A.; Andreano, E.; Cassioli, C.; Finetti, F.; Della Bella, C.; Staufer, O.; Pantano, E.; Abbiento, V.; Marotta, G.; D’Elios, M.M.; et al. SARS-CoV-2 Spike Protein Suppresses CTL-Mediated Killing by Inhibiting Immune Synapse Assembly. J. Exp. Med. 2023, 220, e20220906. https://doi.org/10.1084/jem.20220906.eng
dcterms.referencesFackler, O.T.; Alcover, A.; Schwartz, O. Modulation of the Immunological Synapse: A Key to HIV-1 Pathogenesis? Nat. Rev. Immunol. 2007, 7, 310–317. https://doi.org/10.1038/nri2041.eng
dcterms.referencesAbdel Hameid, R.; Cormet-Boyaka, E.; Kuebler, W.M.; Uddin, M.; Berdiev, B.K. SARS-CoV-2 May Hijack GPCR Signaling Path-ways to Dysregulate Lung Ion and Fluid Transport. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2021, 320, L430–L435. https://doi.org/10.1152/ajplung.00499.2020.eng
dcterms.referencesMotley, A.; Bright, N.A.; Seaman, M.N.J.; Robinson, M.S. Clathrin-Mediated Endocytosis in AP-2-Depleted Cells. J. Cell Biol. 2003, 162, 909–918. https://doi.org/10.1083/jcb.200305145.eng
dcterms.referencesLiu, Q.; Bautista-Gomez, J.; Higgins, D.A.; Yu, J.; Xiong, Y. Dysregulation of the AP2M1 Phosphorylation Cycle by LRRK2 Impairs Endocytosis and Leads to Dopaminergic Neurodegeneration. Sci. Signal. 2021, 14, eabg3555. https://doi.org/10.1126/scisignal.abg3555.eng
dcterms.referencesKarim, M.; Saul, S.; Ghita, L.; Sahoo, M.K.; Ye, C.; Bhalla, N.; Lo, C.-W.; Jin, J.; Park, J.-G.; Martinez-Gualda, B.; et al. Numb-Associated Kinases Are Required for SARS-CoV-2 Infection and Are Cellular Targets for Antiviral Strategies. Antivir. Res. 2022, 204, 105367. https://doi.org/10.1016/j.antiviral.2022.105367.eng
dcterms.referencesPuray-Chavez, M.; LaPak, K.M.; Schrank, T.P.; Elliott, J.L.; Bhatt, D.P.; Agajanian, M.J.; Jasuja, R.; Lawson, D.Q.; Davis, K.; Rothlauf, P.W.; et al. Systematic Analysis of SARS-CoV-2 Infection of an ACE2-Negative Human Airway Cell. Cell Rep. 2021, 36, 109364. https://doi.org/10.1016/j.celrep.2021.109364.eng
dcterms.referencesSchreiner, T.; Allnoch, L.; Beythien, G.; Marek, K.; Becker, K.; Schaudien, D.; Stanelle-Bertram, S.; Schaumburg, B.; Mounogou Kouassi, N.; Beck, S.; et al. SARS-CoV-2 Infection Dysregulates Cilia and Basal Cell Homeostasis in the Respiratory Epithelium of Hamsters. Int. J. Mol. Sci. 2022, 23, 5124. https://doi.org/10.3390/ijms23095124.eng
dcterms.referencesWang, W.; Zhou, Z.; Xiao, X.; Tian, Z.; Dong, X.; Wang, C.; Li, L.; Ren, L.; Lei, X.; Xiang, Z.; et al. SARS-CoV-2 Nsp12 Attenuates Type I Interferon Production by Inhibiting IRF3 Nuclear Translocation. Cell. Mol. Immunol. 2021, 18, 945–953. https://doi.org/10.1038/s41423-020-00619-y.eng
dcterms.referencesMiorin, L.; Kehrer, T.; Sanchez-Aparicio, M.T.; Zhang, K.; Cohen, P.; Patel, R.S.; Cupic, A.; Makio, T.; Mei, M.; Moreno, E.; et al. SARS-CoV-2 Orf6 Hijacks Nup98 to Block STAT Nuclear Import and Antagonize Interferon Signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 28344–28354. https://doi.org/10.1073/pnas.2016650117.eng
dcterms.referencesMu, J.; Fang, Y.; Yang, Q.; Shu, T.; Wang, A.; Huang, M.; Jin, L.; Deng, F.; Qiu, Y.; Zhou, X. SARS-CoV-2 N Protein Antagonizes Type I Interferon Signaling by Suppressing Phosphorylation and Nuclear Translocation of STAT1 and STAT2. Cell Discov. 2020, 6, 65. https://doi.org/10.1038/s41421-020-00208-3.eng
dcterms.referencesCollins, S.E.; Noyce, R.S.; Mossman, K.L. Innate Cellular Response to Virus Particle Entry Requires IRF3 but Not Virus Replica-tion. J. Virol. 2004, 78, 1706–1717. https://doi.org/10.1128/jvi.78.4.1706-1717.2004.eng
dcterms.referencesZhang, K.; Miorin, L.; Makio, T.; Dehghan, I.; Gao, S.; Xie, Y.; Zhong, H.; Esparza, M.; Kehrer, T.; Kumar, A.; et al. Nsp1 Protein of SARS-CoV-2 Disrupts the MRNA Export Machinery to Inhibit Host Gene Expression. Sci. Adv. 2021, 7, eabe7386. https://doi.org/10.1126/sciadv.abe7386.eng
dcterms.referencesMatuck, B.F.; Dolhnikoff, M.; Duarte-Neto, A.N.; Maia, G.; Gomes, S.C.; Sendyk, D.I.; Zarpellon, A.; de Andrade, N.P.; Monteiro, R.A.; Pinho, J.R.R.; et al. Salivary Glands Are a Target for SARS-CoV-2: A Source for Saliva Contamination. J. Pathol. 2021, 254, 239–243. https://doi.org/10.1002/path.5679.eng
dcterms.referencesNardacci, R.; Colavita, F.; Castilletti, C.; Lapa, D.; Matusali, G.; Meschi, S.; Del Nonno, F.; Colombo, D.; Capobianchi, M.R.; Zumla, A.; et al. Evidences for Lipid Involvement in SARS-CoV-2 Cytopathogenesis. Cell Death Dis. 2021, 12, 263. https://doi.org/10.1038/s41419-021-03527-9.eng
dcterms.referencesBuchrieser, J.; Dufloo, J.; Hubert, M.; Monel, B.; Planas, D.; Rajah, M.M.; Planchais, C.; Porrot, F.; Guivel-Benhassine, F.; Van der Werf, S.; et al. Syncytia Formation by SARS-CoV-2-Infected Cells. EMBO J. 2021, 40, e107405. https://doi.org/10.15252/embj.2020107405.eng
dcterms.referencesBussani, R.; Schneider, E.; Zentilin, L.; Collesi, C.; Ali, H.; Braga, L.; Volpe, M.C.; Colliva, A.; Zanconati, F.; Berlot, G.; et al. Persistence of Viral RNA, Pneumocyte Syncytia and Thrombosis Are Hallmarks of Advanced COVID-19 Pathology. EBioMedi-cine 2020, 61, 103104. https://doi.org/10.1016/j.ebiom.2020.103104.eng
dcterms.referencesHayden, M.R.; Tyagi, S.C. Impaired Folate-Mediated One-Carbon Metabolism in Type 2 Diabetes, Late-Onset Alzheimer’s Dis-ease and Long COVID. Med. Kaunas Lith. 2021, 58, 16. https://doi.org/10.3390/medicina58010016.eng
dcterms.referencesLeGros, H.L.; Halim, A.B.; Geller, A.M.; Kotb, M. Cloning, Expression, and Functional Characterization of the Beta Regulatory Subunit of Human Methionine Adenosyltransferase (MAT II). J. Biol. Chem. 2000, 275, 2359–2366. https://doi.org/10.1074/jbc.275.4.2359.eng
dcterms.referencesWang, F.; Kream, R.M.; Stefano, G.B. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med. Sci. Monit. 2020, 26, e928996-1. https://doi.org/10.12659/MSM.928996.eng
dcterms.referencesGallo, O.; Locatello, L.G.; Mazzoni, A.; Novelli, L.; Annunziato, F. The Central Role of the Nasal Microenvironment in the Transmission, Modulation, and Clinical Progression of SARS-CoV-2 Infection. Mucosal Immunol. 2021, 14, 305–316. https://doi.org/10.1038/s41385-020-00359-2.eng
dcterms.referencesZhu, N.; Wang, W.; Liu, Z.; Liang, C.; Wang, W.; Ye, F.; Huang, B.; Zhao, L.; Wang, H.; Zhou, W.; et al. Morphogenesis and Cytopathic Effect of SARS-CoV-2 Infection in Human Airway Epithelial Cells. Nat. Commun. 2020, 11, 3910. https://doi.org/10.1038/s41467-020-17796-z.eng
dcterms.referencesMorrison, C.B.; Edwards, C.E.; Shaffer, K.M.; Araba, K.C.; Wykoff, J.A.; Williams, D.R.; Asakura, T.; Dang, H.; Morton, L.C.; Gilmore, R.C.; et al. SARS-CoV-2 Infection of Airway Cells Causes Intense Viral and Cell Shedding, Two Spreading Mechanisms Affected by IL-13. Proc. Natl. Acad. Sci. USA 2022, 119, e2119680119. https://doi.org/10.1073/pnas.2119680119.eng
dcterms.referencesTakeda, K.; Sakakibara, S.; Yamashita, K.; Motooka, D.; Nakamura, S.; El Hussien, M.A.; Katayama, J.; Maeda, Y.; Nakata, M.; Hamada, S.; et al. Allergic Conversion of Protective Mucosal Immunity against Nasal Bacteria in Patients with Chronic Rhinosi-nusitis with Nasal Polyposis. J. Allergy Clin. Immunol. 2019, 143, 1163–1175.e15. https://doi.org/10.1016/j.jaci.2018.07.006.eng
dcterms.referencesAhn, J.H.; Kim, J.; Hong, S.P.; Choi, S.Y.; Yang, M.J.; Ju, Y.S.; Kim, Y.T.; Kim, H.M.; Rahman, M.D.T.; Chung, M.K.; et al. Nasal Ciliated Cells Are Primary Targets for SARS-CoV-2 Replication in the Early Stage of COVID-19. J. Clin. Investig. 2021, 131, e148517. https://doi.org/10.1172/JCI148517.eng
dcterms.referencesRobinot, R.; Hubert, M.; de Melo, G.D.; Lazarini, F.; Bruel, T.; Smith, N.; Levallois, S.; Larrous, F.; Fernandes, J.; Gellenoncourt, S.; et al. SARS-CoV-2 Infection Induces the Dedifferentiation of Multiciliated Cells and Impairs Mucociliary Clearance. Nat. Commun. 2021, 12, 4354. https://doi.org/10.1038/s41467-021-24521-x.eng
dcterms.referencesBridges, J.P.; Vladar, E.K.; Huang, H.; Mason, R.J. Respiratory Epithelial Cell Responses to SARS-CoV-2 in COVID-19. Thorax 2022, 77, 203–209. https://doi.org/10.1136/thoraxjnl-2021-217561.eng
dcterms.referencesWahl, A.; Gralinski, L.; Johnson, C.; Yao, W.; Kovarova, M.; Dinnon, K.; Liu, H.; Madden, V.; Krzystek, H.; De, C.; et al. Acute SARS-CoV-2 Infection Is Highly Cytopathic, Elicits a Robust Innate Immune Response and Is Efficiently Prevented by EIDD-2801. Res. Sq. 2020. https://doi.org/10.21203/rs.3.rs-80404/v1.eng
dcterms.referencesHuang, B. Mucins Produced by Type II Pneumocyte: Culprits in SARS-CoV-2 Pathogenesis. Cell. Mol. Immunol. 2021, 18, 1823–1825. https://doi.org/10.1038/s41423-021-00714-8.eng
dcterms.referencesHu, G.; Christman, J.W. Editorial: Alveolar Macrophages in Lung Inflammation and Resolution. Front. Immunol. 2019, 10, 2275. https://doi.org/10.3389/fimmu.2019.02275.eng
dcterms.referencesKeidar, S.; Gamliel-Lazarovich, A.; Kaplan, M.; Pavlotzky, E.; Hamoud, S.; Hayek, T.; Karry, R.; Abassi, Z. Mineralocorticoid Receptor Blocker Increases Angiotensin-Converting Enzyme 2 Activity in Congestive Heart Failure Patients. Circ. Res. 2005, 97, 946–953. https://doi.org/10.1161/01.RES.0000187500.24964.7A.eng
dcterms.referencesGagnon, H.; Refaie, S.; Gagnon, S.; Desjardins, R.; Salzet, M.; Day, R. Proprotein Convertase 1/3 (PC1/3) in the Rat Alveolar Macrophage Cell Line NR8383: Localization, Trafficking and Effects on Cytokine Secretion. PLoS ONE 2013, 8, e61557. https://doi.org/10.1371/journal.pone.0061557.eng
dcterms.referencesBoumaza, A.; Gay, L.; Mezouar, S.; Bestion, E.; Diallo, A.B.; Michel, M.; Desnues, B.; Raoult, D.; La Scola, B.; Halfon, P.; et al. Monocytes and Macrophages, Targets of Severe Acute Respiratory Syndrome Coronavirus 2: The Clue for Coronavirus Disease 2019 Immunoparalysis. J. Infect. Dis. 2021, 224, 395–406. https://doi.org/10.1093/infdis/jiab044.eng
dcterms.referencesZheng, J.; Wang, Y.; Li, K.; Meyerholz, D.K.; Allamargot, C.; Perlman, S. Severe Acute Respiratory Syndrome Coronavirus 2-Induced Immune Activation and Death of Monocyte-Derived Human Macrophages and Dendritic Cells. J. Infect. Dis. 2021, 223, 785–795. https://doi.org/10.1093/infdis/jiaa753.eng
dcterms.referencesHadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science 2020, 369, 718–724. https://doi.org/10.1126/science.abc6027.eng
dcterms.referencesNiles, M.A.; Gogesch, P.; Kronhart, S.; Ortega Iannazzo, S.; Kochs, G.; Waibler, Z.; Anzaghe, M. Macrophages and Dendritic Cells Are Not the Major Source of Pro-Inflammatory Cytokines Upon SARS-CoV-2 Infection. Front. Immunol. 2021, 12, 647824. https://doi.org/10.3389/fimmu.2021.647824.eng
dcterms.referencesCarfì, A.; Bernabei, R.; Landi, F.; Gemelli Against COVID-19 Post-Acute Care Study Group Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. https://doi.org/10.1001/jama.2020.12603.eng
dcterms.referencesCastanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and Mechanism of Long COVID: A Comprehensive Review. Ann. Med. 2022, 54, 1473–1487. https://doi.org/10.1080/07853890.2022.2076901.eng
dcterms.referencesBernard, I.; Limonta, D.; Mahal, L.; Hobman, T. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Ca-veats in COVID-19. Viruses 2020, 13, 29. https://doi.org/10.3390/v13010029.eng
dcterms.referencesClausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. https://doi.org/10.1016/j.cell.2020.09.033.eng
dcterms.referencesRobson, B. Bioinformatics Studies on a Function of the SARS-CoV-2 Spike Glycoprotein as the Binding of Host Sialic Acid Glycans. Comput. Biol. Med. 2020, 122, 103849. https://doi.org/10.1016/j.compbiomed.2020.103849.eng
dcterms.referencesLim, S.; Zhang, M.; Chang, T.L. ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022, 14, 2535. https://doi.org/10.3390/v14112535.eng
dcterms.referencesNader, D.; Fletcher, N.; Curley, G.F.; Kerrigan, S.W. SARS-CoV-2 Uses Major Endothelial Integrin Αvβ3 to Cause Vascular Dysregulation in-Vitro during COVID-19. PLoS ONE 2021, 16, e0253347. https://doi.org/10.1371/journal.pone.0253347.eng
dcterms.referencesSchimmel, L.; Chew, K.Y.; Stocks, C.J.; Yordanov, T.E.; Essebier, P.; Kulasinghe, A.; Monkman, J.; Dos Santos Miggiolaro, A.F.R.; Cooper, C.; de Noronha, L.; et al. Endothelial Cells Are Not Productively Infected by SARS-CoV-2. Clin. Transl. Immunol. 2021, 10, e1350. https://doi.org/10.1002/cti2.1350.eng
dcterms.referencesHenry, B.M.; Vikse, J.; Benoit, S.; Favaloro, E.J.; Lippi, G. Hyperinflammation and Derangement of Renin-Angiotensin-Aldoste-rone System in COVID-19: A Novel Hypothesis for Clinically Suspected Hypercoagulopathy and Microvascular Immuno-thrombosis. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 507, 167–173. https://doi.org/10.1016/j.cca.2020.04.027.eng
dcterms.referencesCosta, T.J.; Potje, S.R.; Fraga-Silva, T.F.C.; da Silva-Neto, J.A.; Barros, P.R.; Rodrigues, D.; Machado, M.R.; Martins, R.B.; Santos-Eichler, R.A.; Benatti, M.N.; et al. Mitochondrial DNA and TLR9 Activation Contribute to SARS-CoV-2-Induced Endothelial Cell Damage. Vascul. Pharmacol. 2022, 142, 106946. https://doi.org/10.1016/j.vph.2021.106946.eng
dcterms.referencesLei, Y.; Zhang, J.; Schiavon, C.R.; He, M.; Chen, L.; Shen, H.; Zhang, Y.; Yin, Q.; Cho, Y.; Andrade, L.; et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE2. BioRxiv Prepr. Serv. Biol. 2020. https://doi.org/10.1101/2020.12.04.409144.eng
dcterms.referencesItalia, L.; Tomasoni, D.; Bisegna, S.; Pancaldi, E.; Stretti, L.; Adamo, M.; Metra, M. COVID-19 and Heart Failure: From Epidemi-ology During the Pandemic to Myocardial Injury, Myocarditis, and Heart Failure Sequelae. Front. Cardiovasc. Med. 2021, 8, 713560. https://doi.org/10.3389/fcvm.2021.713560.eng
dcterms.referencesTudoran, C.; Tudoran, M.; Elena Lazureanu, V.; Raluca Marinescu, A.; Novacescu, D.; Georgiana Cut, T. Impairment of the Cardiovascular System during SARS-CoV-2 Infection. In RNA Viruses Infection; Shah, Y., Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-80355-666-6.eng
dcterms.referencesGuo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. https://doi.org/10.1001/jamac-ardio.2020.1017.eng
dcterms.referencesDixit, N.M.; Churchill, A.; Nsair, A.; Hsu, J.J. Post-Acute COVID-19 Syndrome and the Cardiovascular System: What Is Known? Am. Heart J. Plus Cardiol. Res. Pract. 2021, 5, 100025. https://doi.org/10.1016/j.ahjo.2021.100025.eng
dcterms.referencesDePace, N.L.; Colombo, J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr. Cardiol. Rep. 2022, 24, 1711–1726. https://doi.org/10.1007/s11886-022-01786-2.eng
dcterms.referencesBansal, M. Cardiovascular Disease and COVID-19. Diabetes Metab. Syndr. 2020, 14, 247–250. https://doi.org/10.1016/j.dsx.2020.03.013.eng
dcterms.referencesFarshidfar, F.; Koleini, N.; Ardehali, H. Cardiovascular Complications of COVID-19. JCI Insight 2021, 6, e148980. https://doi.org/10.1172/jci.insight.148980.eng
dcterms.referencesNishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and Cardiovascular Disease: From Basic Mechanisms to Clinical Perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. https://doi.org/10.1038/s41569-020-0413-9.eng
dcterms.referencesVarga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ru-schitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5.eng
dcterms.referencesRamakrishnan, R.K.; Kashour, T.; Hamid, Q.; Halwani, R.; Tleyjeh, I.M. Unraveling the Mystery Surrounding Post-Acute Se-quelae of COVID-19. Front. Immunol. 2021, 12, 686029. https://doi.org/10.3389/fimmu.2021.686029.eng
dcterms.referencesMaghool, F.; Valiani, A.; Safari, T.; Emami, M.H.; Mohammadzadeh, S. Gastrointestinal and Renal Complications in SARS-CoV-2-infected Patients: Role of Immune System. Scand. J. Immunol. 2021, 93, e12999. https://doi.org/10.1111/sji.12999.eng
dcterms.referencesde Oliveira, P.; Cunha, K.; Neves, P.; Muniz, M.; Gatto, G.; Salgado Filho, N.; Guedes, F.; Silva, G. Renal Morphology in Coro-navirus Disease: A Literature Review. Med. Kaunas Lith. 2021, 57, 258. https://doi.org/10.3390/medicina57030258.eng
dcterms.referencesGabarre, P.; Dumas, G.; Dupont, T.; Darmon, M.; Azoulay, E.; Zafrani, L. Acute Kidney Injury in Critically Ill Patients with COVID-19. Intensive Care Med. 2020, 46, 1339–1348. https://doi.org/10.1007/s00134-020-06153-9.eng
dcterms.referencesWerion, A.; Belkhir, L.; Perrot, M.; Schmit, G.; Aydin, S.; Chen, Z.; Penaloza, A.; De Greef, J.; Yildiz, H.; Pothen, L.; et al. SARS-CoV-2 Causes a Specific Dysfunction of the Kidney Proximal Tubule. Kidney Int. 2020, 98, 1296–1307. https://doi.org/10.1016/j.kint.2020.07.019.eng
dcterms.referencesZhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3.eng
dcterms.referencesBowe, B.; Xie, Y.; Xu, E.; Al-Aly, Z. Kidney Outcomes in Long COVID. J. Am. Soc. Nephrol. JASN 2021, 32, 2851–2862. https://doi.org/10.1681/ASN.2021060734.eng
dcterms.referencesYende, S.; Parikh, C.R. Long COVID and Kidney Disease. Nat. Rev. Nephrol. 2021, 17, 792–793. https://doi.org/10.1038/s41581-021-00487-3.eng
dcterms.referencesSvetitsky, S.; Shuaib, R.; McAdoo, S.; Thomas, D.C. Long-Term Effects of Covid-19 on the Kidney. QJM Mon. J. Assoc. Physicians 2021, 114, 621–622. https://doi.org/10.1093/qjmed/hcab061.eng
dcterms.referencesAhmadian, E.; Hosseiniyan Khatibi, S.M.; Razi Soofiyani, S.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Zununi Vahed, S. Covid-19 and Kidney Injury: Pathophysiology and Molecular Mechanisms. Rev. Med. Virol. 2021, 31, e2176. https://doi.org/10.1002/rmv.2176.eng
dcterms.referencesCarriazo, S.; Aparicio-Madre, M.I.; Tornero-Molina, F.; Fernández-Lucas, M.; Paraiso-Cuevas, V.; González-Parra, E.; Del Río-Gallegos, F.; Marques-Vidas, M.; Alcázar-Arroyo, R.; Martins-Muñoz, J.; et al. Impact of Different COVID-19 Waves on Kidney Replacement Therapy Epidemiology and Mortality: REMER 2020. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2022, 37, 2253–2263. https://doi.org/10.1093/ndt/gfac234.eng
dcterms.referencesBasic-Jukic, N.; Racki, S.; Tolj, I.; Aleckovic, M.; Babovic, B.; Juric, I.; Furic-Cunko, V.; Katalinic, L.; Mihaljevic, D.; Vujic, S.; et al. Hospitalization and Death after Recovery from Acute COVID-19 among Renal Transplant Recipients. Clin. Transplant. 2022, 36, e14572. https://doi.org/10.1111/ctr.14572.eng
dcterms.referencesStanifer, M.L.; Kee, C.; Cortese, M.; Zumaran, C.M.; Triana, S.; Mukenhirn, M.; Kraeusslich, H.-G.; Alexandrov, T.; Barten-schlager, R.; Boulant, S. Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Rep. 2020, 32, 107863. https://doi.org/10.1016/j.celrep.2020.107863.eng
dcterms.referencesZang, R.; Gomez Castro, M.F.; McCune, B.T.; Zeng, Q.; Rothlauf, P.W.; Sonnek, N.M.; Liu, Z.; Brulois, K.F.; Wang, X.; Greenberg, H.B.; et al. TMPRSS2 and TMPRSS4 Promote SARS-CoV-2 Infection of Human Small Intestinal Enterocytes. Sci. Immunol. 2020, 5, eabc3582. https://doi.org/10.1126/sciimmunol.abc3582.eng
dcterms.referencesVodnar, D.-C.; Mitrea, L.; Teleky, B.-E.; Szabo, K.; Călinoiu, L.-F.; Nemeş, S.-A.; Martău, G.-A. Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 575559. https://doi.org/10.3389/fcimb.2020.575559.eng
dcterms.referencesBogariu, A.M.; Dumitrascu, D.L. Digestive Involvement in the Long-COVID Syndrome. Med. Pharm. Rep. 2022, 95, 5–10. https://doi.org/10.15386/mpr-2340.eng
dcterms.referencesWeng, J.; Li, Y.; Li, J.; Shen, L.; Zhu, L.; Liang, Y.; Lin, X.; Jiao, N.; Cheng, S.; Huang, Y.; et al. Gastrointestinal Sequelae 90 Days after Discharge for COVID-19. Lancet Gastroenterol. Hepatol. 2021, 6, 344–346. https://doi.org/10.1016/S2468-1253(21)00076-5.eng
dcterms.referencesGaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of Antibody Immunity to SARS-CoV-2. Nature 2021, 591, 639–644. https://doi.org/10.1038/s41586-021-03207-w.eng
dcterms.referencesVilladiego, J.; García-Arriaza, J.; Ramírez-Lorca, R.; García-Swinburn, R.; Cabello-Rivera, D.; Rosales-Nieves, A.E.; Álvarez-Vergara, M.I.; Cala-Fernández, F.; García-Roldán, E.; López-Ogáyar, J.L.; et al. Full Protection from SARS-CoV-2 Brain Infection and Damage in Susceptible Transgenic Mice Conferred by MVA-CoV2-S Vaccine Candidate. Nat. Neurosci. 2023, 26, 226–238. https://doi.org/10.1038/s41593-022-01242-y.eng
dcterms.referencesBanks, W.A.; Kastin, A.J.; Akerstrom, V. HIV-1 Protein Gp120 Crosses the Blood-Brain Barrier: Role of Adsorptive Endocytosis. Life Sci. 1997, 61, PL119–PL125. https://doi.org/10.1016/s0024-3205(97)00597-3.eng
dcterms.referencesAchar, A.; Ghosh, C. COVID-19-Associated Neurological Disorders: The Potential Route of CNS Invasion and Blood-Brain Rel-evance. Cells 2020, 9, 2360. https://doi.org/10.3390/cells9112360.eng
dcterms.referencesBaig, A.M. Counting the Neurological Cost of COVID-19. Nat. Rev. Neurol. 2022, 18, 5–6. https://doi.org/10.1038/s41582-021-00593-7.eng
dcterms.referencesBrann, D.H.; Tsukahara, T.; Weinreb, C.; Lipovsek, M.; Van den Berge, K.; Gong, B.; Chance, R.; Macaulay, I.C.; Chou, H.-J.; Fletcher, R.B.; et al. Non-Neuronal Expression of SARS-CoV-2 Entry Genes in the Olfactory System Suggests Mechanisms Un-derlying COVID-19-Associated Anosmia. Sci. Adv. 2020, 6, eabc5801. https://doi.org/10.1126/sciadv.abc5801.eng
dcterms.referencesHelms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. https://doi.org/10.1056/NEJMc2008597.eng
dcterms.referencesBenameur, K.; Agarwal, A.; Auld, S.C.; Butters, M.P.; Webster, A.S.; Ozturk, T.; Howell, J.C.; Bassit, L.C.; Velasquez, A.; Schinazi, R.F.; et al. Encephalopathy and Encephalitis Associated with Cerebrospinal Fluid Cytokine Alterations and Coronavirus Dis-ease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis. 2020, 26, 2016–2021. https://doi.org/10.3201/eid2609.202122.eng
dcterms.referencesXia, H.; Lazartigues, E. Angiotensin-Converting Enzyme 2 in the Brain: Properties and Future Directions. J. Neurochem. 2008, 107, 1482–1494. https://doi.org/10.1111/j.1471-4159.2008.05723.x.eng
dcterms.referencesDavies, J.; Randeva, H.S.; Chatha, K.; Hall, M.; Spandidos, D.A.; Karteris, E.; Kyrou, I. Neuropilin-1 as a New Potential SARS-CoV-2 Infection Mediator Implicated in the Neurologic Features and Central Nervous System Involvement of COVID-19. Mol. Med. Rep. 2020, 22, 4221–4226. https://doi.org/10.3892/mmr.2020.11510.eng
dcterms.referencesSolomon, T. Neurological Infection with SARS-CoV-2—The Story so Far. Nat. Rev. Neurol. 2021, 17, 65–66. https://doi.org/10.1038/s41582-020-00453-w.eng
dcterms.referencesBaig, A.M. Deleterious Outcomes in Long-Hauler COVID-19: The Effects of SARS-CoV-2 on the CNS in Chronic COVID Syn-drome. ACS Chem. Neurosci. 2020, 11, 4017–4020. https://doi.org/10.1021/acschemneuro.0c00725.eng
dcterms.referencesAl-Sarraj, S.; Troakes, C.; Hanley, B.; Osborn, M.; Richardson, M.P.; Hotopf, M.; Bullmore, E.; Everall, I.P. Invited Review: The Spectrum of Neuropathology in COVID-19. Neuropathol. Appl. Neurobiol. 2021, 47, 3–16. https://doi.org/10.1111/nan.12667.eng
dcterms.referencesDesai, A.D.; Lavelle, M.; Boursiquot, B.C.; Wan, E.Y. Long-Term Complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022, 322, C1–C11. https://doi.org/10.1152/ajpcell.00375.2021.eng
dcterms.referencesVisco, V.; Vitale, C.; Rispoli, A.; Izzo, C.; Virtuoso, N.; Ferruzzi, G.J.; Santopietro, M.; Melfi, A.; Rusciano, M.R.; Maglio, A.; et al. Post-COVID-19 Syndrome: Involvement and Interactions between Respiratory, Cardiovascular and Nervous Systems. J. Clin. Med. 2022, 11, 524. https://doi.org/10.3390/jcm11030524.eng
dcterms.referencesHugon, J.; Msika, E.-F.; Queneau, M.; Farid, K.; Paquet, C. Long COVID: Cognitive Complaints (Brain Fog) and Dysfunction of the Cingulate Cortex. J. Neurol. 2022, 269, 44–46. https://doi.org/10.1007/s00415-021-10655-x.eng
dcterms.referencesBackman, L.; Möller, M.C.; Thelin, E.P.; Dahlgren, D.; Deboussard, C.; Östlund, G.; Lindau, M. Monthlong Intubated Patient with Life-Threatening COVID-19 and Cerebral Microbleeds Suffers Only Mild Cognitive Sequelae at 8-Month Follow-up: A Case Report. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2022, 37, 531–543. https://doi.org/10.1093/arclin/acab075.eng
dcterms.referencesNau, R.; Soto, A.; Bruck, W. Apoptosis of Neurons in the Dentate Gyrus in Humans Suffering from Bacterial Meningitis: J. Neuropathol. Exp. Neurol. 1999, 58, 265–274. https://doi.org/10.1097/00005072-199903000-00006.eng
dcterms.referencesWenzel, J.; Lampe, J.; Müller-Fielitz, H.; Schuster, R.; Zille, M.; Müller, K.; Krohn, M.; Körbelin, J.; Zhang, L.; Özorhan, Ü.; et al. The SARS-CoV-2 Main Protease Mpro Causes Microvascular Brain Pathology by Cleaving NEMO in Brain Endothelial Cells. Nat. Neurosci. 2021, 24, 1522–1533. https://doi.org/10.1038/s41593-021-00926-1.eng
dcterms.referencesSalzano, C.; Saracino, G.; Cardillo, G. Possible Adrenal Involvement in Long COVID Syndrome. Medicina 2021, 57, 1087. https://doi.org/10.3390/medicina57101087.eng
dcterms.referencesQin, Y.; Wu, J.; Chen, T.; Li, J.; Zhang, G.; Wu, D.; Zhou, Y.; Zheng, N.; Cai, A.; Ning, Q.; et al. Long-Term Microstructure and Cerebral Blood Flow Changes in Patients Recovered from COVID-19 without Neurological Manifestations. J. Clin. Investig. 2021, 131, e147329. https://doi.org/10.1172/JCI147329.eng
dcterms.referencesDisser, N.P.; De Micheli, A.J.; Schonk, M.M.; Konnaris, M.A.; Piacentini, A.N.; Edon, D.L.; Toresdahl, B.G.; Rodeo, S.A.; Casey, E.K.; Mendias, C.L. Musculoskeletal Consequences of COVID-19. J. Bone Jt. Surg. 2020, 102, 1197–1204. https://doi.org/10.2106/JBJS.20.00847.eng
dcterms.referencesVersace, V.; Sebastianelli, L.; Ferrazzoli, D.; Romanello, R.; Ortelli, P.; Saltuari, L.; D’Acunto, A.; Porrazzini, F.; Ajello, V.; Oliviero, A.; et al. Intracortical GABAergic Dysfunction in Patients with Fatigue and Dysexecutive Syndrome after COVID-19. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2021, 132, 1138–1143. https://doi.org/10.1016/j.clinph.2021.03.001.eng
dcterms.referencesSoy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine Storm in COVID-19: Pathogenesis and Over-view of Anti-Inflammatory Agents Used in Treatment. Clin. Rheumatol. 2020, 39, 2085–2094. https://doi.org/10.1007/s10067-020-05190-5.eng
dcterms.referencesNg, W.; Gong, C.; Yan, X.; Si, G.; Fang, C.; Wang, L.; Zhu, X.; Xu, Z.; Yao, C.; Zhu, S. Targeting CD155 by Rediocide-A Overcomes Tumour Immuno-Resistance to Natural Killer Cells. Pharm. Biol. 2021, 59, 47–53. https://doi.org/10.1080/13880209.2020.1865410.eng
dcterms.referencesPaces, J.; Strizova, Z.; Smrz, D.; Cerny, J. COVID-19 and the Immune System. Physiol. Res. 2020, 69, 379–388. https://doi.org/10.33549/physiolres.934492.eng
dcterms.referencesZhang, Y.; Chen, Y.; Li, Y.; Huang, F.; Luo, B.; Yuan, Y.; Xia, B.; Ma, X.; Yang, T.; Yu, F.; et al. The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through down-Regulating MHC-Ι. Proc. Natl. Acad. Sci. USA 2021, 118, e2024202118. https://doi.org/10.1073/pnas.2024202118.eng
dcterms.referencesMasselli, E.; Vaccarezza, M.; Carubbi, C.; Pozzi, G.; Presta, V.; Mirandola, P.; Vitale, M. NK Cells: A Double Edge Sword against SARS-CoV-2. Adv. Biol. Regul. 2020, 77, 100737. https://doi.org/10.1016/j.jbior.2020.100737.eng
dcterms.referencesLi, J.-Y.; Liao, C.-H.; Wang, Q.; Tan, Y.-J.; Luo, R.; Qiu, Y.; Ge, X.-Y. The ORF6, ORF8 and Nucleocapsid Proteins of SARS-CoV-2 Inhibit Type I Interferon Signaling Pathway. Virus Res. 2020, 286, 198074. https://doi.org/10.1016/j.virusres.2020.198074.eng
dcterms.referencesSilva Andrade, B.; Siqueira, S.; de Assis Soares, W.R.; de Souza Rangel, F.; Santos, N.O.; dos Santos Freitas, A.; Ribeiro da Silveira, P.; Tiwari, S.; Alzahrani, K.J.; Góes-Neto, A.; et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021, 13, 700. https://doi.org/10.3390/v13040700.eng
dcterms.referencesNikolich-Zugich, J.; Knox, K.S.; Rios, C.T.; Natt, B.; Bhattacharya, D.; Fain, M.J. SARS-CoV-2 and COVID-19 in Older Adults: What We May Expect Regarding Pathogenesis, Immune Responses, and Outcomes. GeroScience 2020, 42, 505–514. https://doi.org/10.1007/s11357-020-00186-0.eng
dcterms.referencesMcGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The Role of Cytokines Including Interleukin-6 in COVID-19 Induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun. Rev. 2020, 19, 102537. https://doi.org/10.1016/j.autrev.2020.102537.eng
dcterms.referencesXiao, N.; Nie, M.; Pang, H.; Wang, B.; Hu, J.; Meng, X.; Li, K.; Ran, X.; Long, Q.; Deng, H.; et al. Integrated Cytokine and Metab-olite Analysis Reveals Immunometabolic Reprogramming in COVID-19 Patients with Therapeutic Implications. Nat. Commun. 2021, 12, 1618. https://doi.org/10.1038/s41467-021-21907-9.eng
dcterms.referencesHu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. https://doi.org/10.1038/s41579-020-00459-7.eng
dcterms.referencesMerad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The Immunology and Immunopathology of COVID-19. Science 2022, 375, 1122–1127. https://doi.org/10.1126/science.abm8108.eng
dcterms.referencesPeluso, M.J.; Deitchman, A.N.; Torres, L.; Iyer, N.S.; Munter, S.E.; Nixon, C.C.; Donatelli, J.; Thanh, C.; Takahashi, S.; Hakim, J.; et al. Long-Term SARS-CoV-2-Specific Immune and Inflammatory Responses in Individuals Recovering from COVID-19 with and without Post-Acute Symptoms. Cell Rep. 2021, 36, 109518. https://doi.org/10.1016/j.celrep.2021.109518.eng
dcterms.referencesWiech, M.; Chroscicki, P.; Swatler, J.; Stepnik, D.; De Biasi, S.; Hampel, M.; Brewinska-Olchowik, M.; Maliszewska, A.; Sklinda, K.; Durlik, M.; et al. Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 886431. https://doi.org/10.3389/fimmu.2022.886431.eng
dcterms.referencesRaman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-Acute Sequelae of COVID-19 with a Cardiovascular Focus. Eur. Heart J. 2022, 43, 1157–1172. https://doi.org/10.1093/eurheartj/ehac031.eng
dcterms.referencesBechmann, N.; Barthel, A.; Schedl, A.; Herzig, S.; Varga, Z.; Gebhard, C.; Mayr, M.; Hantel, C.; Beuschlein, F.; Wolfrum, C.; et al. Sexual Dimorphism in COVID-19: Potential Clinical and Public Health Implications. Lancet Diabetes Endocrinol. 2022, 10, 221–230. https://doi.org/10.1016/S2213-8587(21)00346-eng
dcterms.referencesSudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. https://doi.org/10.1038/s41591-021-01292-y.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
manuscript.v8.pdf
Tamaño:
933.46 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones