Factores asociados al surgimiento de desenlaces clínicos graves en pacientes críticos con dengue en una unidad de cuidados intensivos durante el año 2022
datacite.rights | http://purl.org/coar/access_right/c_f1cf | eng |
dc.contributor.advisor | Polo Gallardo, Raúl Octavio | |
dc.contributor.advisor | Aldana Roa, Mauricio | |
dc.contributor.author | Rocha Quiroga, Jorge Leonardo | |
dc.date.accessioned | 2024-06-05T16:03:43Z | |
dc.date.available | 2024-06-05T16:03:43Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Introducción: Debido a su falta de tratamiento específico, la infección por el virus del dengue en casos graves se presenta con espectros clínicos que van desde la hemorragia interna grave, hepatitis fulminante, encefalitis, síndrome dificultad respiratoria aguda, linfohistiocitosis hemofagocítica y el shock con insuficiencia multiorgánica; aumentando las tasas de mortalidad en pacientes que poseen factores sociales o clínicos que facilitan el desarrollo de desenlaces fatales de la enfermedad, hecho el cual justifica la denominación del dengue grave como evento de interés en salud pública totalmente prevenible, cobrando esto gran importancia para las autoridades sanitarias quienes han aunado esfuerzos enfocados a prevenir casos nuevos de dengue, dado que anualmente se incrementa de forma ostensible su prevalecía según fuentes de la OMS afectando áreas tropicales de países de América, África, Europa, Asia; evidenciándose así mismo un aumento porcentual de casos graves que condicionan de forma importante un aumento en los índices de mortalidad, por esta razón consideramos necesaria la realización de nuestro trabajo para conocer los factores que se asocian a la presencia de desenlaces clínicos graves en pacientes con dengue que requieren manejo en la Unidad de Cuidado Intensivo. Objetivo: Evaluar los factores asociados al surgimiento de desenlaces clínicos graves en pacientes adultos críticos con dengue admitidos a una unidad de cuidados intensivos en Barranquilla (Colombia) desde el 1 de enero del 2022 al 31 de diciembre del 2022. Materiales y métodos: Estudio retrospectivo, descriptivo y de corte transversal de pacientes con dengue que ingresaron a unidad de cuidados intensivos de la red hospitalaria publica de Barranquilla. A todas las variables se aplicó la prueba de Shapiro Wilk y en el análisis univariado todas las variables cuantitativas se analizaron mediante la prueba de Mann-Whitney U. Se realizó un modelo de regresión logística binaria para ajustar las variables de confusión y se calcularon las medianas de asociación OR con sus intervalos de confianza al 95%, posteriormente se realizó un análisis de los predictores de desenlaces clínicos graves. Se realizó una regresión lineal para determinar la correlación entre las variables analizadas con la presencia de desenlaces clínicos graves, con su respectivo coeficiente y sus intervalos de confianza al 95%. Resultados: La prevalencia de pacientes críticos con dengue fue del 8.99% (n = 102/1134). La mediana de edad fue de 21.5 años (percentil 25 de 19.3 y un percentil 75 de 27). Los pacientes con desenlaces graves tenían niveles más bajo de recuento de plaquetas, niveles más altos de creatinina sérica y bilirrubina total durante la admisión y la hospitalización (p = < 0.05). Encontramos que la evaluación del SOFA score en la admisión (OR: 2.75; IC 95%: 1.41 – 5.34; p = 0.003), los días de estancia hospitalaria (OR: 1.74; IC 95%: 1.16 – 2.59; p = 0.007) y la detección del derrame pleural (OR: 4.42; IC 95%: 1.23 – 15.7; p = 0.022) otorga una mayor probabilidad de presentar desenlaces graves. Conclusiones: Nuestra investigación identifico asociaciones significativas entre la evaluación de score SOFA durante la admisión y la presencia de derrame pleural y la estancia hospitalaria prolongada. | spa |
dc.description.abstract | Introduction: Due to its lack of specific treatment, dengue virus infection in severe cases presents with clinical spectrums ranging from severe internal bleeding, fulminant hepatitis, encephalitis, acute respiratory distress syndrome, hemophagocytic lymphohistiocytosis and shock with failure multi-organic; increasing mortality rates in patients who have social or clinical factors that facilitate the development of fatal outcomes of the disease, a fact which justifies the designation of severe dengue as a completely preventable event of interest in public health. This is of great importance to health authorities who have joined efforts focused on preventing new cases of dengue, given that its prevalence increases significantly annually according to WHO sources, affecting tropical areas of countries in America, Africa, Europe, Asia; Also showing a percentage increase in serious cases that significantly determines an increase in mortality rates, for this reason we consider it necessary to carry out our work to know the factors that are associated with the presence of serious clinical outcomes in patients with dengue. Requiring management in the Intensive Care Unit. Objectives: To evaluate the factors associated with the surgeon of serious clinical outcomes in critically ill adult patients with dengue admitted to an intensive care unit in Barranquilla (Colombia) from January 1, 2022 to December 31, 2022. Materials and Methods: Retrospective, descriptive and cross-sectional study of patients with dengue who were admitted to the ICU of the public hospital network of Barranquilla. The Shapiro Wilk test was applied to all variables and in the univariate analysis all quantitative variables were analyzed using the Mann-Whitney U test. A binary logistic regression model was performed to adjust the confounding variables and the medians were calculated. of OR association with their 95% confidence intervals, subsequently an analysis of the predictors of serious clinical outcomes was performed. A linear regression was performed to determine the evaluation between the variables analyzed with the presence of serious clinical outcomes, with their respective coefficient and 95% confidence intervals. Results: The prevalence of critically ill patients with dengue was 8.99% (n = 102/1134). The median age was 21.5 years (19.3 – 27). Patients with severe outcomes had lower levels of platelet count, higher levels of serum creatinine and total bilirubin during admission and hospitalization (p = < 0.05). We found that the evaluation of the SOFA score at admission (OR: 2.75; 95% CI: 1.41 – 5.34; p = 0.003), the days of hospital stay (OR: 1.74; 95% CI: 1.16 – 2.59; p = 0.007) and the detection of pleural effusion (OR: 4.42; 95% CI: 1.23 – 15.7; p = 0.022) gives a greater probability of presenting serious outcomes Conclusions: Our research identifies significant differences between the SOFA score evaluation during admission and the presence of pleural effusion and prolonged hospital stay. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14709 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | eng |
dc.subject | Unidad de cuidados intensivos | spa |
dc.subject | Dengue | spa |
dc.subject | Enfermedades tropicales | spa |
dc.subject | Mortalidad | spa |
dc.subject | Desenlaces graves | spa |
dc.subject | Intensive care unit | eng |
dc.subject | Dengue | eng |
dc.subject | Tropical diseases | eng |
dc.subject | Mortality | eng |
dc.subject | Serious outcomes | eng |
dc.title | Factores asociados al surgimiento de desenlaces clínicos graves en pacientes críticos con dengue en una unidad de cuidados intensivos durante el año 2022 | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | Álvarez-Calderón CE, Botero-Murillo D. Guerra y pestilencia: impacto de epidemias y pandemias en la historia hasta el siglo XX. Rev Científica Gen José María Córdova [Internet]. 2021 Jul 1;19(35):573–97. Available from: http://dx.doi.org/10.21830/19006586.840 | spa |
dcterms.references | Che Isa Z, Lim JA, Ain AM, Othman FA, Kueh YC, Tew MM, et al. Clinical profiles and predictors of survival in severe dengue cases. Singapore Med J [Internet]. 2023 Nov 3; Available from: https://doi.org/10.4103/singaporemedj.SMJ-2022-072 | eng |
dcterms.references | Figueroa CL, Gélvez M, Niederbacher J. Reguladores de integridad endotelial como posibles predictores de la gravedad en casos de dengue. Biomédica [Internet]. 2016 Mar 29;36:148. Available from: http://dx.doi.org/10.7705/biomedica.v36i0.2878 | spa |
dcterms.references | Halasa YA, Zambrano B, Shepard DS, Dayan GH, Coudeville L. Economic Impact of Dengue Illness in the Americas. Am J Trop Med Hyg [Internet]. 2011 Feb 4;84(2):200–7. Available from: http://dx.doi.org/10.4269/ajtmh.2011.10- 0503 | eng |
dcterms.references | Salazar Flórez JE, Segura Cardona ÁM, Restrepo Jaramillo BN, Arboleda Naranjo M, Giraldo Cardona LS, Echeverri Rendón ÁP. Immune system gene polymorphisms associated with severe dengue in Latin America: a systematic review. Rev Inst Med Trop Sao Paulo [Internet]. 2023;65. Available from: http://doi.org/10.1590/S1678-9946202365058 | eng |
dcterms.references | Nabih Mohammed MF, Abdulla Bahashwan A. Dengue Related Deaths at Ibn- Sina Hospital- Al-Mukalla: Causes and Alarming Signals. J Infect Dis Treat [Internet]. 2017;3(2). Available from: http://doi.org/10.21767/2472- 1093.100037 | eng |
dcterms.references | Ong A, Sandar M, Chen MI, Sin LY. Fatal dengue hemorrhagic fever in adults during a dengue epidemic in Singapore. Int J Infect Dis [Internet]. 2007 May;11(3):263–7. Available from: http://doi.org/10.1016/j.ijid.2006.02.012 | eng |
dcterms.references | Hung TM, Van Hao N, Yen LM, McBride A, Dat VQ, van Doorn HR, et al. Direct Medical Costs of Tetanus, Dengue, and Sepsis Patients in an Intensive Care Unit in Vietnam. Front Public Heal [Internet]. 2022 Jun 20;10. Available from: http://doi.org/10.3389/fpubh.2022.893200 | eng |
dcterms.references | Wills BA, Dung NM, Loan HT, Tam DTH, Thuy TTN, Minh LTT, et al. Comparison of Three Fluid Solutions for Resuscitation in Dengue Shock Syndrome. N Engl J Med [Internet]. 2005 Sep;353(9):877–89. Available from: https://doi.org/10.1056/nejmoa044057 | eng |
dcterms.references | Pang J, Leo Y-S, Lye DC. Critical care for dengue in adult patients: an overview of current knowledge and future challenges. Curr Opin Crit Care [Internet]. 2016 Oct;22(5):485–90. Available from: https://doi.org/10.1097/MCC.0000000000000339 | eng |
dcterms.references | Padilla-Rodríguez JC. Panorama epidemiológico de las enfermedades transmitidas por vectores: lecciones aprendidas y retos para romper el círculo. Biomédica [Internet]. 2023 Dec 1;43(4):422–6. Available from: http://doi.org/10.7705/biomedica.7331 | spa |
dcterms.references | World Health Organization. Partes sobre brotes epidémicos; dengue: situación mundial [Internet]. World Health Organization. 2023. Available from: https://www.who.int/es/emergencies/disease-outbreak-news/item/2023- DON498 | eng |
dcterms.references | Solórzano JO, Guzmán MG, Brathwaite O, Bouckenooghe A, Zambrano B, Dayan GH, et al. The Epidemiology of Dengue in the Americas Over the Last Three Decades: A Worrisome Reality. Am J Trop Med Hyg [Internet]. 2010 Jan 1;82(1):128–35. Available from: http://doi.org/10.4269/ajtmh.2010.09- 0346 | eng |
dcterms.references | Guzman A, Istúriz RE. Update on the global spread of dengue. Int J Antimicrob Agents [Internet]. 2010 Nov;36:S40–2. Available from: https://doi.org/10.1016/j.ijantimicag.2010.06.018 | eng |
dcterms.references | Castro Rodríguez R, Carrasquilla G, Porras A, Galera-Gelvez K, Lopez Yescas JG, Rueda-Gallardo JA. The Burden of Dengue and the Financial Cost to Colombia, 2010–2012. Am J Trop Med Hyg [Internet]. 2016 May 4;94(5):1065–72. Available from: https://doi.org/10.4269/ajtmh.15-0280 | eng |
dcterms.references | Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis [Internet]. 2016 Aug;16(8):935–41. Available from: https://doi.org/10.1016/s1473- 3099(16)00146-8 | eng |
dcterms.references | Selck FW, Adalja AA, Boddie CR. An Estimate of the Global Health Care and Lost Productivity Costs of Dengue. Vector-Borne Zoonotic Dis [Internet]. 2014 Nov;14(11):824–6. Available from: https://doi.org/10.1089/vbz.2013.1528 | eng |
dcterms.references | Mendez JA, Usme-Ciro JA, Domingo C, Rey GJ, Sanchez JA, Tenorio A, et al. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia. Virol J [Internet]. 2010 Dec 14;7(1):226. Available from: https://doi.org/10.1186/1743-422X-7-226 | eng |
dcterms.references | Romero-Vivas CME, Arango-Padilla P, Falconar AKI. Pupal-productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia. Ann Trop Med Parasitol [Internet]. 2006 Apr 18;100(sup1):87–95. Available from: https://doi.org/10.1179/136485906X105543 | eng |
dcterms.references | Parveen S, Riaz Z, Saeed S, Ishaque U, Sultana M, Faiz Z, et al. Dengue hemorrhagic fever: a growing global menace. J Water Health [Internet]. 2023 Nov 1;21(11):1632–50. Available from: https://doi.org/10.2166/wh.2023.114 | eng |
dcterms.references | Malavige GN, Sjö P, Singh K, Piedagnel J-M, Mowbray C, Estani S, et al. Facing the escalating burden of dengue: Challenges and perspectives. Sulis G, editor. PLOS Glob Public Heal [Internet]. 2023 Dec 15;3(12):e0002598. Available from: https://doi.org/10.1371/journal.pgph.0002598 | eng |
dcterms.references | Wilder-Smith A, Murray, Quam M. Epidemiology of dengue: past, present and future prospects. Clin Epidemiol [Internet]. 2013 Aug;299. Available from: https://doi.org/10.2147/clep.s34440 | eng |
dcterms.references | Semenza JC, Sudre B, Miniota J, Rossi M, Hu W, Kossowsky D, et al. International Dispersal of Dengue through Air Travel: Importation Risk for Europe. Kasper M, editor. PLoS Negl Trop Dis [Internet]. 2014 Dec 4;8(12):e3278. Available from: https://doi.org/10.1371/journal.pntd.0003278 | eng |
dcterms.references | Freedman DO, Weld LH, Kozarsky PE, Fisk T, Robins R, von Sonnenburg F, et al. Spectrum of Disease and Relation to Place of Exposure among Ill Returned Travelers. N Engl J Med [Internet]. 2006 Jan 12;354(2):119–30. Available from: https://doi.org/10.1056/nejmoa051331 | eng |
dcterms.references | Simmons CP, Farrar JJ, van Vinh Chau N, Wills B. Dengue. N Engl J Med [Internet]. 2012 Apr 12;366(15):1423–32. Available from: https://doi.org/10.1056/NEJMra1110265 | eng |
dcterms.references | Gwee SXW, St John AL, Gray GC, Pang J. Animals as potential reservoirs for dengue transmission: A systematic review. One Heal [Internet]. 2021 Jun;12:100216. Available from: https://doi.org/10.1016/j.onehlt.2021.100216 | eng |
dcterms.references | Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. Han BA, editor. PLoS Negl Trop Dis [Internet]. 2019 Mar 28;13(3):e0007213. Available from: https://doi.org/10.1371/journal.pntd.0007213 | eng |
dcterms.references | Wichmann O, Jelinek T. Dengue in Travelers: a Review. J Travel Med [Internet]. 2006 Mar 10;11(3):161–70. Available from: https://doi.org/10.2310/7060.2004.18503 | eng |
dcterms.references | Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop Med Health [Internet]. 2011;39(4SUPPLEMENT):S3–11. Available from: https://doi.org/10.2149%2Ftmh.2011-S05 | eng |
dcterms.references | Gwee XWS, Chua PEY, Pang J. Global dengue importation: a systematic review. BMC Infect Dis [Internet]. 2021;21(1):1078. Available from: https://doi.org/10.1186/s12879-021-06740-1 | eng |
dcterms.references | Macias AE, Werneck GL, Castro R, Mascareñas C, Coudeville L, Morley D, et al. Mortality among Hospitalized Dengue Patients with Comorbidities in Mexico, Brazil, and Colombia. Am J Trop Med Hyg [Internet]. 2021 May 10; Available from: https://doi.org/10.4269/ajtmh.20-1163 | eng |
dcterms.references | Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol [Internet]. 2010 Dec;8(S12):S7–16. Available from: https://doi.org/10.1038%2Fnrmicro2460 | eng |
dcterms.references | Kularatne SA, Dalugama C. Dengue infection: Global importance, immunopathology and management. Clin Med (Northfield Il) [Internet]. 2022 Jan 25;22(1):9–13. Available from: https://doi.org/10.7861%2Fclinmed.2021- 0791 | eng |
dcterms.references | Juneja D, Nasa P, Singh O, Javeri Y, Uniyal B, Dang R. Clinical profile, intensive care unit course, and outcome of patients admitted in intensive care unit with dengue. J Crit Care [Internet]. 2011 Oct;26(5):449–52. Available from: https://doi.org/10.1016/j.jcrc.2011.05.007 | eng |
dcterms.references | Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH. Dengue virus infection – a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res [Internet]. 2023 Jan;324:199018. Available from: https://doi.org/10.1016/j.virusres.2022.199018 | eng |
dcterms.references | Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife [Internet]. 2015 Jun 30;4. Available from: https://doi.org/10.7554/elife.08347 | eng |
dcterms.references | Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, et al. ICTV Virus Taxonomy Profile: Flaviviridae. J Gen Virol [Internet]. 2017 Jan 1;98(1):2–3. Available from: https://doi.org/10.1099%2Fjgv.0.000672 | eng |
dcterms.references | Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses [Internet]. 2022 May 17;14(5):1076. Available from: https://doi.org/10.3390/v14051076 | eng |
dcterms.references | Kilpatrick AM. Globalization, Land Use, and the Invasion of West Nile Virus. Science (80- ) [Internet]. 2011 Oct 21;334(6054):323–7. Available from: https://doi.org/10.1126%2Fscience.1201010 | eng |
dcterms.references | Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses [Internet]. 2021 Sep 30;13(10):1967. Available from: https://doi.org/10.3390/v13101967 | eng |
dcterms.references | Barrows NJ, Campos RK, Liao K-C, Prasanth KR, Soto-Acosta R, Yeh S-C, et al. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev [Internet]. 2018 Apr 25;118(8):4448–82. Available from: https://doi.org/10.1021%2Facs.chemrev.7b00719 | eng |
dcterms.references | Reyes-del Valle J, Chávez-Salinas S, Medina F, del Angel RM. Heat Shock Protein 90 and Heat Shock Protein 70 Are Components of Dengue Virus Receptor Complex in Human Cells. J Virol [Internet]. 2005 Apr 15;79(8):4557– 67. Available from: https://doi.org/10.1128/jvi.79.8.4557-4567.2005 | eng |
dcterms.references | Arshad H, Bashir M, Mushtaq US, Imtiaz H, Rajpar R, Alam MF, et al. Clinical Characteristics and Symptomatology Associated With Dengue Fever. Cureus [Internet]. 2022 Jul 9; Available from: https://doi.org/10.7759%2Fcureus.26677 | eng |
dcterms.references | de Almeida RR, Paim B, de Oliveira SA, Souza AS, Gomes ACP, Escuissato DL, et al. Dengue Hemorrhagic Fever: A State-of-the-Art Review Focused in Pulmonary Involvement. Lung [Internet]. 2017 Aug 13;195(4):389–95. Available from: https://doi.org/10.1007/s00408-017-0021-6 | eng |
dcterms.references | Dejnirattisai W, Webb AI, Chan V, Jumnainsong A, Davidson A, Mongkolsapaya J, et al. Lectin Switching During Dengue Virus Infection. J Infect Dis [Internet]. 2011 Jun 15;203(12):1775–83. Available from: https://doi.org/10.1093/infdis/jir173 | eng |
dcterms.references | Gubler DJ. Dengue and Dengue Hemorrhagic Fever. Clin Microbiol Rev [Internet]. 1998 Jul;11(3):480–96. Available from: https://doi.org/10.1128/cmr.11.3.480 | eng |
dcterms.references | Marovitch M, Grouard-Vogel G, Eller M, Tassaneetrithep B, Birx D, Hayes C, et al. Human Dendritic Cells as Targets of Dengue Virus Infection. J Investig Dermatology Symp Proc [Internet]. 2001 Dec;6(3):219–24. Available from: https://doi.org/10.1046/j.0022-202x.2001.00037.x | eng |
dcterms.references | Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, Liu L, et al. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med [Internet]. 2015 Sep 9;7(304). Available from: https://doi.org/10.1126/scitranslmed.aaa3863 | eng |
dcterms.references | Johnston LJ, King NJC, Halliday GM. Langerhans Cells Migrate to Local Lymph Nodes Following Cutaneous Infection with an Arbovirus. J Invest Dermatol [Internet]. 2000 Mar;114(3):560–8. Available from: https://doi.org/10.1046/j.1523-1747.2000.00904.x | eng |
dcterms.references | Begum F, Das S, Mukherjee D, Mal S, Ray U. Insight into the Tropism of Dengue Virus in Humans. Viruses [Internet]. 2019 Dec 9;11(12):1136. Available from: https://doi.org/10.3390%2Fv11121136 | eng |
dcterms.references | Wu S-JL, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, et al. Human skin Langerhans cells are targets of dengue virus infection. Nat Med [Internet]. 2000 Jul;6(7):816–20. Available from: https://doi.org/10.1038/77553 | eng |
dcterms.references | Marianneau P, Cardona A, Edelman L, Deubel V, Desprès P. Dengue virus replication in human hepatoma cells activates NF-kappaB which in turn induces apoptotic cell death. J Virol [Internet]. 1997 Apr;71(4):3244–9. Available from: https://doi.org/10.1128/jvi.71.4.3244-3249.1997 | eng |
dcterms.references | Smit J, Moesker B, Rodenhuis-Zybert I, Wilschut J. Flavivirus Cell Entry and Membrane Fusion. Viruses [Internet]. 2011 Feb 22;3(2):160–71. Available from: https://doi.org/10.3390/v3020160 | eng |
dcterms.references | Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, et al. Conformational Changes of the Flavivirus E Glycoprotein. Structure [Internet]. 2004 Sep;12(9):1607–18. Available from: https://doi.org/10.1016/j.str.2004.06.019 | eng |
dcterms.references | Drouet MT, Rosen L, Deubel V. Detection of dengue virus RNA by reverse transcription-polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection. Am J Trop Med Hyg [Internet]. 1999 Nov 1;61(5):720–4. Available from: https://doi.org/10.4269/ajtmh.1999.61.720 | eng |
dcterms.references | Fibriansah G, Tan JL, Smith SA, de Alwis R, Ng T-S, Kostyuchenko VA, et al. A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat Commun [Internet]. 2015 Feb 20;6(1):6341. Available from: https://doi.org/10.1038/ncomms7341 | eng |
dcterms.references | Rico-Hesse R. Microevolution and virulence of dengue viruses. In: Advances in Virus Research [Internet]. 2003. p. 315–41. Available from: https://doi.org/10.1016/s0065-3527(03)59009-1 | eng |
dcterms.references | Halstead SB. Dengue Virus–Mosquito Interactions. Annu Rev Entomol [Internet]. 2008 Jan 1;53(1):273–91. Available from: https://doi.org/10.1146/annurev.ento.53.103106.093326 | eng |
dcterms.references | Cologna R, Armstrong PM, Rico-Hesse R. Selection for Virulent Dengue Viruses Occurs in Humans and Mosquitoes. J Virol [Internet]. 2005 Jan 15;79(2):853–9. Available from: https://doi.org/10.1128/jvi.79.2.853-859.2005 | eng |
dcterms.references | Bennett SN. Selection-Driven Evolution of Emergent Dengue Virus. Mol Biol Evol [Internet]. 2003 Jun 27;20(10):1650–8. Available from: https://doi.org/10.1093/molbev/msg182 | eng |
dcterms.references | Cao TM, Kuhn RJ. Construction of Genomic and Sub-Genomic Dengue Infectious Replicons. In: Dengue Virus [Internet]. 2022. p. 77–96. Available from: https://doi.org/10.1007/978-1-0716-1879-0_7 | eng |
dcterms.references | Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol [Internet]. 2016 Dec 2;17(1):38. Available from: https://doi.org/10.1186/s13059-016-0907-2 | eng |
dcterms.references | Filomatori C V., Carballeda JM, Villordo SM, Aguirre S, Pallarés HM, Maestre AM, et al. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. Vignuzzi M, editor. PLOS Pathog [Internet]. 2017 Mar 6;13(3):e1006265. Available from: https://doi.org/10.1371/journal.ppat.1006265 | eng |
dcterms.references | Jaglan A, Satija S, Singh D, Phartyal R, Verma M. Intra-genomic heterogeneity in CpG dinucleotide composition in dengue virus. Acta Trop [Internet]. 2022 Aug;232:106501. Available from: https://doi.org/10.1016/j.actatropica.2022.106501 | eng |
dcterms.references | Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis [Internet]. 2018 Feb;67:25–35. Available from: https://doi.org/10.1016/j.ijid.2017.11.026 | eng |
dcterms.references | Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature [Internet]. 2013 Apr 7;496(7446):504–7. Available from: https://doi.org/10.1038/nature12060 | eng |
dcterms.references | Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature [Internet]. 2018 Nov 14;563(7732):501–7. Available from: https://doi.org/10.1038/s41586-018-0692-z | eng |
dcterms.references | Ponlawat A, Harrington LC. Blood Feeding Patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol [Internet]. 2005 Sep 1;42(5):844–9. Available from: https://doi.org/10.1093/jmedent/42.5.844 | eng |
dcterms.references | Stoddard ST, Wearing HJ, Reiner RC, Morrison AC, Astete H, Vilcarromero S, et al. Long-Term and Seasonal Dynamics of Dengue in Iquitos, Peru. Barrera R, editor. PLoS Negl Trop Dis [Internet]. 2014 Jul 17;8(7):e3003. Available from: http://dx.doi.org/10.1371/journal.pntd.0003003 | eng |
dcterms.references | Lambrechts L, Scott TW, Gubler DJ. Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. Halstead SB, editor. PLoS Negl Trop Dis [Internet]. 2010 May 25;4(5):e646. Available from: http://dx.doi.org/10.1371/journal.pntd.0000646 | eng |
dcterms.references | Monath TP. Dengue: the risk to developed and developing countries. Proc Natl Acad Sci [Internet]. 1994 Mar 29;91(7):2395–400. Available from: http://dx.doi.org/10.1073/pnas.91.7.2395 | eng |
dcterms.references | Smith DL, Perkins TA, Reiner RC, Barker CM, Niu T, Chaves LF, et al. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg [Internet]. 2014 Apr 1;108(4):185–97. Available from: http://dx.doi.org/10.1093/trstmh/tru026 | eng |
dcterms.references | Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito- Transmitted Pathogens. Chitnis CE, editor. PLoS Pathog [Internet]. 2012 Apr 5;8(4):e1002588. Available from: http://dx.doi.org/10.1371/journal.ppat.1002588 | eng |
dcterms.references | Ritchie SA, Long S, Smith G, Pyke A, Knox TB. Entomological Investigations in a Focus of Dengue Transmission in Cairns, Queensland, Australia, by Using the Sticky Ovitraps. J Med Entomol [Internet]. 2004 Jan 1;41(1):1–4. Available from: http://dx.doi.org/10.1603/0022-2585-41.1.1 | eng |
dcterms.references | Diamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell [Internet]. 2015 Jul;162(3):488– 92. Available from: https://doi.org/10.1016/j.cell.2015.07.005 | eng |
dcterms.references | Salles TS, da Encarnação Sá-Guimarães T, de Alvarenga ESL, Guimarães- Ribeiro V, de Meneses MDF, de Castro-Salles PF, et al. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors [Internet]. 2018 Dec 24;11(1):264. Available from: https://doi.org/10.1186/s13071-018-2830-8 | eng |
dcterms.references | Islam R, Salahuddin M, Ayubi MS, Hossain T, Majumder A, Taylor-Robinson AW, et al. Dengue epidemiology and pathogenesis: images of the future viewed through a mirror of the past. Virol Sin [Internet]. 2015 Oct 20;30(5):326–43. Available from: https://doi.org/10.1007/s12250-015-3624-1 | eng |
dcterms.references | Roy SK, Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol [Internet]. 2021 Oct;67(10):687–702. Available from: https://doi.org/10.1139/cjm-2020-0572 | eng |
dcterms.references | Rodriguez-Morales AJ, Villamil-Gómez WE, Franco-Paredes C. The arboviral burden of disease caused by co-circulation and co-infection of dengue, chikungunya and Zika in the Americas. Travel Med Infect Dis [Internet]. 2016 May;14(3):177–9. Available from: https://doi.org/10.1016/j.tmaid.2016.05.004 | eng |
dcterms.references | de la Salud OP. Síntesis de evidencia y recomendaciones: Guía para el cuidado de pacientes adultos críticos con COVID-19 en las Américas. Rev Panam Salud Pública [Internet]. 2021 Nov 3;45:1. Available from: https://doi.org/10.26633/RPSP.2021.128 | spa |
dcterms.references | Villar LA, Rojas DP, Besada-Lombana S, Sarti E. Epidemiological Trends of Dengue Disease in Colombia (2000-2011): A Systematic Review. Horstick O, editor. PLoS Negl Trop Dis [Internet]. 2015 Mar 19;9(3):e0003499. Available from: https://doi.org/10.1371%2Fjournal.pntd.0003499 | eng |
dcterms.references | San Martín JL, Brathwaite Dick O, del Diego J, Montoya RH, Dayan GH, Zambrano B. The History of Dengue Outbreaks in the Americas. Am J Trop Med Hyg [Internet]. 2012 Oct 3;87(4):584–93. Available from: https://doi.org/10.4269/ajtmh.2012.11-0770 | eng |
dcterms.references | Villamil-Gómez WE, González-Camargo O, Rodriguez-Ayubi J, Zapata-Serpa D, Rodriguez-Morales AJ. Dengue, chikungunya and Zika co-infection in a patient from Colombia. J Infect Public Health [Internet]. 2016 Sep;9(5):684–6. Available from: https://doi.org/10.1016/j.jiph.2015.12.002 | eng |
dcterms.references | Instituto Nacional de Salud (INS). Comportamiento de dengue en Colombia a semana epidemiológica 32 de 2023 [Internet]. Boletín epidemiológico semanal. 2023. Available from: https://www.ins.gov.co/buscadoreventos/ Paginas/Vista-Boletin-Epidemilogico.aspx | spa |
dcterms.references | Langkulsen U, Promsakha Na Sakolnakhon K, James N. Climate change and dengue risk in central region of Thailand. Int J Environ Health Res [Internet]. 2020 May 3;30(3):327–35. Available from: https://doi.org/10.1080/09603123.2019.1599100 | eng |
dcterms.references | Li C, Lu Y, Liu J, Wu X. Climate change and dengue fever transmission in China: Evidences and challenges. Sci Total Environ [Internet]. 2018 May;622– 623:493–501. Available from: https://doi.org/10.1016/j.scitotenv.2017.11.326 | eng |
dcterms.references | Semenza JC, Rocklöv J, Ebi KL. Climate Change and Cascading Risks from Infectious Disease. Infect Dis Ther [Internet]. 2022 Aug 19;11(4):1371–90. Available from: https://doi.org/10.1007/s40121-022-00647-3 | eng |
dcterms.references | Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu Rev Virol [Internet]. 2016 Sep 29;3(1):125–45. Available from: https://doi.org/10.1146/annurevvirology- 110615-035630 | eng |
dcterms.references | Hales S, de Wet N, Maindonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet [Internet]. 2002 Sep;360(9336):830–4. Available from: https://doi.org/10.1016/s0140-6736(02)09964-6 | eng |
dcterms.references | Lowe R, Barcellos C, Coelho CAS, Bailey TC, Coelho GE, Graham R, et al. Dengue outlook for the World Cup in Brazil: an early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect Dis [Internet]. 2014 Jul;14(7):619–26. Available from: https://doi.org/10.1016/s1473- 3099(14)70781-9 | eng |
dcterms.references | Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Osborn D, editor. Emerg Top Life Sci [Internet]. 2019 May 10;3(2):133–42. Available from: https://doi.org/10.1042/etls20180123 | eng |
dcterms.references | Junxiong P, Yee-Sin L. Clustering, climate and dengue transmission. Expert Rev Anti Infect Ther [Internet]. 2015 Jun 3;13(6):731–40. Available from: https://doi.org/10.1586/14787210.2015.1028364 | eng |
dcterms.references | Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res [Internet]. 2010 Feb;85(2):328–45. Available from: https://doi.org/10.1016/j.antiviral.2009.10.008 | eng |
dcterms.references | Flahault A, de Castaneda RR, Bolon I. Climate change and infectious diseases. Public Health Rev [Internet]. 2016 Dec 27;37(1):21. Available from: https://doi.org/10.1186/s40985-016-0035-2 | eng |
dcterms.references | Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Prim [Internet]. 2016 Aug 18;2(1):16055. Available from: https://doi.org/10.1038/nrdp.2016.55 | eng |
dcterms.references | Franklinos LH V, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infect Dis [Internet]. 2019 Sep;19(9):e302–12. Available from: https://doi.org/10.1016/s1473- 3099(19)30161-6 | eng |
dcterms.references | Gubler DJ. Dengue/Dengue Haemorrhagic Fever: History and Current Status. In 2006. p. 3–22. Available from: https://doi.org/10.1002/0470058005.ch2 | eng |
dcterms.references | Wilder-Smith A. Dengue vaccine development: status and future. Bundesgesundheitsblatt - Gesundheitsforsch - Gesundheitsschutz [Internet]. 2020 Jan 29;63(1):40–4. Available from: https://doi.org/10.1007/s00103-019- 03060-3 | eng |
dcterms.references | Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHM, Chotpitayasunondh T, Chua MN, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet [Internet]. 2014 Oct;384(9951):1358–65. Available from: https://doi.org/10.1016/s0140-6736(14)61060-6 | eng |
dcterms.references | Khetarpal N, Khanna I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res [Internet]. 2016;2016:1–14. Available from: https://doi.org/10.1155/2016/6803098 | eng |
dcterms.references | Robert MA, Stewart-Ibarra AM, Estallo EL. Climate change and viral emergence: evidence from Aedes-borne arboviruses. Curr Opin Virol [Internet]. 2020 Feb;40:41–7. Available from: https://doi.org/10.1016/j.coviro.2020.05.001 | eng |
dcterms.references | Wilder-Smith A, Ooi E-E, Vasudevan SG, Gubler DJ. Update on Dengue: Epidemiology, Virus Evolution, Antiviral Drugs, and Vaccine Development. Curr Infect Dis Rep [Internet]. 2010 May 30;12(3):157–64. Available from: https://doi.org/10.1007/s11908-010-0102-7 | eng |
dcterms.references | Organización Panamericana de la Salud. Dengue [Internet]. Organización Panamericana de la Salud. 2024. Available from: https://www.paho.org/es/temas/dengue | eng |
dcterms.references | Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol [Internet]. 2014 Mar;22(3):138–46. Available from: https://doi.org/10.1016/j.tim.2013.12.011 | eng |
dcterms.references | Cuypers L, Libin P, Simmonds P, Nowé A, Muñoz-Jordán J, Alcantara L, et al. Time to Harmonize Dengue Nomenclature and Classification. Viruses [Internet]. 2018 Oct 18;10(10):569. Available from: https://doi.org/10.3390/v10100569 | eng |
dcterms.references | Bandyopadhyay S, Lum LCS, Kroeger A. Classifying dengue: a review of the difficulties in using the WHO case classification for dengue haemorrhagic fever. Trop Med Int Heal [Internet]. 2006 Aug 24;11(8):1238–55. Available from: https://doi.org/10.1111/j.1365-3156.2006.01678.x | eng |
dcterms.references | Hadinegoro SRS. The revised WHO dengue case classification: does the system need to be modified? Paediatr Int Child Health [Internet]. 2012 May 12;32(sup1):33–8. Available from: https://doi.org/10.1179/2046904712z.00000000052 | eng |
dcterms.references | Ratnam I, Leder K, Black J, Torresi J. Dengue Fever and International Travel. J Travel Med [Internet]. 2013 Nov 1;20(6):384–93. Available from: https://doi.org/10.1111/jtm.12052 | eng |
dcterms.references | Wiemer D, Frickmann H, Krüger A. Dengue fieber. Der Hautarzt [Internet]. 2017 Dec 16;68(12):1011–20. Available from: https://doi.org/10.1007/s00105- 017-4073-6 | eng |
dcterms.references | Halstead SB. Dengue: The Syndromic Basis to Pathogenesis Research. Inutility of the 2009 WHO Case Definition. Am J Trop Med Hyg [Internet]. 2013 Feb 6;88(2):212–5. Available from: https://doi.org/10.4269%2Fajtmh.12-0197 | eng |
dcterms.references | Somkijrungroj T, Kongwattananon W. Ocular manifestations of dengue. Curr Opin Ophthalmol [Internet]. 2019 Nov;30(6):500–5. Available from: https://doi.org/10.1097/icu.0000000000000613 | eng |
dcterms.references | Halstead SB. Pathogenesis of Dengue: Dawn of a New Era. F1000Research [Internet]. 2015 Nov 25;4:1353. Available from: https://doi.org/10.12688/f1000research.7024.1 | eng |
dcterms.references | Low JGH, Ong A, Tan LK, Chaterji S, Chow A, Lim WY, et al. The Early Clinical Features of Dengue in Adults: Challenges for Early Clinical Diagnosis. Harris E, editor. PLoS Negl Trop Dis [Internet]. 2011 May 31;5(5):e1191. Available from: https://doi.org/10.1371%2Fjournal.pntd.0001191 | eng |
dcterms.references | Hasan S, Jamdar S, Alalowi M, Al Ageel Al Beaiji S. Dengue virus: A global human threat: Review of literature. J Int Soc Prev Community Dent [Internet]. 2016;6(1):1. Available from: https://doi.org/10.4103%2F2231-0762.175416 | eng |
dcterms.references | Kularatne SAM. Dengue fever. BMJ [Internet]. 2015 Sep 15;h4661. Available from: https://doi.org/10.1136/bmj.h4661 | eng |
dcterms.references | Guzman MG, Harris E. Dengue. Lancet [Internet]. 2015 Jan;385(9966):453– 65. Available from: https://doi.org/10.1016/s0140-6736(14)60572-9 | eng |
dcterms.references | Montoya M, Gresh L, Mercado JC, Williams KL, Vargas MJ, Gutierrez G, et al. Symptomatic Versus Inapparent Outcome in Repeat Dengue Virus Infections Is Influenced by the Time Interval between Infections and Study Year. Rothman AL, editor. PLoS Negl Trop Dis [Internet]. 2013 Aug 8;7(8):e2357. Available from: https://doi.org/10.1371/journal.pntd.0002357 | eng |
dcterms.references | Pongpan S, Wisitwong A, Tawichasri C, Patumanond J, Namwongprom S. Development of Dengue Infection Severity Score. ISRN Pediatr [Internet]. 2013 Nov 12;2013:1–6. Available from: https://doi.org/10.1155/2013/845876 | eng |
dcterms.references | Latif N, Mageshan K, Biswas J, Majumder PD. Dengue-associated Eye Disease. Nepal J Ophthalmol [Internet]. 2019 Dec 31;11(2):115–21. Available from: https://doi.org/10.3126/nepjoph.v11i2.27814 | eng |
dcterms.references | Morens DM. Dengue Fever and Dengue Hemorrhagic Fever. Pediatr Infect Dis J [Internet]. 2009 Jul;28(7):635–6. Available from: https://doi.org/10.1097/inf.0b013e3181afcd5b | eng |
dcterms.references | Sierra B de la C, Kourí G, Guzmán MG. Race: a risk factor for dengue hemorrhagic fever. Arch Virol [Internet]. 2007 Mar 6;152(3):533–42. Available from: https://doi.org/10.1007/s00705-006-0869-x | eng |
dcterms.references | Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol [Internet]. 2021 Jun;134:103–12. Available from: https://doi.org/10.1016/j.jclinepi.2021.02.003 | eng |
dcterms.references | Thergarajan G, Sekaran SD. Diagnostic approaches for dengue infection. Expert Rev Mol Diagn [Internet]. 2023 Aug 3;23(8):643–51. Available from: https://doi.org/10.1080/14737159.2023.2234815 | eng |
dcterms.references | Muller DA, Depelsenaire ACI, Young PR. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis [Internet]. 2017 Mar 1;215(suppl_2):S89– 95. Available from: https://doi.org/10.1093/infdis/jiw649 | eng |
dcterms.references | Nunes PCG, Lima MRQ, dos Santos FB. Molecular Diagnosis of Dengue. In 2022. p. 157–71. Available from: https://doi.org/10.1007/978-1-0716-1879- 0_11 | eng |
dcterms.references | Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem [Internet]. 2022 Mar 21;477(3):815–32. Available from: https://doi.org/10.1007/s11010-021-04326-8 | eng |
dcterms.references | Wong P-F, Wong L-P, AbuBakar S. Diagnosis of severe dengue: Challenges, needs and opportunities. J Infect Public Health [Internet]. 2020 Feb;13(2):193– 8. Available from: https://doi.org/10.1016/j.jiph.2019.07.012 | eng |
dcterms.references | Looi KW, Matsui Y, Kono M, Samudi C, Kojima N, Ong JX, et al. Evaluation of immature platelet fraction as a marker of dengue fever progression. Int J Infect Dis [Internet]. 2021 Sep;110:187–94. Available from: https://doi.org/10.1016/j.ijid.2021.07.048 | eng |
dcterms.references | Wiwanitkit V. Dengue fever: diagnosis and treatment. Expert Rev Anti Infect Ther [Internet]. 2010 Jul 10;8(7):841–5. Available from: https://doi.org/10.1586/eri.10.53 | eng |
dcterms.references | Chawla P, Yadav A, Chawla V. Clinical implications and treatment of dengue. Asian Pac J Trop Med [Internet]. 2014 Mar;7(3):169–78. Available from: https://doi.org/10.1016/s1995-7645(14)60016-x | eng |
dcterms.references | Maitland K, Pamba A, English M, Peshu N, Marsh K, Newton C, et al. Randomized Trial of Volume Expansion with Albumin or Saline in Children with Severe Malaria: Preliminary Evidence of Albumin Benefit. Clin Infect Dis [Internet]. 2005 Feb 15;40(4):538–45. Available from: https://doi.org/10.1086/427505 | eng |
dcterms.references | Organización Panamericana de la Salud. Algoritmos para el Manejo Clínico de los Casos de Dengue [Internet]. Organización Panamericana de la Salud. 2020. Available from: https://www.paho.org/es/documentos/algoritmos-paramanejo- clinico-casos-dengue | spa |
dcterms.references | Díaz FA, Martínez RA, Villar LA. Criterios clínicos para diagnosticar el dengue en los primeros días de enfermedad. Biomédica [Internet]. 2006 Mar 1;26(1):22. Available from: https://doi.org/10.7705/biomedica.v26i1.1391 | eng |
dcterms.references | Pang J, Thein T-L, Leo Y-S, Lye DC. Early clinical and laboratory risk factors of intensive care unit requirement during 2004–2008 dengue epidemics in Singapore: a matched case–control study. BMC Infect Dis [Internet]. 2014 Dec 5;14(1):649. Available from: https://doi.org/10.1186/s12879-014-0649-2 | eng |
dcterms.references | Schmitz L, Prayag S, Varghese S, Jog S, Bhargav-Patil P, Yadav A, et al. Nonhematological organ dysfunction and positive fluid balance are important determinants of outcome in adults with severe dengue infection: A multicenter study from India. J Crit Care [Internet]. 2011 Oct;26(5):441–8. Available from: https://doi.org/10.1016/j.jcrc.2011.05.008 | eng |
dcterms.references | Medeiros DNM, Ferranti JF, Delgado AF, de Carvalho WB. Colloids for the Initial Management of Severe Sepsis and Septic Shock in Pediatric Patients. Pediatr Emerg Care [Internet]. 2015 Nov;31(11):e11–6. Available from: https://doi.org/10.1097/pec.0000000000000601 | eng |
dcterms.references | Amâncio FF, Heringer TP, Oliveira C da CHB de, Fassy LB, Carvalho FB de, Oliveira DP, et al. Clinical Profiles and Factors Associated with Death in Adults with Dengue Admitted to Intensive Care Units, Minas Gerais, Brazil. Jin X, editor. PLoS One [Internet]. 2015 Jun 19;10(6):e0129046. Available from: https://doi.org/10.1371/journal.pone.0129046 | eng |
dcterms.references | Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Med [Internet]. 2013 Feb;39(2):165–228. Available from: https://doi.org/10.1007/s00134-012-2769- 8 | eng |
dcterms.references | Yacoub S, Wills B. Predicting outcome from dengue. BMC Med [Internet]. 2014 Dec 4;12(1):147. Available from: https://doi.org/10.1186/s12916-014- 0147-9 | eng |
dcterms.references | Zhang L, Chen Z, Diao Y, Yang Y, Fu P. Associations of fluid overload with mortality and kidney recovery in patients with acute kidney injury: A systematic review and meta-analysis. J Crit Care [Internet]. 2015 Aug;30(4):860.e7- 860.e13. Available from: https://doi.org/10.1016/j.jcrc.2015.03.025 | eng |
dcterms.references | Yacoub S, Griffiths A, Hong Chau TT, Simmons CP, Wills B, Hien TT, et al. Cardiac function in Vietnamese patients with different dengue severity grades*. Crit Care Med [Internet]. 2012 Feb;40(2):477–83. Available from: https://doi.org/10.1097/ccm.0b013e318232d966 | eng |
dcterms.references | Renuka M, Selvam V, Logia P, Parasuraman V, Rajagopalan RE. Predictors of Clinically Significant Bleeding in Thrombocytopenic Dengue Patients Admitted to Intensive Care Unit: A Retrospective Study. Indian J Crit Care Med [Internet]. 2023 Nov 30;27(12):888–94. Available from: https://doi.org/10.5005%2Fjp-journals-10071-24574 | eng |
dcterms.references | Faridah IN, Dania H, Chen Y-H, Supadmi W, Purwanto BD, Heriyanto MJ, et al. Dynamic Changes of Platelet and Factors Related Dengue Haemorrhagic Fever: A Retrospective Study in Indonesian. Diagnostics [Internet]. 2022 Apr 11;12(4):950. Available from: https://doi.org/10.3390/diagnostics12040950 | eng |
dcterms.references | Sangkaew S, Ming D, Boonyasiri A, Honeyford K, Kalayanarooj S, Yacoub S, et al. Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. Lancet Infect Dis [Internet]. 2021 Jul;21(7):1014–26. Available from: https://doi.org/10.1016/S1473- 3099(20)30601-0 | eng |
dcterms.references | Jog S, Prayag S, Rajhans P, Zirpe K, Dixit S, Pillai L, et al. Dengue infection with multiorgan dysfunction:-sofa score, arterial lactate and serum albumin levels are predictors of outcome. Intensive Care Med Exp [Internet]. 2015 Dec 1;3(S1):A830. Available from: https://doi.org/10.1186/2197-425X-3-S1-A830 | eng |
dcterms.references | Chagas GCL, Rangel AR, Noronha LM, Veloso FCS, Kassar SB, Oliveira MJC, et al. Risk factors for mortality in patients with dengue: A systematic review and meta‐analysis. Trop Med Int Heal [Internet]. 2022 Aug 11;27(8):656–68. Available from: https://doi.org/10.1111/tmi.13797 | eng |
dcterms.references | Chen C-M, Chan K-S, Yu W-L, Cheng K-C, Chao H-C, Yeh C-Y, et al. The outcomes of patients with severe dengue admitted to intensive care units. Medicine (Baltimore) [Internet]. 2016 Aug;95(31):e4376. Available from: https://doi.org/10.1097/MD.0000000000004376 | eng |
dcterms.references | Hsieh C-C, Cia C-T, Lee J-C, Sung J-M, Lee N-Y, Chen P-L, et al. A Cohort Study of Adult Patients with Severe Dengue in Taiwanese Intensive Care Units: The Elderly and APTT Prolongation Matter for Prognosis. Gérardin P, editor. PLoS Negl Trop Dis [Internet]. 2017 Jan 6;11(1):e0005270. Available from: https://doi.org/10.1371/journal.pntd.0005270 | eng |
dcterms.references | Shastri P, Gupta P, Kumar R. A prospective 3 year study of clinical spectrum and outcome of dengue fever in ICU from a tertiary care hospital in North India. Indian J Anaesth [Internet]. 2020;64(3):181. Available from: https://doi.org/10.4103/ija.IJA_865_19 | eng |
dcterms.references | Amin P, Acicbe Ö, Hidalgo J, Jiménez JIS, Baker T, Richards GA. Dengue fever: Report from the task force on tropical diseases by the World Federation of Societies of Intensive and Critical Care Medicine. J Crit Care [Internet]. 2018 Feb;43:346–51. Available from: https://doi.org/10.1016/j.jcrc.2017.11.003 | eng |
dcterms.references | Michels M, Sumardi U, de Mast Q, Jusuf H, Puspita M, Dewi IMW, et al. The Predictive Diagnostic Value of Serial Daily Bedside Ultrasonography for Severe Dengue in Indonesian Adults. Lopes da Fonseca BA, editor. PLoS Negl Trop Dis [Internet]. 2013 Jun 13;7(6):e2277. Available from: https://doi.org/10.1371/journal.pntd.0002277 | eng |
dcterms.references | Rashid A, Fakhr A, Azeem AR, Arshad AR, Ahmed W, Ahmed Y. Role of Sonography in the Assessment of Dengue Fever with Serological Correlation. Life Sci [Internet]. 2023 Oct 5;4(4):5. Available from: https://doi.org/10.37185/LnS.1.1.390 | eng |
dcterms.references | Dewan N, Zuluaga D, Osorio L, Krienke M-E, Bakker C, Kirsch J. Ultrasound in Dengue: A Scoping Review. Am J Trop Med Hyg [Internet]. 2021 Jan 18; Available from: https://doi.org/10.4269/ajtmh.20-0103 | eng |
dcterms.references | Setiawan MW, Samsi TK, Wulur H, Sugianto D, Pool TN. Dengue haemorrhagic fever: ultrasound as an aid to predict the severity of the disease. Pediatr Radiol [Internet]. 1998 Jan 16;28(1):1–4. Available from: https://doi.org/10.1007/s002470050281 | eng |
dcterms.references | Kaagaard MD, Matos LO, Evangelista MVP, Wegener A, Holm AE, Vestergaard LS, et al. Frequency of pleural effusion in dengue patients by severity, age and imaging modality: a systematic review and meta-analysis. BMC Infect Dis [Internet]. 2023 May 15;23(1):327. Available from: https://doi.org/10.1186/s12879-023-08311-y | eng |
dcterms.references | Gupta S, Mall P, Alam A. Combined score based on arterial lactate, aspartate transaminase and prolonged capillary refill time is a useful diagnostic criterion for identifying severe dengue. Trans R Soc Trop Med Hyg [Internet]. 2020 Nov 6;114(11):838–46. Available from: https://doi.org/10.1093/trstmh/traa088 | eng |
dcterms.references | Huy BV, Toàn NV. Prognostic indicators associated with progresses of severe dengue. Johnson C, editor. PLoS One [Internet]. 2022 Jan 5;17(1):e0262096. Available from: https://doi.org/10.1371/journal.pone.0262096 | eng |
dcterms.references | Assir MZK, Kamran U, Ahmad HI, Bashir S, Mansoor H, Anees S Bin, et al. Effectiveness of Platelet Transfusion in Dengue Fever: A Randomized Controlled Trial. Transfus Med Hemotherapy [Internet]. 2013;40(5):362–8. Available from: https://doi.org/10.1159/000354837 | eng |
dcterms.references | Thach TQ, Eisa HG, Hmeda A Ben, Faraj H, Thuan TM, Abdelrahman MM, et al. Predictive markers for the early prognosis of dengue severity: A systematic review and meta-analysis. Caimano MJ, editor. PLoS Negl Trop Dis [Internet]. 2021 Oct 5;15(10):e0009808. Available from: https://doi.org/10.1371/journal.pntd.0009808 | eng |
dcterms.references | Srisuphanunt M, Puttaruk P, Kooltheat N, Katzenmeier G, Wilairatana P. Prognostic Indicators for the Early Prediction of Severe Dengue Infection: A Retrospective Study in a University Hospital in Thailand. Trop Med Infect Dis [Internet]. 2022 Jul 31;7(8):162. Available from: https://doi.org/10.3390/tropicalmed7080162 | eng |
dcterms.references | Thao LTT, Vinh NN, Hien TT, Trung DT, Simmons C, Hien PTD, et al. Liver Involvement Associated with Dengue Infection in Adults in Vietnam. Am J Trop Med Hyg [Internet]. 2010 Oct 5;83(4):774–80. Available from: https://doi.org/10.4269/ajtmh.2010.10-0090 | eng |
dcterms.references | Ravilla S, Padmaprakash K, Arun N, Kanth R. Liver function test abnormalities: Do they correlate with severity in dengue infection? An Indian perspective. J Mar Med Soc [Internet]. 2023;25(1):48. Available from: https://doi.org/10.4103/jmms.jmms_88_22 | eng |
dcterms.references | Wichmann O, Gascon J, Schunk M, Puente S, Siikamaki H, Gjørup I, et al. Severe Dengue Virus Infection in Travelers: Risk Factors and Laboratory Indicators. J Infect Dis [Internet]. 2007 Apr 15;195(8):1089–96. Available from: https://doi.org/10.1086/512680 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Especialización en Medicina Crítica y Cuidados Intensivos | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: