Insulin Withdrawal in Diabetic Kidney Disease: What Are We Waiting for?
datacite.rights | http://purl.org/coar/access_right/c_abf2 | eng |
dc.contributor.author | Morillas, Carlos | |
dc.contributor.author | D'Marco, Luis | |
dc.contributor.author | Puchadas, María Jesús | |
dc.contributor.author | Solá-Izquierdo, Eva | |
dc.contributor.author | Gorriz-Zambrano, Carmen | |
dc.contributor.author | Bermúdez, Valmore | |
dc.contributor.author | Gorriz, José Luis | |
dc.date.accessioned | 2021-09-14T14:42:17Z | |
dc.date.available | 2021-09-14T14:42:17Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The prevalence of type 2 diabetes mellitus worldwide stands at nearly 9.3% and it is estimated that 20–40% of these patients will develop diabetic kidney disease (DKD). DKD is the leading cause of chronic kidney disease (CKD), and these patients often present high morbidity and mortality rates, particularly in those patients with poorly controlled risk factors. Furthermore, many are overweight or obese, due primarily to insulin compensation resulting from insulin resistance. In the last decade, treatment with sodium–glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP1-RA) have been shown to be beneficial in renal and cardiovascular targets; however, in patients with CKD, the previous guidelines recommended the use of drugs such as repaglinide or dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), plus insulin therapy. However, new guidelines have paved the way for new treatments, such as SGLT2i or GLP1-RA in patients with CKD. Currently, the new evidence supports the use of GLP1-RA in patients with an estimated glomerular filtration rate (eGFR) of up to 15 mL/min/1.73 m2 and an SGLT2i should be started with an eGFR > 60 mL/min/1.73 m2. Regarding those patients in advanced stages of CKD, the usual approach is to switch to insulin. Thus, the add-on of GLP1-RA and/or SGLT2i to insulin therapy can reduce the dose of insulin, or even allow for its withdrawal, as well as achieve a good glycaemic control with no weight gain and reduced risk of hypoglycaemia, with the added advantage of cardiorenal benefits. | eng |
dc.format.mimetype | spa | |
dc.identifier.citation | Morillas, C., D’Marco, L., Puchades, M. J., Solá-Izquierdo, E., Gorriz-Zambrano, C., Bermúdez, V., & Gorriz, J. L. (2021). Insulin Withdrawal in Diabetic Kidney Disease: What Are We Waiting for? International Journal of Environmental Research and Public Health, 18(10), 5388. MDPI AG. Retrieved from http://dx.doi.org/10.3390/ijerph18105388 | eng |
dc.identifier.doi | https://doi.org/10.3390/ijerph18105388 | |
dc.identifier.issn | 16604601 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/8365 | |
dc.language.iso | eng | eng |
dc.publisher | MDPI | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | International Journal of Environmental Research and Public Health | eng |
dc.source | Vol. 18 N° 14 (2021) | |
dc.subject | Diabetic kidney disease | eng |
dc.subject | Cardiovascular disease | eng |
dc.subject | GLP-1RA | eng |
dc.subject | SGLT2i | eng |
dc.subject | Insulin | eng |
dc.title | Insulin Withdrawal in Diabetic Kidney Disease: What Are We Waiting for? | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. | eng |
dcterms.references | Alicic, R.Z.; Rooney, M.T.; Tuttle, K. Diabetic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. | eng |
dcterms.references | Chen, H.-Y.; Sun, C.-Y.; Lee, C.-C.; Wu, I.-W.; Chen, Y.-C.; Lin, Y.-H.; Fang, W.-C.; Pan, H.-C. Ketoanalogue supplements reduce mortality in patients with pre-dialysis advanced diabetic kidney disease: A nationwide population-based study. Clin. Nutr. 2021. | eng |
dcterms.references | Wu, B.; Bell, K.; Stanford, A.; Kern, D.M.; Tunceli, O.; Vupputuri, S.; Kalsekar, I.; Willey, V. Understanding CKD among patients with T2DM: Prevalence, temporal trends, and treatment patterns—NHANES 2007–2012. BMJ Open Diabetes Res. Care 2016, 4, e000154. | eng |
dcterms.references | de Boer, I.H.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. | eng |
dcterms.references | Marbury, T.C.; Flint, A.; Jacobsen, J.B.; Karsbøl, J.D.; Lasseter, K. Pharmacokinetics and Tolerability of a Single Dose of Semaglutide, a Human Glucagon-Like Peptide-1 Analog, in Subjects With and Without Renal Impairment. Clin. Pharmacokinet. 2017, 56, 1381–1390. | eng |
dcterms.references | Jacobsen, L.V.; Flint, A.; Olsen, A.K.; Ingwersen, S.H. Liraglutide in Type 2 Diabetes Mellitus: Clinical Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2016, 55, 657–672. | eng |
dcterms.references | Jacobsen, L.V.; Hindsberger, C.; Robson, R.; Zdravkovic, M. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. Br. J. Clin. Pharmacol. 2009, 68, 898–905. | eng |
dcterms.references | Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. | eng |
dcterms.references | Arganda, C. IQVIA Estima el Impacto de la OPR en Oficina de Farmacia. Diario Farma 2020. Available online: https://www.diariofarma.com/2020/12/03/iqvia-estima-el-impacto-de-la-opr-en-oficina-de-farmacia-en-34-millones-y-deja-al-mercado-sin-crecimiento (accessed on 17 May 2021). | eng |
dcterms.references | Cas, A.D.; Khan, S.S.; Butler, J.; Mentz, R.J.; Bonow, R.O.; Avogaro, A.; Tschoepe, D.; Doehner, W.; Greene, S.J.; Senni, M.; et al. Impact of Diabetes on Epidemiology, Treatment, and Outcomes of Patients With Heart Failure. JACC: Hear. Fail. 2015, 3, 136–145. | eng |
dcterms.references | Riehle, C.; Abel, E.D. Insulin Signaling and Heart Failure. Circ. Res. 2016, 118, 1151–1169. | eng |
dcterms.references | Zhang, Y.; Yang, S.; Cui, X.; Yang, J.; Zheng, M.; Jia, J.; Han, F.; Yang, X.; Wang, J.; Guo, Z.; et al. Hyperinsulinemia Can Cause Kidney Disease in the IGT Stage of OLETF Rats via the INS/IRS-1/PI3-K/Akt Signaling Pathway. J. Diabetes Res. 2019, 2019, 1–12. | eng |
dcterms.references | Naing, S.; Ramesh, G.; Garcha, J.; Poliyedath, A.; Khandelwal, S.; Mills, P. SUN-LB115 Is the Stepping-Down Approach a Better Option Than Multiple Daily Injections in Patients With Chronic Poorly-Controlled Diabetes on Advanced Insulin Therapy? J. Endocr. Soc. 2020, 4. | eng |
dcterms.references | Tofé, S.; Argüelles, I.; Mena, E.; Serra, G.; Codina, M.; Urgeles, J.R.; García, H.; Pereg, V. Real-world GLP-1 RA therapy in type 2 diabetes: A long-term effectiveness observational study. Endocrinol. Diabetes Metab. 2018, 2, e00051. | eng |
dcterms.references | Rentsch, T.; Awad, M.; Moorman, J.M.; Gothard, M.D. Evaluating the Impact of Glucagon-Like Peptide-1 Receptor Agonists on Metabolic Changes in Patients With Type 2 Diabetes on High-Dose Insulin. Am. J. Ther. 2020, Publish Ah, 29. | eng |
dcterms.references | Goto, A.; Takaichi, M.; Kishimoto, M.; Takahashi, Y.; Kajio, H.; Shimbo, T.; Noda, M. Body Mass Index, Fasting Plasma Glucose Levels, and C-peptide Levels as Predictors of the Future Insulin Use in Japanese Type 2 Diabetic Patients. Endocr. J. 2010, 57, 237–244. | spa |
dcterms.references | Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): A multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. | eng |
dcterms.references | Jones, A.G.; Hattersley, A.T. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet. Med. 2013, 30, 803–817. | eng |
dcterms.references | Rodbard, H.W.; Lingvay, I.; Reed, J.; De La Rosa, R.; Rose, L.; Sugimoto, D.; Araki, E.; Chu, P.-L.; Wijayasinghe, N.; Norwood, P. Semaglutide Added to Basal Insulin in Type 2 Diabetes (SUSTAIN 5): A Randomized, Controlled Trial. J. Clin. Endocrinol. Metab. 2018, 103, 2291–2301. | eng |
dcterms.references | E Brown, R.; Bech, P.G.; Aronson, R. Semaglutide once weekly in people with type 2 diabetes: Real-world analysis of the Canadian LMC diabetes registry ( SPARE study). Diabetes Obes. Metab. 2020, 22, 2013–2020. | eng |
dcterms.references | Bolli, G.B.; Porcellati, F.; Meier, J.J. Switching From Insulin Bolus Treatment to GLP-1 RAs Added to Continued Basal Insulin in People With Type 2 Diabetes on Basal-Bolus Insulin. Diabetes Care 2020, 43, 2333–2335. | eng |
dcterms.references | Naing, S.; Ramesh, G.; Garcha, J.; Poliyedath, A.; Khandelwal, S.; Mills, P.K. Is the stepping-down approach a better option than multiple daily injections in obese patients with poorly controlled Type 2 diabetes on advanced insulin therapy? Endocrinol. Diabetes Metab. 2021, 4. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | eng |