The A54T polymorphism in the FABP2 gene and its relationship with obesity
datacite.rights | http://purl.org/coar/access_right/c_abf2 | eng |
dc.contributor.author | Torres, Maritza | |
dc.contributor.author | Prieto, Carem | |
dc.contributor.author | Ortiz, Rina | |
dc.contributor.author | Siguencia, Wilson | |
dc.contributor.author | Durán, Pablo | |
dc.contributor.author | Pérez, José | |
dc.contributor.author | Díaz, María P. | |
dc.contributor.author | Rojas, Milagros | |
dc.contributor.author | Chacín, Maricarmen | |
dc.contributor.author | Cano, Clímaco | |
dc.contributor.author | Bermúdez, Valmore | |
dc.date.accessioned | 2020-12-16T03:25:27Z | |
dc.date.available | 2020-12-16T03:25:27Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Introduction: Obesity is a complex, multifactorial, and mostly preventable disease affecting, along with overweight, more than a third of today’s world population. Variations in the nucleotide sequence of both metabolic and appetite control genes have been counted among these non-modifiable factors and are associated with BMI, lipidic profile, and abdominal circumference alterations. Methods: An analytical, non-experimental, and transversal research was done with the purpose to assess the presence of A54T polymorphism in the FABP gene in a sub-sample from the Maracaibo City Metabolic Syndrome Prevalence Study. Results: 154 individuals eight subjects were carriers of the A54Tpolymorphism, namely, a genotypic frequency of 5.19 %, with a sex distribution of 50 % for women (n=4) and 50 % (n=4) for men. In respect of alleles similarity degree, 75 % (n=6) were homozygous, and 25 % (n=2) were heterozygous. Obesity diagnosis throughout BMI was only present in 12.50 % (n=1) of the A54T carriers. Conversely, 25 % (n=2) of the carriers were overweighed; 50 % (n=4) were presented as normal-weight people; and only 12.50 % (n=1), in one underweighted person. Conclusion: As in many other studies, we do not find an association between Ala54Thr polymorphism and obesity. This result reinforces the fact of the multifactorial character of these diseases and a carrier state of this polymorphism is not necessarily to experience a higher obesity risk, at least, in our environment. | eng |
dc.description.abstract | La obesidad es una enfermedad compleja, multifactorial y en su mayor parte prevenible que afecta, a más de un tercio de la población mundial actual. Las variaciones en la secuencia de nucleótidos de los genes de control del metabolismo y del apetito se consideran hasta ahora como factores no modificables y se asocian con alteraciones del IMC, del perfil lipídico y de la circunferencia abdominal. Métodos: Se realizó una investigación analítica, no experimental y transversal con el propósito de evaluar la presencia del polimorfismo A54T en el gen FABP en una submuestra del Estudio de Prevalencia del Síndrome Metabólico de la Ciudad de Maracaibo. Resultados: De los 154 individuos de la submuestra ocho sujetos fueron portadores del polimorfismo A54T, es decir, una frecuencia genotípica de 5,19 %, con una distribución por sexo de 50 % para las mujeres (n=4) y 50 % (n=4) para los hombres. Con respecto al grado de similitud de los alelos, el 75 % (n=6) eran homocigotos y el 25 % (n=2) heterocigotos. El diagnóstico de obesidad a lo largo del IMC sólo estuvo presente en el 12,50 % (n=1) de los portadores de A54T. Por el contrario, el 25 % (n=2) de los portadores tenían sobrepeso; el 50 % (n=4) se presentaron como personas de peso normal; y sólo el 12,50 % (n=1) en la categoría de peso insuficiente. Conclusión: No se encontró una asociación entre el polimorfismo de Ala54Thr y la obesidad. Este resultado refuerza el carácter multifactorial de estas enfermedades y que un estado portador de este polimorfismo no es causa necesaria para padecer obesidad, al menos, en nuestro medio. | spa |
dc.format.mimetype | spa | |
dc.identifier.issn | 03674762 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6915 | |
dc.identifier.url | http://saber.ucv.ve/ojs/index.php/rev_gmc/article/view/19367 | |
dc.language.iso | eng | eng |
dc.publisher | Saber UCV, Universidad Central de Venezuela | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Gaceta Médica de Caracas | spa |
dc.source | Vol. 128, No. 3 (2020) | |
dc.subject | Obesity | eng |
dc.subject | Polymorphism | eng |
dc.subject | Mutations | eng |
dc.subject | Cardiovascular diseases | eng |
dc.subject | Type 2 Diabetes mellitus | eng |
dc.subject | FABP2 | eng |
dc.subject | Obesidad | spa |
dc.subject | Polimorfismo | spa |
dc.subject | Enfermedades cardiovasculares | spa |
dc.subject | Diabetes mellitus de tipo 2 | spa |
dc.title | The A54T polymorphism in the FABP2 gene and its relationship with obesity | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Bermúdez Pirela V, Herazo Beltrán Y, Valero P, Souki A, Arráiz Rodríguez NJ, Prieto Fuenmayor C, et al. Aspectos básicos en obesidad. Ediciones Universidad Simón Bolívar; 2018. | spa |
dcterms.references | OMS | Obesidad y sobrepeso. WHO n.d. http://www. who.int/mediacentre/factsheets/fs311/es/ (accessed March 28, 2017). | spa |
dcterms.references | Bermúdez V, Pacheco M, Rojas J, Córdova E, Velázquez R, Carrillo D, et al. Epidemiologic Behavior of Obesity in the Maracaibo City Metabolic Syndrome Prevalence Study. PLOS ONE 2012;7:e35392. https:// doi.org/10.1371/journal.pone.0035392. | eng |
dcterms.references | Choquet H, Meyre D. Genetics of Obesity: What have we Learned? Curr Genomics 2011;12:169–79. https://doi.org/10.2174/138920211795677895. | eng |
dcterms.references | Puiu M, Arghirescu ACE and S. Genetics and Obesity. Genet Disord. 2013. https://doi.org/10.5772/52403. | eng |
dcterms.references | Levian C, Ruiz E, Yang X. The pathogenesis of obesity from a genomic and systems biology perspective. Yale J Biol Med. 2014;87:113-126. | eng |
dcterms.references | Takakura Y, Yoshioka K, Umekawa T, Kogure A, Toda H, Yoshikawa T, et al. Thr54 allele of the FABP2 gene affects resting metabolic rate and visceral obesity. Diabetes Res Clin Pract. 2005;67:36-42. https://doi. org/10.1016/j.diabres.2004.05.002. | eng |
dcterms.references | Albala B C, Jiménez R B, Pérez B F, Liberman G C. Polimorfismo de la proteína ligante de ácidos grasos intestinal (FABP2), obesidad e insulina resistencia. Rev Méd Chile 2006;134. https://doi.org/10.4067/ S0034-98872006000300017. | spa |
dcterms.references | Liu Y, Wu G, Han L, Zhao K, Qu Y, Xu A, et al. Association of the FABP2 Ala54Thr polymorphism with type 2 diabetes, obesity, and metabolic syndrome: A population-based case-control study and a systematic meta-analysis. 2015. | eng |
dcterms.references | Martinez-Lopez E, Garcia-Garcia MR, Gonzalez- Avalos JM, Maldonado-Gonzalez M, Ruiz-Madrigal B, Vizmanos B, et al. Effect of Ala54Thr polymorphism of FABP2 on anthropometric and biochemical variables in response to a moderate-fat diet. Nutrition. 2013;29:46- 51. https://doi.org/10.1016/j.nut.2012.03.002. | eng |
dcterms.references | Blüher M. Adipose tissue inflammation: A cause or consequence of obesity-related insulin resistance? Clin Sci. 2016;130:1603-1614. | eng |
dcterms.references | Gaggini M, Saponaro C, Gastaldelli A. Not all fats are created equal: adipose vs. ectopic fat, implication in cardiometabolic diseases. Horm Mol Biol Clin Investig. 2015;22:7-18. https://doi.org/10.1515/ hmbci-2015-0006. | eng |
dcterms.references | Nathan C. Epidemic Inflammation: Pondering Obesity. Mol Med. 2008;14:485-92. https://doi. org/10.2119/2008-00038.Nathan. | eng |
dcterms.references | Salto L, Bu L, Beeson W, Firek A, Cordero-MacIntyre Z, De Leon M. The Ala54Thr Polymorphism of the Fatty Acid Binding Protein 2 Gene Modulates HDL Cholesterol in Mexican-Americans with Type 2 Diabetes. Int J Environ Res Public Health 2015;13:52. https://doi.org/10.3390 /ijerph13010052. | eng |
dcterms.references | Rajala MW, Scherer PE. Minireview: The Adipocyte—At the Crossroads of Energy Homeostasis, Inflammation, and Atherosclerosis. Endocrinology. 2003;144:3765-3773. https://doi.org/10.1210/ en.2003-0580. | eng |
dcterms.references | Albala B C, Jiménez R B, Pérez B F, Liberman G C. Polimorfismo de la proteína ligante de ácidos grasos intestinal (FABP2), obesidad e insulina resistencia. Rev Méd Chile 2006;134:372-379. https://doi. org/10.4067/S0034-98872006000300017. | spa |
dcterms.references | Gomez LC, Real SM, Ojeda MS, Gimenez S, Mayorga LS, Roqué M. Polymorphism of the FABP2 gene: a population frequency analysis and an association study with cardiovascular risk markers in Argentina. BMC Med. Genet. 2007;8. https://doi.org/10.1186/1471-2350-8-39. | eng |
dcterms.references | Hernandez-Sampieri R. METODOLOGIA DE LA INVESTIGACION. Edición: 6. México, D.F.: McGraw-Hill Interamericana de España S.L.; 2014. | spa |
dcterms.references | Bermúdez V, Marcano RP, Cano C, Arráiz N, Amell A, Cabrera M, et al. The Maracaibo city metabolic syndrome prevalence study: design and scope. Am J Ther. 2010;17:288-294. https://doi.org/10.1097/ MJT.0b013e3181c121bc. | eng |
dcterms.references | Bermúdez V, Rojas J, Salazar J, Añez R, Toledo A, Bello L, et al. Sensitivity and specificity improvement in abdominal obesity diagnosis using cluster analysis during waist circumference cut-off point selection. J Diabetes Res. 2015;2015. https://doi. org/10.1155/2015/750265. | eng |
dcterms.references | Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001;285:2486-2497. https://doi. org/10.1001/jama.285.19.2486. | eng |
dcterms.references | Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-419. https://doi. org/10.1007/BF00280883. | eng |
dcterms.references | Añez R, Morillo J, Rojas M, Torres Y, Apruzzese V, Martínez MS, et al. Punto de corte de homeostasis model assessment (HOMA-IR) para determinar insulinorresistencia en individuos adultos del municipio Maracaibo-Estado Zulia, Venezuela. Av En Biomed. 2015;4:9-18. | spa |
dcterms.references | Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215-1215. https:// doi.org/10.1093/nar/16.3.1215. | eng |
dcterms.references | Miller M, Rhyne J, Chen H, Beach V, Ericson R, Luthra K, et al. APOC3 Promoter Polymorphisms C-482T and T-455C Are Associated with the Metabolic Syndrome. Arch Med Res. 2007;38:444-451. https:// doi.org/10.1016/j.arcmed.2006.10.013. | eng |
dcterms.references | Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, et al. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest. 1995;95:1281-1287. https://doi.org/10.1172/ JCI117778. | eng |
dcterms.references | McKay RM, McKay JP, Avery L, Graff JM. C. elegans: A Model for Exploring the Genetics of Fat Storage. Dev Cell. 2003;4:131-142. https://doi.org/10.1016/ S1534-5807(02)00411-2. | eng |
dcterms.references | Gesta S, Tseng Y-H, Kahn CR. Developmental Origin of Fat: Tracking Obesity to Its Source. Cell. 2007;131:242-256. https://doi.org/10.1016/j. cell.2007.10.004. | eng |
dcterms.references | Sheridan MA. Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol. Part B Comp. Biochem. 1988;90:679-690. https://doi. org/10.1016/0305-0491(88)90322-7. | eng |
dcterms.references | Chen K, Durand D, Farach-Colton M. NOTUNG: A program for dating gene duplications and optimizing gene family trees. J Comput Biol J Comput Mol Cell Biol. 2000;7:429-447. https://doi. org/10.1089/106652700750050871. | eng |
dcterms.references | Ottaviani E, Malagoli D, Franceschi C. The evolution of the adipose tissue: A neglected enigma. Gen Comp Endocrinol. 2011;174:1-4. https://doi.org/10.1016/j. ygcen.2011.06.018. | eng |
dcterms.references | Chacín M, Rojas J, Pineda C, Rodríguez D, Pacheco MN, Gómez MM, et al. Predisposición humana a la obesidad, síndrome metabólico y diabetes: el genotipo ahorrador y la incorporación de los diabetogenes al genoma humano desde la Antropología Biológica. Síndr Cardiometaból. 2011;1:11. | spa |
dcterms.references | Rojas J, Bermúdez V, Leal E, Aparicio D, Peña G, Acosta L, et al. Origen étnico y enfermedad cardiovascular. Arch Venez Farmacol Ter. 2008;27:40- 57. | spa |
dcterms.references | Blouin K, Boivin A, Tchernof A. Androgens and body fat distribution. J Steroid Biochem Mol Biol. 2008;108:272-280. https://doi.org/10.1016/j. jsbmb.2007.09.001. | eng |
dcterms.references | Power ML, Schulkin J. Sex differences in fat storage, fat metabolism, and the health risks from obesity: Possible evolutionary origins. Br J Nutr. 2008;99:931- 40. https://doi.org /10.1017/S0007114507853347. | eng |
dcterms.references | Pérez-Pérez R, Ortega-Delgado FJ, García-Santos E, López JA, Camafeita E, Ricart W, et al. Differential Proteomics of Omental and Subcutaneous Adipose Tissue Reflects Their Unalike Biochemical and Metabolic Properties. J. Proteome Res. 2009;8:1682- 1693. https://doi.org/ 10.1021/pr800942k. | eng |
dcterms.references | Esteve Ràfols M. Tejido adiposo: heterogeneidad celular y diversidad funcional. Endocrinol Nutr. 2014;61:100-112. https://doi.org/10.1016/j. endonu.2013.03.011. | spa |
dcterms.references | Salazar J, Olivar LC, Ramos E, Chávez-Castillo M, Rojas J, Bermúdez V. Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. Cholesterol. 2015;2015. https:// doi.org/10.1155/2015/296417. | eng |
dcterms.references | Wajchenberg BL. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr Rev. 2000;21:697-738. https:// doi.org/10.1210/edrv.21.6.0415. | eng |
dcterms.references | Montani J-P, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004;28 Suppl 4:S58-65. https://doi. org/10.1038/sj.ijo.0802858. | eng |
dcterms.references | Li A, Wu L, Wang X, Xin Y, Zan L. Tissue expression analysis, cloning and characterization of the 5’-regulatory region of the bovine FABP3 gene. Mol. Biol. Rep. 2016;43:991-998. https://doi.org/10.1007/ s11033-016-4026-7. | eng |
dcterms.references | Laprairie RB, Denovan-Wright EM, Wright JM. Subfunctionalization of peroxisome proliferator response elements accounts for retention of duplicated fabp1 genes in zebrafish. BMC Evol Biol. 2016;16. https://doi.org/10.1186/s12862-016-0717-x. | eng |
dcterms.references | Zhang Y, Zhang J, Ren Y, Lu R, Yang L, Nie G. Tracing the evolution of fatty acid-binding proteins (FABPs) in organisms with a heterogeneous fat distribution. FEBS Open Bio. 2020;10:861-872. https://doi. org/10.1002/2211-5463.12840. | eng |
dcterms.references | Hsu KT, Storch J. Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. J Biol Chem. 1996;271:13317-13323. https://doi.org/10.1074/ jbc.271.23.13317. | eng |
dcterms.references | Choromańska B, Myśliwiec P, Dadan J, Hady HR, Chabowski A. [The clinical significance of fatty acid binding proteins]. PostepyHig Med. Doswiadczalnej Online. 2011;65:759–63. https://doi. org/10.5604/17322693.966983 | eng |
dcterms.references | Gerbens F, Jansen A, van Erp AJ, Harders F, Meuwissen TH, Rettenberger G, et al. The adipocyte fatty acidbinding protein locus: Characterization and association with intramuscular fat content in pigs. Mamm Genome N Y. 1998;9:1022-1026. http://dx.doi.org/10.1007/ s003359900918. | eng |
dcterms.references | Storch J, Thumser AE. Tissue-specific Functions in the Fatty Acid-binding Protein Family. J Biol Chem. 2010;285:32679-32683. https://doi.org/10.1074/jbc. R110.135210. | eng |
dcterms.references | Smathers RL, Petersen DR. The human fatty acidbinding protein family: Evolutionary divergences and functions. Hum Genomics 2011;5:170. https://doi. org/10.1186/1479-7364-5-3-170. | eng |
dcterms.references | Chmurzyńska A. The multigene family of fatty acidbinding proteins (FABPs): Function, structure and polymorphism. J Appl Genet. 2006;1:39-48. https:// doi.org/10.1007/BF03194597. | eng |
dcterms.references | Oldenburger IB, Wolters VM, Kardol-Hoefnagel T, Houwen RHJ, Otten HG. Serum intestinal fatty acidbinding protein in the noninvasive diagnosis of celiac disease. APMIS Acta Pathol. Microbiol Immunol Scand. 2018;126:186-190. https://doi.org/10.1111/ apm.12800. | eng |
dcterms.references | Adriaanse MPM, Mubarak A, Riedl RG, Ten Kate FJW, Damoiseaux JGMC, Buurman WA, et al. Progress towards non-invasive diagnosis and follow-up of celiac disease in children; a prospective multicentre study to the usefulness of plasma I-FABP. Sci. Rep. 2017;7. https://doi.org/10.1038/s41598-017-07242-4. | eng |
dcterms.references | Abdel-Haie OM, Behiry EG, Abd Almonaem ER, Ahmad ES, Assar EH. Predictive and diagnostic value of serum intestinal fatty acid binding protein in neonatal necrotizing enterocolitis (case series). Ann Med Surg. 2017;21:9-13. https://doi.org/10.1016/j. amsu.2017.05.010. | eng |
dcterms.references | Cox AJ, Zhang P, Bowden DW, Devereaux B, Davoren PM, Cripps AW, et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab. 2017;43:163-166. https://doi.org/10.1016/j. diabet.2016.09.004. | eng |
dcterms.references | Lackey AI, Chen T, Zhou YX, Bottasso Arias NM, Doran JM, Zacharisen SM, et al. Mechanisms underlying reduced weight gain in intestinal fatty acid-binding protein (IFABP) null mice. A J Physiol- Gastrointest. Liver Physiol. 2020;318:G518–30. https://doi.org/10.1152/ajpgi.00120.2019. | eng |
dcterms.references | Ordovas JM. Genetics, postprandial lipemia and obesity. Nutr Metab Cardiovasc Dis. NMCD. 2001;11:118-133. | eng |
dcterms.references | Berthier M-T, Couillard C, Prud’homme D, Nadeau A, Bergeron J, Tremblay A, et al. Effects of the FABP2 A54T Mutation on Triglyceride Metabolism of Viscerally Obese Men. Obes Res. 2001;9:668-675. https://doi.org/10.1038/oby.2001.91. | eng |
dcterms.references | Lewis MR, Tracy RP. The role of the immune system in the insulin resistance syndrome. Curr. Diab. Rep. 2002;2:96–9. https://doi.org/10.1007/s11892-002- 0064-8. | eng |
dcterms.references | Baier LJ, Sacchettini JC, Knowler WC, Eads J, Paolisso G, Tataranni PA, et al. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest. 1995;95:1281-1287. https://doi.org/10.1172/ JCI117778. | eng |
dcterms.references | Levy E, Ménard D, Delvin E, Stan S, Mitchell G, Lambert M, et al. The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem. 2001;276:39679- 39684. https://doi.org/10.1074/jbc.M105713200. | eng |
dcterms.references | Zhang F, Lücke C, Baier LJ, Sacchettini JC, Hamilton JA. Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J Biomol NMR. 1997;9:213-228. https://doi. org/10.1023/a:1018666522787. | eng |
dcterms.references | Weiss EP, Brown MD, Shuldiner AR, Hagberg JM. Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction | eng |
dcterms.references | Carlsson M, Orho-Melander M, Hedenbro J, Almgren P, Groop LC. The T 54 allele of the intestinal fatty acidbinding protein 2 is associated with a parental history of stroke. J Clin Endocrinol Metab. 2000;85:2801- 2804. https://doi.org/10.1210/jcem.85.8.6751. | eng |
dcterms.references | Georgopoulos A, Aras O, Tsai MY. Codon-54 polymorphism of the fatty acid-binding protein 2 gene is associated with elevation of fasting and postprandial triglyceride in type 2 diabetes. J Clin Endocrinol Metab. 2000;85:3155-3160. https://doi.org/10.1210/ jcem.85.9.6791. | eng |
dcterms.references | Pratley RE, Baier L, Pan DA, Salbe AD, Storlien L, Ravussin E, et al. Effects of an Ala54Thr polymorphism in the intestinal fatty acid-binding protein on responses to dietary fat in humans. J Lipid Res. 2000;41:2002-2008. | eng |
dcterms.references | Galluzzi JR, Cupples LA, Meigs JB, Wilson PW, Schaefer EJ, Ordovas JM, et al. Association of the Ala54-Thr polymorphism in the intestinal fatty acid-binding protein with 2-h postchallenge insulin levels in the Framingham Offspring Study. Diabetes Care. 2001;24:1161–6. https://doi.org/10.2337/ diacare.24.7.1161. | eng |
dcterms.references | H, Tomura S. No Association found between the Ala54Thr Polymorphism of FABP2 Gene and Obesity and Obesity with Dyslipidemia in Japanese Schoolchildren. J. Atheroscler. .Thromb. 2001;8:80– 3. https://doi.org/10.5551/ jat1994.8.80. | eng |
dcterms.references | PihlajamäkiJussi, Rissanen Johanna, Heikkinen Sami, Karjalainen Leena, Laakso Markku. Codon 54 Polymorphism of the Human Intestinal Fatty Acid Binding Protein 2 Gene Is Associated With Dyslipidemias But Not With Insulin Resistance in Patients With Familial Combined Hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 1997;17:1039- 1044. https://doi.org/10.1161/ 01.ATV.17.6.1039. | eng |
dcterms.references | Erkkilä AT, Lindi V, Lehto S, Pyörälä K, Laakso M, Uusitupa MIJ. Variation in the fatty acid binding protein 2 gene is not associated with markers of metabolic syndrome in patients with coronary heart disease. Nutr Metab Cardiovasc Dis. NMCD. 2002;12:53-59. | eng |
dcterms.references | Raza ST, Fatima J, Ahmed F, Abbas S, Zaidi ZH, Singh S, et al. Association of angiotensin-converting enzyme (ACE) and fatty acid binding protein 2 (FABP2) genes polymorphism with type 2 diabetes mellitus in Northern India. J. Renin Angiotensin Aldosterone Syst. 2014;15:572-579. https://doi. org/10.1177/1470320313481082. | eng |
dcterms.references | Salem AHA. A population frequency analysis of the FABP2 gene polymorphism in the Egyptian population. Egypt J Med Hum Genet. 2009;10. | eng |
dcterms.references | Hegele RA, Connelly PW, Hanley AJ, Sun F, Harris SB, Zinman B. Common genomic variants associated with variation in plasma lipoproteins in young aboriginal Canadians. Arterioscler Thromb Vasc Biol. 1997;17:1060-1066. https://doi.org/10.1161/01. atv.17.6.1060. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | eng |