Kidney-gut crosstalk in renal disease

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.authorColombo, Iara
dc.contributor.authorAiello-Battan, Florencia
dc.contributor.authorRosario Elena
dc.contributor.authorRuiz, Agustina
dc.contributor.authorPetraglia, Lucas
dc.contributor.authorMusso, Carlos G.
dc.date.accessioned2020-11-26T15:54:44Z
dc.date.available2020-11-26T15:54:44Z
dc.date.issued2020
dc.description.abstractIntroduction The colon has an important role in managing nitrogenous waste products, electrolytes, and mineral balance during kidney diseases. However, colonic microbiota produces uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, in chronic kidney disease (CKD) patients, which due to their proinflammatory properties contribute to CKD progression. Conversely, in acute renal injury patients, intestinal microbiota could reduce inflammation by secreting short-chain fatty acids and inducing a renal protective immune response. However, since the intestines are the most frequently affected organ in advanced sepsis, colonic microbiota can also represent a negative factor for kidney health in this scenario. Conclusion In the present review, the main characteristics of kidney-gut crosstalk are described.eng
dc.format.mimetypepdfeng
dc.identifier.doihttps://doi.org/10.1007/s11845-020-02437-7
dc.identifier.isbn00211265
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6815
dc.language.isoengeng
dc.publisherSpringer Natureeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIrish Journal of Medical Scienceeng
dc.sourceVol. 189, No. 5, (2020)
dc.subjectCrosstalkeng
dc.subjectGuteng
dc.subjectKidneyeng
dc.titleKidney-gut crosstalk in renal diseaseeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesMuso CG (2020) Biosemiotic medicine: from an effect-based medicine to a process-based medicine. Arch Argent Pediatr 118(5): e449–e453eng
dcterms.referencesPoesen R, Meijers B, Evenepoel P (2013) The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 26(3):323–332eng
dcterms.referencesRanganathan N, Ranganathan P, Friedman EA et al (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 27(9):634–647. https://doi.org/10.1007/s12325-010-0059-9eng
dcterms.referencesMusso CG (2004) Potassium metabolism in patients with chronic kidney disease. Part II: patients on dialysis (stage 5). Int Urol Nephrol 36(3):469–472eng
dcterms.referencesVaziri ND (2016) Effect of synbiotic therapy on gut-derived uremic toxins and the intestinal microbiome in patients with CKD. Clin J Am Soc Nephrol 11(2):199–201eng
dcterms.referencesMafra D, Lobo JC, Barros AF et al (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 9(3):399–410eng
dcterms.referencesGong J, Noel S, Pluznick J, Hamad A et al (2019) Gut microbiotakidney cross-talk in acute kidney injury. Semin Nephrol 39(1):107– 116eng
dcterms.referencesEvenepoel P, Meijers BKI, Bammens BRM, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl 114:S12–S19eng
dcterms.referencesCrespo-Salgado J, Vehaskari VM, Stewart T et al (2016) Intestinal microbiota in pediatric patients with end stage renal disease: a Midwest Pediatric Nephrology Consortium study. Microbiome. 4(1):50eng
dcterms.referencesde Andrade L, Ishikawa-Ramos C, Cuppari L (2017) The cross-talk between the kidney and the gut: implications for chronic kidney disease. Nutrire 42(27):2–14. https://doi.org/10.1186/s41110-017- 0054-xeng
dcterms.referencesKanbay M, Onal E, Afsar B et al (2018) The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 50: 1453–1466. https://doi.org/10.1007/s11255-018-1873-2eng
dcterms.referencesPahl MV, Vaziri ND (2015) The chronic kidney disease-colonic axis. Semin Dial 28:459–463eng
dcterms.referencesRitz E (2011) Intestinal-renal syndrome: mirage or reality? Blood Purif 31:70–76eng
dcterms.referencesSirich TL (2015) Dietary protein and fiber in end stage renal disease. Semin Dial 28(1):75–80. https://doi.org/10.1111/sdi.12315eng
dcterms.referencesMeyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81(10):949–954eng
dcterms.referencesSoulage CO, Koppe L, Fouque D (2013) Protein-bound uremic toxins. New targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J Ren Nutr 23:464–466eng
dcterms.referencesNeirynck N, Glorieux G, Schepers E et al (2013) Review of proteinbound toxins, possibility for blood purification therapy. Blood Purif 35:45–50eng
dcterms.referencesNiwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apher Dial 15:120–124eng
dcterms.referencesNiwa T (2013) Targeting protein-bound uremic toxins in chronic kidney disease. Expert Opin Ther Targets 17(11):1287–1301eng
dcterms.referencesAronov PA, Luo FJ, Plummer NS et al (2011) Colonic contribution to uremic solutes. J Am Soc Nephrol 22:1769–1776eng
dcterms.referencesLeong S, Sirich T (2016) Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins (Basel) 8(12):E35eng
dcterms.referencesRisso MA, Sallustio S, Sueiro V et al (2019) The Importance of tubular function in chronic kidney disease. Int J Nephrol Renov Dis 12:257–262. https://doi.org/10.2147/IJNRD.S216673eng
dcterms.referencesEnomoto A, Takeda M, Tojo A et al (2002) Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol 13(7):1711–1720eng
dcterms.referencesZhang J, Ankawi G, Sun J et al (2018) Gut-kidney crosstalk in septic acute kidney injury. Crit Care 22(1):117. https://doi.org/10. 1186/s13054-018-2040-yeng
dcterms.referencesMeyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357(13): 1316–1325eng
dcterms.referencesPatel K, Luo F, Plummer N et al (2012) The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol 7:982–988. https://doi.org/10.2215/CJN. 12491211eng
dcterms.referencesSirich TL, Plummer NS, Gardner CD et al (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610eng
dcterms.referencesVaziri ND, Liu SM, Lau WL et al (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 9(12):e114881eng
dcterms.referencesMarzocco S, Dal Piaz F, Di Micco L et al (2013) Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 35:196–201eng
dcterms.referencesRossi M, Johnson D, Morrison M et al (2016) Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol 11:223–231. https://doi.org/ 10.2215/CJN.05240515eng
dcterms.referencesMeijers B, De Preter V, Verbeke K et al (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25:219–224. https://doi.org/10.1093/ndt/gfp414eng
dcterms.referencesShoji T, Wada A, Inoue K et al (2007) Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function. Nephron Clin Pract 105:c99–c107. https://doi. org/10.1159/000097985eng
dcterms.referencesMadero M, Cano KB, Campos I et al (2019) Removal of protein bound uremic toxins during hemodialysis using a binding competitor. Clin J Am Soc Nephrol 14(3):394–402. https://doi.org/10. 2215/CJN.05240418eng
dcterms.referencesCornelis T, Eloot S, Vanholder R et al (2015) Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol Dial Transplant 30(8):1395–1402. https://doi.org/10.1093/ndt/gfv038eng
dcterms.referencesCamacho O, Rosales M, Shafi T et al (2016) Effect of a sustained difference in hemodialytic clearance on the plasma levels of pcresol sulfate and indoxyl sulfate. Nephrol Dial Transplant 31: 1335–1341. https://doi.org/10.1093/ndt/gfw100eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones