Asociación entre valores de presión arterial de oxígeno y saturación arterial de oxígeno en las primeras 24 horas de ingreso a cuidados intensivos y mortalidad hospitalaria
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Dueñas, Carmelo | |
dc.contributor.advisor | Rojas, José Antonio | |
dc.contributor.advisor | Polo Gallardo, Raúl Octavio | |
dc.contributor.author | Méndez González, Freddy Ricardo | |
dc.contributor.author | Reyes Guerrero, María Camila | |
dc.date.accessioned | 2024-06-05T20:46:56Z | |
dc.date.available | 2024-06-05T20:46:56Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Introducción: La relación entre la saturación de oxígeno (SpO2), saturación arterial de oxígeno (SaO2), presión arterial de oxígeno (PaO2) y la mortalidad en las primeras 24 horas de ingreso a la UCI sigue siendo poco clara, destacando la necesidad de estudiar estos parámetros vitales. Objetivos: Evaluar la relación entre los diferentes niveles de oxigenación (SpO2, SaO2, PaO2) durante las primeras 24 horas de admisión en dos UCI en Cartagena (Bolívar) entre 2018 y 2021 y su impacto en la mortalidad. Materiales y métodos: Estudio de cohorte retrospectivo en pacientes ingresados a la UCI. Se seleccionaron pacientes ≥ de 18 años, quienes al ingreso requirieron FiO2 suplementaria >21%, evidencia de gases arteriales durante las primeras 24 horas de ingreso. Se excluyeron pacientes con COVID-19, gestantes, trauma craneoencefálico, registros clínicos insuficientes, entre otros. Se evaluaron los niveles de SpO2, SaO2 estratificados en (<88%, 88–92%, 93–96%, >96%) y PaO2 (<55 mmHg, 55-80 mmHg, 81-100 mmHg, >100 mmHg) en las primeras 24 horas a la admisión. El desenlace primario fue la muerte al alta de la UCI o a los 28 días. Realizamos un análisis de regresión logística multinomial, bivariado, multivariado para estimar la asociación entre los niveles de oxigenación estratificados y el desenlace primario. Resultados: La asociación entre los diferentes parámetros de oxigenación con la mortalidad durante las primeras 24 horas en UCI no está claramente definida. Este estudio de cohorte retrospectivo evalúa la relación entre los niveles de SpO2, SaO2 y PaO2 con la mortalidad en pacientes de dos UCI en Cartagena entre 2018 y 2021. Incluimos pacientes > de 18 años con requerimiento de FiO2 >21% excluyendo aquellos con condiciones que podrían alterar los resultados. Hicimos un análisis de regresión logística multinomial para analizar la influencia de los parámetros de oxigenación con mortalidad, ajustando por variables contundentes. De los 621 pacientes analizados, se tomó como referencia el grupo de SpO2 entre 93-96%. Encontramos que los subgrupos de SpO2 al ingreso y SaO2 más baja > de 96% mostraron asociaciones protectoras con un OR crudo de 0.68 (IC95%: 0.47 – 0.99; p=0.049), 0.61 (IC95%:0.41 – 0.90; p=0.015) con menos probabilidad para morir. Sin embargo, al realizar el OR ajustado, se perdió la significancia estadística por variables como la edad, género, score Apache II ≥ 12 puntos, Sofa ≥ 2, pacientes con inestabilidad hemodinámica, necesidad de terapia de reemplazo renal y ventilación mecánica invasiva. Por lo tanto, este estudio sugiere establecer puntos de corte para realizar una adecuada monitorización de los parámetros de oxigenación para orientar la oxigenoterapia; aunque se requieren investigaciones adicionales para confirmar estos hallazgos y su aplicabilidad clínica. Conclusiones: Nuestro estudio demuestra la importancia crucial de la relación entre los parámetros de oxigenación y la mortalidad en la población de cuidados intensivos, destacando que la oxigenoterapia es un predictor crucial de los desenlaces. Sin embargo, tenemos limitaciones, como ser un solo centro, una cohorte retrospectiva y los resultados son consistentes con literatura publicada en otros escenarios de diferentes centros, donde aún no se han encontrado puntos de corte que permitan establecer un rango de seguridad. Por lo tanto, esta investigación no solo refuerza la importancia de monitorizar de cerca estos parámetros en entornos críticos, sino que también sienta las bases para futuros estudios que profundicen en intervenciones y estrategias personalizadas que podrían mejorar significativamente las tasas de supervivencia. | spa |
dc.description.abstract | Introduction: The relationship between oxygen saturation (SpO2), arterial oxygen saturation (SaO2), arterial oxygen pressure (PaO2) and mortality in the first 24 hours of ICU admission remains unclear, highlighting the need to study these vital parameters. Objectives: To evaluate the relationship between different oxygenation levels (SpO2, SaO2, PaO2) during the first 24 hours of admission in two ICUs in Cartagena (Bolívar) between 2018 and 2021 and its impact on mortality. Materials and Methods: Retrospective cohort study in patients admitted to the ICU. Patients ≥ 18 years of age were selected, who upon admission required supplemental FiO2 >21%, with evidence of arterial blood gases during the first 24 hours of admission. Patients with COVID-19, pregnant women, craniocerebral trauma, insufficient clinical records, among others, were excluded. SpO2, SaO2 levels stratified into (<88%, 88–92%, 93–96%, >96%) and PaO2 (<55 mmHg, 55-80 mmHg, 81-100 mmHg, >100 mmHg) were evaluated. in the first 24 hours of admission. The primary outcome was death at discharge from the ICU or at 28 days. We performed a multivariate, bivariate, multinomial logistic regression analysis to estimate the association between stratified oxygenation levels and the primary outcome. Results: The association between different oxygenation parameters with mortality during the first 24 hours in the ICU is not clearly defined. This retrospective cohort study evaluates the relationship between SpO2, SaO2 and PaO2 levels with mortality in patients from two ICUs in Cartagena between 2018 and 2021. We included patients > 18 years of age with a FiO2 requirement > 21%, excluding those with conditions that could alter the results. We performed a multinomial logistic regression analysis to analyze the influence of oxygenation parameters on mortality, adjusting for conclusive variables. Of the 621 patients analyzed, the SpO2 group between 93-96% was taken as a reference. We found that the subgroups of SpO2 on admission and lowest SaO2 > 96% showed protective associations with a crude OR of 0.68 (95% CI: 0.47 – 0.99; p=0.049), 0.61 (95% CI: 0.41 0.90; p=0.015) less likely to die. However, when performing the adjusted OR, statistical significance was lost due to variables such as age, gender, Apache II score ≥ 12 points, Sofa ≥ 2, patients with hemodynamic instability, need for renal replacement therapy and invasive mechanical ventilation. Therefore, this study suggests establishing cut-off points to carry out adequate monitoring of oxygenation parameters to guide oxygen therapy; although additional research is required to confirm these findings and their clinical applicability. Conclusions: Our study demonstrates the crucial importance of the relationship between oxygenation parameters and mortality in the intensive care population, highlighting that oxygen therapy is a crucial predictor of outcomes. However, we have limitations, such as being a single center, a retrospective cohort, and the results are consistent with literature published in other settings from different centers, where cut-off points that allow establishing a safety range have not yet been found. Therefore, this research not only reinforces the importance of closely monitoring these parameters in critical environments, but also lays the foundation for future studies that delve into personalized interventions and strategies that could significantly improve survival rates. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14710 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | eng |
dc.subject | Hipoxemia | spa |
dc.subject | Oxigenoterapia | spa |
dc.subject | Hiperoxemia | spa |
dc.subject | Mortalidad | spa |
dc.subject | Cuidado crítico | spa |
dc.subject.keywords | Hypoxemia | eng |
dc.subject.keywords | Oxygen therapy | eng |
dc.subject.keywords | Hyperoxemia | eng |
dc.subject.keywords | Mortality | eng |
dc.subject.keywords | Critical care | eng |
dc.title | Asociación entre valores de presión arterial de oxígeno y saturación arterial de oxígeno en las primeras 24 horas de ingreso a cuidados intensivos y mortalidad hospitalaria | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | Anderson KJ, Kinsella J. The cardiovascular effects of normobaric hyperoxia in patients with heart rate fixed by permanent pacemaker. Anaesthesia. 2010 Feb;65(2):167-71. https://doi.org/10.1111/j.1365-2044.2009.06195.x | eng |
dcterms.references | Farquhar H, Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009 Sep;158(3):371-7. https://doi.org/10.1016/j.ahj.2009.05.037 | eng |
dcterms.references | Martin D, Is the U-shaped curve still of relevance to oxygenation of critically ill patients? Intensive Care Med. 2023 May;49(5):566-568. https://doi.org/10.1007/s00134-023-07014-x | eng |
dcterms.references | Singer M, Meyhoff CS, Radermacher P. Dangers of hyperoxia. Crit Care. 2021 Dec 19;25(1):440. https://doi.org/10.1186/s13054-021-03815-y | eng |
dcterms.references | De Jonge E, de Keizer NF. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156. https://doi.org/10.1186/cc7150 | eng |
dcterms.references | Palmer E, The Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A Multicenter Observational Cohort Study. Am J Respir Crit Care Med. 2019 https://doi.org/10.1164/rccm.201904-0849OC | eng |
dcterms.references | Girardis M, Antonelli M, Singer M. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA. 2016 Oct 18;316(15):1583-1589. https://doi.org/10.1001/jama.2016.11993 | eng |
dcterms.references | Mackle D, Panwar R, Young P; ICU-ROX Investigators the Australian and New Zealand Intensive Care Society Clinical Trials Group. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med. 2020 Mar 12;382(11):989-998. https://doi.org/10.1056/NEJMoa1903297 | eng |
dcterms.references | Barrot L, Capellier G, Investigators L, Network RR. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020; 382:999– 1008. https://doi.org/10.1056/NEJMoa1916431 | eng |
dcterms.references | Schjørring OL, Kjær MN, Rasmussen BS; HOT-ICU Investigators. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med. 2021 Apr 8;384(14):1301-1311. https://doi.org/10.1056/NEJMoa2032510 | eng |
dcterms.references | Gelissen H, Tuinman PR, de Man A. Effect of Low-Normal vs High-Normal Oxygenation Targets on Organ Dysfunction in Critically Ill Patients: A Randomized Clinical Trial. JAMA. 2021 https://doi.org/10.1001/jama.2021.13011 | eng |
dcterms.references | Young P, ICU-ROX Investigators the Australian New Zealand Intensive Care Society Clinical Trials Group. Conservative oxygen therapy for mechanically ventilated adults with sepsis: a post hoc analysis of data from the intensive care unit randomized trial comparing two approaches to oxygen therapy (ICU-ROX). Intensive Care Med. 2020 https://doi.org/10.1007/s00134-019-05857-x | eng |
dcterms.references | Young P, Eastwood G, Finfer S, Freebairn R, Panwar R, ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group. Conservative oxygen therapy for mechanically ventilated adults with sepsis: a post hoc analysis of data from the intensive care unit randomized trial comparing two approaches to oxygen therapy (ICU-ROX). Intensive Care Med. 2020; 46:17–26. https://doi.org/10.1007/s00134-019-05857-x | eng |
dcterms.references | Klitgaard TL, Granholm A. Lower versus higher oxygenation targets in critically ill patients with severe hypoxaemia: secondary Bayesian analysis to explore heterogeneous treatment effects in the Handling Oxygenation Targets in the Intensive Care Unit (HOT-ICU) trial. Br J Anaesth. 2022 Jan;128(1):55-64. https://doi.org/10.1016/j.bja.2021.09.010 | eng |
dcterms.references | Young PJ, Mega-ROX Management Committee; Australian and New Zealand Intensive Care Society Clinical Trials Group; Crit Care Asia and Africa Network; Irish Critical Care Clinical Trials Group; Alberta Health Services Critical Care Strategic Clinical Network. Protocol and statistical analysis plan for the mega randomised registry trial research program comparing conservative versus liberal oxygenation targets in adults receiving unplanned invasive mechanical ventilation in the ICU (Mega-ROX). Crit Care Resusc. 2023 https://doi.org/10.51893/2022 2.OA4 | eng |
dcterms.references | González Budiño, T. Oxigenoterapia. Medicine - Programa de Formación Médica Continuada Acreditado. 2002; 8(76), 4095–4100. https://doi.org/10.1016/S0304- 5412(02)70759-2 | spa |
dcterms.references | Girardis M, Busani S, Damiani E, et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA. 2016;316(15):1583–1589. doi:10.1001/jama.2016.11993 | eng |
dcterms.references | Barrot L, Asfar P, Mauny F, et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. New England Journal of Medicine. 2020;382(11), 999–1008. https://doi.org/10.1056/nejmoa1916431 | eng |
dcterms.references | Gottlieb J, Fühner T. S3-Leitlinie Sauerstoff in der Akuttherapie beim Erwachsenen [German S3 Guideline - Oxygen Therapy in the Acute Care of Adult Patients]. Pneumologie. 2021 Sep 2. German. https://doi.org/10.1159/000520294 | eng |
dcterms.references | Chu DK, Kim LH, Young PJ, Zamiri N, Almenawer SA, Jaeschke R, Szczeklik W, Schünemann HJ, Neary JD, Alhazzani W. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018 Apr 28;391(10131):1693-1705. https://doi.org/10.1016/S0140-6736(18)30479-3 | eng |
dcterms.references | Grensemann J, Oxygen Treatment in Intensive Care and Emergency Medicine. Dtsch Arztebl Int. 2018 https://doi.org/10.3238/arztebl.2018.0455 | eng |
dcterms.references | Heffner J. The story of oxygen. Respiratory Care. 2013; 58(1): 18–30. https://doi.org/10.4187/respcare.01831 | eng |
dcterms.references | González- Budiño T, Méndez- Lanza A, Menéndez- del Campo J, Badillo A. Oxigenoterapia. Medicine. 2002; 8 (76): 4095-4100. https://doi.org/10.1016/S0304-5412(02)70759-2. | eng |
dcterms.references | Booth H. Oxygen therapy in adults. Br J Hosp Med (Lond). 2006 Aug;67(8):M1457. https://doi.org/10.12968/hmed.2006 67.Sup8.21987 | eng |
dcterms.references | Kallstrom TJ; American Association for Respiratory Care (AARC). AARC Clinical Practice Guideline: oxygen therapy for adults in the acute care facility - 2002 9 revision & update. Respir Care. 2002 Jun;47(6):717-20. PMID: 120786557. https://www.aarc.org/wp-content/uploads/2014/08/06.02.717.pdf | eng |
dcterms.references | Bernard G. Review Mechanical Ventilation in ARDS: State of the Art. Chest 2007; 131; 921-929. https://doi.org/10.1378/chest.06-1515 | eng |
dcterms.references | Dueñas C, Ortiz G, González M. Ventilación Mecánica. Aplicación en el Paciente crítico, 2003. Editorial Distribuna, Bogotá, Colombia file:///Users/ricardomendez/Downloads/VM%20Duen%CC%83as.pdf | spa |
dcterms.references | Girard T, Bernard G. Review Mechanical Ventilation in ARDS: State of the Art. Chest 2007; 131; 921-929. https://doi.org/10.1378/chest.06-1515 | eng |
dcterms.references | Dhand R. Ventilator graphics and respiratory mechanics in the patient with obstructive lung disease. Respiratory Care. 2005; 50(2):246-259. file:///Users/ricardomendez/Desktop/ventilador.pdf | eng |
dcterms.references | Mariya N, Sistla, et al. Ventilator-associated pneumonia: A review. European Journal of Internal Medicine 2010; 21:360–368. https://doi.org/10.1016/j.ejim.2010.07.006 | eng |
dcterms.references | Gutiérrez -Muñoz F. Ventilación mecánica. Acta Med Per. 2011; 28 (2): 87-104. http://www.scielo.org.pe/pdf/amp/v28n2/a06v28n2.pdf | eng |
dcterms.references | De Jonge E, Peelen L, Keijzers PJ, Joore H, De Lange D, Van der Voort PH, et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008;12(6):R156. doi: 10.1186/cc7150. Epub 2008 Dec 10. PMID: 19077208; PMCID: PMC2646321. https://doi.org/10.1186/cc7150 | eng |
dcterms.references | Suzuki, S Eastwood GM, Current oxygen management in mechanically ventilated patients: a prospective observational cohort study J Crit Care. 2013; 28:647 – 654. https://doi.org/10.1016/j.jcrc.2013.03.010 | eng |
dcterms.references | Dysart K, Miller TL, Research in high flow therapy: Mechanisms of action. Respir Med. 2009;103:1400---5. https://doi.org/10.1016/j.rmed.2009.04.007 | eng |
dcterms.references | O’Gara PT, American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines. Circulation 2013;127:e362- 425.pmid:23247304. https://doi.org/10.1161/CIR.0b013e3182742cf6 | eng |
dcterms.references | Beasley R, Thoracic Society of Australia and New Zealand oxygen guidelines for acute oxygen use in adults: ‘Swimming between the flags’. Respirology 2015;20:1182-91. https://doi.org/10.1111/resp.12620 | eng |
dcterms.references | Grensemann J, Oxygen treatment in intensive care and emergency medicine. Dtsch Arztebl Int 2018; 115: 455–62. https://doi.org/10.3238/arztebl.2018.0455 | eng |
dcterms.references | Powers WJ, American Heart Association Stroke Council. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline. https://doi.org/10.1161/STR.0000000000000158 | eng |
dcterms.references | Burls A, Oxygen use in acute myocardial infarction: an online survey of health professionals’ practice and beliefs. Emerg Med J 2010;27:283-6. https://doi.org/10.1136/emj.2009.077370 | eng |
dcterms.references | Roffe C, Stroke Oxygen Study Investigators and the Stroke OxygenStudy Collaborative Group. Effect of routine low-dose oxygen supplementation on death and disability in adults with acute stroke: The Stroke Oxygen Study Randomized Clinical Trial. JAMA 2017;318:1125-35. https://doi.org/10.1001/jama.2017.11463 | eng |
dcterms.references | Vaahersalo J, Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome. Crit Care Med 2014; 42:1463–1470. https://doi.org/10.1097/CCM.0000000000000228 | eng |
dcterms.references | Rice TW, National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007;132(2):410–417. https://doi.org/10.1378/chest.07-0617 | eng |
dcterms.references | Jubran A, Reliability of pulse oximetry in titrating supplemental oxygen therapy in ventilator-dependent patients. Chest 1990;97(6):1420–1425. https://doi.org/10.1378/chest.97.6.1420 | eng |
dcterms.references | Pannu S, Titration of inspired oxygen levels during mechanical ventilation through a respiratory therapist driven approach based on an electronic surveillance system 11 (Tools). Crit Care Med 2012;40(12):1–328. https://doi.org/10.1097/01.ccm.0000425041. 30516.a2 | eng |
dcterms.references | Ray PD, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24(5):981–990. https://doi.org/10.1016/j.cellsig.2012.01.008 | eng |
dcterms.references | Habre W, Perioperative use of oxygen: variabilities across age. Br J Anaesth 2014;113(Suppl 2):ii26–ii36. https://doi.org/10.1093/bja/aeu380 | eng |
dcterms.references | de Jonge E, Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care 2008;12(6):R156. https://doi.org/10.1186/cc7150 | eng |
dcterms.references | Ball J, Hyperoxia following cardiac arrest. Intensive Care Med. 2015;41(3):534– 536. https://doi.org/10.1007/s00134-015-3660-1 | eng |
dcterms.references | Eastwood GM, The impact of oxygen and carbon dioxide management on outcome after cardiac arrest. Curr Opin Crit Care. 2014;20(3):266–272. https://doi.org/10.1097/MCC.0000000000000084 | eng |
dcterms.references | Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, Donati A. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta- analysis. Crit Care. 2014 Dec 23;18(6):711. doi: 10.1186/s13054-014-0711-x. | eng |
dcterms.references | Elmer J, Pittsburgh Post-Cardiac Arrest Service (PCAS). The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med 2015;41(1):49–57. https://doi.org/10.1007/s00134- 014-3555-6 | eng |
dcterms.references | Sutton AD, The association between early arterial oxygenation in the ICU and mortality following cardiac surgery. Anaesth Intensive Care 2014; 42(6):730–735. https://doi.org/10.1177/0310057X1404200608 | eng |
dcterms.references | Helmerhorst HJ, Roos-Blom MJ, Van Westerloo DJ, de Jonge E. Association Between Arterial Hyperoxia and Outcome in Subsets of Critical Illness: A Systematic Review, Meta-Analysis, and Meta-Regression of Cohort Studies. Crit Care Med. 2015 Jul;43(7):1508-19. doi: 10.1097/CCM.0000000000000998. PMID: 25855899. | eng |
dcterms.references | Girardis M, Busani S, Damiani E, et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA. 2016;316(15):1583–1589. doi:10.1001/jama.2016.11993 | eng |
dcterms.references | Young P, Bailey M, Bellomo R, Bernard S, Bray J, Jakkula P. Conservative or liberal oxygen therapy in adults after cardiac arrest: An individual-level patient data meta-analysis of randomised controlled trials. Resuscitation. 2020; 157, 15–22. https://doi.org/10.1016/j.resuscitation.2020.09.036 | eng |
dcterms.references | Liu L, Tian Y. Liberal or conservative oxygen therapy for ventilated patients in the ICU: a meta-analysis of randomized controlled trials. J Cardiothorac Surg. 2021; 16, 261 . https://doi.org/10.1186/s13019-021-01634-4 | eng |
dcterms.references | Eastwood G, Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive Care Med. 2012. https://doi.org/10.1007/s00134-011-2419-6 | eng |
dcterms.references | Raman S, Admission PaO2 and Mortality in Critically Ill Children: A Cohort Study and Systematic Review. Pediatr Crit Care Med. 2016. https://doi.org/10.1097/PCC.0000000000000905 | eng |
dcterms.references | Vold ML, Low oxygen saturation and mortality in an adult cohort: the Tromsø study. BMC Pulm Med. 2015. https://doi.org/10.1186/s12890-015-0003-5 | eng |
dcterms.references | Wong AI, Analysis of Discrepancies Between Pulse Oximetry and Arterial Oxygen Saturation Measurements by Race and Ethnicity and Association With Organ Dysfunction and Mortality. JAMA Netw Open. 2021. https://doi.org/10.1001/jamanetworkopen.2021.31674 | eng |
dcterms.references | Atramont A, Lindecker-Cournil V, Rudant J, Association of Age with Short-term and Long-term Mortality Among Patients Discharged from Intensive Care Units in France. JAMA Netw Open. 2019. https://doi.org/10.1001/jamanetworkopen.2019.3215 | eng |
dcterms.references | Smida T, Association of prehospital post-resuscitation peripheral oxygen saturation with survival following out-of-hospital cardiac arrest. Resuscitation. 2022. https://doi.org/10.1016/j.resuscitation.2022.10.011 | eng |
dcterms.references | Diego Toshiaki Effectiveness of three forecast mortality scales in the Intensive Care Unit of HGR No. 20. 2022. https://doi.org/10.35366/104872. | eng |
dcterms.references | Kumar S, Comparison of the Performance of APACHE II, SOFA, and mNUTRIC Scoring Systems in Critically Ill Patients: A 2-year Cross-sectional Study. Indian J Crit Care Med. 2020. https://doi.org/10.5005/jp-journals-10071-23549 | eng |
dcterms.references | Sungono V, Cohort study of the APACHE II score and mortality for different types of intensive care unit patients. Postgrad Med J. 2022. https://doi.org/10.1136/postgradmedj-2021-140376 | eng |
dcterms.references | Sano M, Low-Flow Nasal Cannula Hydrogen Therapy. J Clin Med Res. 2020. https://doi.org/10.14740/jocmr4323 | eng |
dcterms.references | Frat JP, Non-invasive ventilation or high-flow oxygen therapy: When to choose one over the other? Respirology. 2019. https://doi.org/10.1111/resp.13435 | eng |
dcterms.references | Lim ZJ, Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am J Respir Crit Care Med. 2021. https://doi.org/10.1164/rccm.202006-2405OC | eng |
dcterms.references | Pope JV, Emergency Medicine Shock Research Network (EMShockNet) Investigators. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010. https://doi.org/10.1016/j.annemergmed.2009.08.014 | eng |
dcterms.references | Bazerbashi H, Low tissue oxygen saturation at emergency center triage is predictive of intensive care unit admission. J Crit Care. 2014. https://doi.org/10.1016/j.jcrc.2014.05.006 | eng |
dcterms.references | Reid M. Central venous oxygen saturation: analysis, clinical use and effects on mortality. Nurs Crit Care. 2013. https://doi.org/10.1111/nicc.12028 | eng |
dcterms.references | Textoris J, High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011. https://doi.org/10.1186/cc10325 | eng |
dcterms.references | Mejía F, Málaga G. Oxygen saturation as a predictor of mortality in hospitalized adult patients with COVID-19 in a public hospital in Lima, Peru. PLoS One. 2020. https://doi.org/10.1371/journal.pone.0244171 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Especialización en Medicina Crítica y Cuidados Intensivos | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: