Perfil de riesgo cardiovascular y rendimiento de modelos de inteligencia artificial para la detección de retinopatía diabética e hipertensiva en el Caribe Colombiano: un estudio transversal

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorUrina Triana, Manuel
dc.contributor.advisorUrina Triana, Miguel
dc.contributor.advisorOrozco Acosta, Erick
dc.contributor.advisorScaf Jaraba, Luis
dc.contributor.authorPimienta Redondo, Camilo Andrés
dc.date.accessioned2026-02-09T16:53:50Z
dc.date.available2026-02-09T16:53:50Z
dc.date.issued2025
dc.description.abstractLa prevalencia de diabetes mellitus e hipertensión se encuentra en creciente aumento siendo importante determinar la características y métodos diagnósticos para valoración de los pacientes que presentan retinopatía diabética (RD) e hipertensiva (RH) para prevención de progresión de la enfermedad. Métodos: Se realizó un estudio transversal descriptivo para identificar las características epidemiológicas y clínicas de pacientes con retinopatía hipertensiva y/o diabética de la consulta de retina de Centros Oftalmológicos del Caribe colombiano durante el periodo comprendido entre octubre del año 2017 y octubre del año 2019. La población quedó constituida por 219 pacientes. Se evaluó el desempeño diagnóstico de dos modelos de inteligencia artificial (IA) calculando certeza diagnóstica, sensibilidad y especificidad, comparándolo contra el patrón de oro (diagnóstico hecho por los Oftalmólogos), para establecer la presencia de retinopatía hipertensiva y/o diabética.spa
dc.description.abstractThe prevalence of diabetes mellitus and hypertension is increasing, making it important to determine the characteristics and diagnostic methods for evaluating patients with diabetic retinopathy (DR) and hypertensive retinopathy (HR) to prevent disease progression. Methods: A cross-sectional study was conducted to identify the epidemiological and clinical characteristics of patients with hypertensive and/or diabetic retinopathy seen in retina clinics at ophthalmological centers in the Colombian Caribbean between October 2017 and October 2019. The study population consisted of 219 patients. The diagnostic performance of two artificial intelligence (AI) models was evaluated by calculating diagnostic accuracy, sensitivity, and specificity, comparing them against the gold standard (diagnosis by ophthalmologists) to establish the presence of hypertensive and/or diabetic retinopathy.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17341
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectRetinopatía diabéticaspa
dc.subjectRetinopatía hipertensivaspa
dc.subjectFondo de ojospa
dc.subjectInteligencia artificialspa
dc.subject.keywordsDiabetic retinopathyeng
dc.subject.keywordsHypertensive retinopathyeng
dc.subject.keywordsFundus examinationeng
dc.subject.keywordsArtificial intelligenceeng
dc.titlePerfil de riesgo cardiovascular y rendimiento de modelos de inteligencia artificial para la detección de retinopatía diabética e hipertensiva en el Caribe Colombiano: un estudio transversalspa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaOtros
dcterms.referencesModjtahedi BS, Wu J, Luong TQ, Gandhi NK, Fong DS, Chen W. Severity of diabetic retinopathy and risk of cerebrovascular disease, cardiovascular disease, and all-cause mortality. Ophthalmology. 2021;128(8):1169–79. doi:10.1016/j.ophtha.2021.02.018.eng
dcterms.referencesDziedziak J, Zaleska-Żmijewska A, Szaflik JP, Cudnoch-Jędrzejewska A. Impact of arterial hypertension on the eye: Pathogenesis, diagnosis, and treatment of hypertensive retinopathy. Med Sci Monit. 2022;28:e937658. doi:10.12659/MSM.937658.eng
dcterms.referencesCheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. J Am Coll Cardiol. 2021;77(12):1451–64. doi:10.1016/j.jacc.2021.01.041.eng
dcterms.referencesAmerican Diabetes Association Professional Practice Committee, ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, et al. Retinopathy, neuropathy, and foot care: Standards of Care in Diabetes—2025. Diabetes Care. 2025;48(Suppl 1):S252–65. doi:10.2337/dc25-S012.eng
dcterms.referencesYau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. doi:10.2337/dc11-1909.eng
dcterms.referencesTeo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91. doi:10.1016/j.ophtha.2021.04.027.eng
dcterms.referencesFlaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Diabetic retinopathy preferred practice pattern®. Ophthalmology. 2020;127(1):P66–145. doi:10.1016/j.ophtha.2019.09.025.eng
dcterms.referencesMedina-Ramírez SA, Soriano-Moreno DR, Tuco KG, Castro-Díaz SD, Alvarado-Villacorta R, Pacheco-Mendoza J, et al. Prevalence and incidence of diabetic retinopathy in Latin America and the Caribbean: A systematic review and meta-analysis. Int J Ophthalmol. 2022;15(5):765–78. doi:10.18240/ijo.2022.05.14.eng
dcterms.referencesHou X, Wang L, Zhu D, Guo L, Weng J, Zhang M, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat Commun. 2023;14:4296. doi:10.1038/s41467-023-40049-9.eng
dcterms.referencesWong TY, Mitchell P. Hypertensive retinopathy. Hypertension. 2017;69(2):137–44. doi:10.1161/HYPERTENSIONAHA.116.08146.eng
dcterms.referencesGrzybowski A, Brona P, Lim G, Ting DSW. Artificial intelligence for diabetic retinopathy screening: From development to deployment. Ophthalmol Ther. 2023;12(1):23–40. doi:10.1007/s40123-022-00573-6.eng
dcterms.referencesChia MA, Landers J, Tapp RJ, Harper CA, Fenwick EK. Validation of a deep learning system for detection of diabetic retinopathy. Br J Ophthalmol. 2024;108(1):113–20. doi:10.1136/bjo-2023-323105.eng
dcterms.referencesWolf RM, Heisler M, Smith J, Johnson T, Patel H, Li M, et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: The ACCESS randomized trial. Nat Commun. 2024;15:2291. doi:10.1038/s41467-024-46677-5.eng
dcterms.referencesBhimavarapu U, Singh A, Gupta A, Rao A. Automatic detection and classification of hypertensive retinopathy using convolutional neural network and support vector machine. Biosensors. 2024;14(1):56. doi:10.3390/bios14010056.eng
dcterms.referencesModjtahedi BS, Wu J, Luong TQ, Gandhi NK, Fong DS, Chen W. Severity of diabetic retinopathy and the risk of future cerebrovascular disease, cardiovascular disease, and all-cause mortality. Ophthalmology. 2021;128(8):1169–79. doi:10.1016/j.ophtha.2020.12.019.eng
dcterms.referencesCheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. J Am Coll Cardiol. 2021;77(12):1451–64. doi:10.1016/j.jacc.2021.01.041.eng
dcterms.referencesYau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. doi:10.2337/dc11-1909.eng
dcterms.referencesFlaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Diabetic retinopathy preferred practice pattern®. Ophthalmology. 2020;127(1):P66–145. doi:10.1016/j.ophtha.2019.09.025.eng
dcterms.referencesTeo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91. doi:10.1016/j.ophtha.2021.04.027.eng
dcterms.referencesMedina-Ramírez SA, Soriano-Moreno DR, Tuco KG, Castro-Díaz SD, Alvarado-Villacorta R, Pacheco-Mendoza J, et al. Prevalence and incidence of diabetic retinopathy in Latin America and the Caribbean: A systematic review and meta-analysis. Int J Ophthalmol. 2022;15(5):765–78. doi:10.18240/ijo.2022.05.14.eng
dcterms.referencesFactores de riesgo cardiovasculares y su prevalencia en pacientes hospitalizados en una clínica de tercer nivel de Barranquilla. ILAPHAR | Revista de la OFIL. 2020. Disponible en: https://www.ilaphar.org/.spa
dcterms.referencesTopol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. doi:10.1038/s41591-018- 0300-7.eng
dcterms.referencesRajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31–38. doi:10.1038/s41591-021-01654-6.eng
dcterms.referencesEsteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–29. doi:10.1038/s41591-018-0316-z.eng
dcterms.referencesGulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy. JAMA. 2016;316(22):2402–2410. doi:10.1001/jama.2016.17216.eng
dcterms.referencesTing DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy. JAMA. 2017;318(22):2211–2223. doi:10.1001/jama.2017.18152.eng
dcterms.referencesLi Z, Keel S, Liu C, et al. An automated grading system for detection of visionthreatening diabetic retinopathy. Lancet Digit Health. 2019;1(6):e295–e304. doi:10.1016/S2589-7500(19)30144-9.eng
dcterms.referencesPoplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–164. doi:10.1038/s41551-018-0195-0.eng
dcterms.referencesCheung CY, Xu D, Cheng CY, et al. A deep-learning system for the assessment of cardiovascular disease risk via retinal images. Nat Biomed Eng. 2021;5(6):498–508. doi:10.1038/s41551-021-00735-9.eng
dcterms.referencesRaman R, Srinivasan S, Virmani S, et al. Fundus photograph-based deep learning algorithms in hypertensive retinopathy. Eye (Lond). 2023;37(2):239– 247. doi:10.1038/s41433-022-02140-4.eng
dcterms.referencesDi Marco E, Aiello F, Lombardo M, Di Marino M, Missiroli F, Mancino R, et al. A literature review of hypertensive retinopathy: systemic correlations and new technologies. Eur Rev Med Pharmacol Sci. 2022;26:6424–43. doi:10.26355/eurrev_202209_29742.eng
dcterms.referencesWong TY. Fred Hollows Lecture: Hypertensive retinopathy – a journey from fundoscopy to digital imaging. Clin Exp Ophthalmol. 2006;34:397–400. doi:10.1111/j.1442-9071.2006.01233.x.eng
dcterms.referencesCheung CY, Biousse V, Keane PA, Schiffrin EL, Wong TY. Hypertensive eye disease. Nat Rev Dis Primers. 2022;8:14. doi:10.1038/s41572-022-00342-0.eng
dcterms.referencesBhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26:71–83. doi:10.1038/jhh.2011.37.eng
dcterms.referencesLiew G, Xie J, Nguyen H, Keay L, Ikram MK, McGeechan K, et al. Hypertensive retinopathy and cardiovascular disease risk: 6 populationbased cohorts meta-analysis. Int J Cardiol Cardiovasc Risk Prev. 2023;17:200180. doi:10.1016/j.ijcrp.2023.200180.eng
dcterms.referencesLiu Y, Li J, Pan J, Wang Y, Mao G, Jiang Z. Morphological changes in and quantitative analysis of macular retinal microvasculature by optical coherence tomography angiography in hypertensive retinopathy. Hypertens Res. 2021;44:325–36. doi:10.1038/s41440-020-00583-0.eng
dcterms.referencesPeng Q, Hu Y, Huang M, Wu Y, Zhong P, Dong X, et al. Retinal neurovascular impairment in patients with essential hypertension: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2020;61:42. doi:10.1167/iovs.61.8.42.eng
dcterms.referencesWong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012. doi:10.1038/nrdp.2016.12.eng
dcterms.referencesJampol LM, Glassman AR, Sun J. Evaluation and care of patients with diabetic retinopathy. N Engl J Med. 2020;382:1629–37. doi:10.1056/NEJMra1909637.eng
dcterms.referencesSolomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:412–8. doi:10.2337/dc16-2641.eng
dcterms.referencesSeo H, Park S-J, Song M. Diabetic retinopathy (DR): mechanisms, current therapies, and emerging strategies. Cells. 2025;14:376. doi:10.3390/cells14050376.eng
dcterms.referencesBlonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan—2022 Update. Endocr Pract. 2022;28:923–1049. doi:10.1016/j.eprac.2022.08.002.eng
dcterms.referencesVillegas VM, Schwartz SG. Current and future pharmacologic therapies for diabetic retinopathy. Curr Pharm Des. 2019;24:4903–10. doi:10.2174/1381612825666190130140717.eng
dcterms.referencesSun W-J, An X-D, Zhang Y-H, Zhao X-F, Sun Y-T, Yang C-Q, et al. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne). 2023;14:1270145. doi:10.3389/fendo.2023.1270145.eng
dcterms.referencesFlora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25:4063– 84. doi:10.2174/1381612825666190925163827.eng
dcterms.referencesKjeldsen SE. Hypertension and cardiovascular risk: general aspects. Pharmacol Res. 2018;129:95–9. doi:10.1016/j.phrs.2017.11.003.eng
dcterms.referencesWong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20:685–95. doi:10.1038/s41569-023-00877-z.eng
dcterms.referencesAmerican Diabetes Association Professional Practice Committee, ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, et al. 10. Cardiovascular disease and risk management: Standards of Care in Diabetes—2025. Diabetes Care. 2025;48:S207–38. doi:10.2337/dc25-S010.eng
dcterms.referencesDe Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139. doi:10.1161/CIR.0000000000000618.eng
dcterms.referencesRoşu CD, Bratu ML, Stoicescu ER, Iacob R, Hațegan OA, Ghenciu LA, et al. Cardiovascular risk factors as independent predictors of diabetic retinopathy in type II diabetes mellitus: the development of a predictive model. Medicina (Kaunas). 2024;60:1617. doi:10.3390/medicina60101617eng
dcterms.referencesTeo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91. doi:10.1016/j.ophtha.2021.04.027.eng
dcterms.referencesHou X, Wang L, Zhu D, Guo L, Weng J, Zhang M, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat Commun. 2023;14:4296. doi:10.1038/s41467-023-40049-9.eng
dcterms.referencesMedina-Ramírez SA, Soriano-Moreno DR, Tuco KG, Castro-Díaz SD, Alvarado-Villacorta R, Pacheco-Mendoza J, et al. Prevalence and incidence of diabetic retinopathy in Latin America. Int J Ophthalmol. 2022;15(5):765– 78. doi:10.18240/ijo.2022.05.14.eng
dcterms.referencesYau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2019;42(3):522–9. doi:10.2337/dc18-1180.eng
dcterms.referencesStratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with microvascular complications of type 2 diabetes. Diabetologia. 2018;61(8):1612–9. doi:10.1007/s00125-018-4641-0.eng
dcterms.referencesDziedziak J, Zaleska-Żmijewska A, Szaflik JP, Cudnoch-Jędrzejewska A. Impact of arterial hypertension on the eye. Med Sci Monit. 2022;28:e937658. doi:10.12659/MSM.937658.eng
dcterms.referencesWu L, Castillo J, Salinas RY, Aranguren L, Hidalgo F. Hypertensive retinopathy in Latin America. Int Ophthalmol. 2019;39(6):1363–74. doi:10.1007/s10792-018-0924-7.eng
dcterms.referencesWong TY, Mitchell P. Hypertensive retinopathy. Hypertension. 2017;69(2):137–44. doi:10.1161/HYPERTENSIONAHA.116.08146.eng
dcterms.referencesCheung CY, Ikram MK, Sabanayagam C, Wong TY. Retinal microvasculature as a model for systemic vascular disease. J Hypertens. 2019;37(6):1076–89. doi:10.1097/HJH.0000000000002033.eng
dcterms.referencesKawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P. Cardiovascular risk and retinal microvascular signs. Diabetes Care. 2020;43(2):252–60. doi:10.2337/dc19-1191.eng
dcterms.referencesPemp B, Schmetterer L. Ocular blood flow in hypertension. Curr Hypertens Rep. 2020;22(6):42. doi:10.1007/s11906-020-01054-4.eng
dcterms.referencesJonas JB, Cheung CMG, Panda-Jonas S. Worldwide burden of visual impairment due to diabetic and hypertensive eye disease. Lancet Glob Health. 2021;9(9):e1330–40. doi:10.1016/S2214-109X(21)00256-0.eng
dcterms.referencesGrzybowski A, Brona P, Lim G, Ting DSW. Artificial intelligence for diabetic retinopathy screening. Ophthalmol Ther. 2023;12(1):23–40. doi:10.1007/s40123-022-00573-6.eng
dcterms.referencesChia MA, Landers J, Tapp RJ, Harper CA, Fenwick EK. Detection of diabetic retinopathy using deep learning. Br J Ophthalmol. 2024;108(1):113–20. doi:10.1136/bjo-2023-323105.eng
dcterms.referencesWolf RM, Heisler M, Smith J, Johnson T, Patel H, Li M, et al. Autonomous artificial intelligence increases screening in youth: The ACCESS trial. Nat Commun. 2024;15:2291. doi:10.1038/s41467-024-46677-5.eng
dcterms.referencesDíaz EA, Martínez Y, Rayo J, Muñoz C, Herrera M, Gómez S. AI-driven diabetic retinopathy screening in primary care. JAMA Netw Open. 2025;8(2):e257891. doi:10.1001/jamanetworkopen.2025.7891.eng
dcterms.referencesBhimavarapu U, Singh A, Gupta A, Rao A. Artificial intelligence for hypertensive retinopathy using convolutional neural network–support vector machine. Biosensors. 2024;14(1):56. doi:10.3390/bios14010056.eng
dcterms.referencesHassan T, Saeed N, Masood S, Ashraf A. Hybrid machine learning models for early detection of hypertensive retinopathy. Comput Biol Med. 2021;133:104404. doi:10.1016/j.compbiomed.2021.104404.eng
dcterms.referencesWang J, Xie X, Zhang Y, Li Y, Zhao L, Chen Y, et al. Effect of intensive blood pressure–lowering treatment on retinal microvasculature. J Am Coll Cardiol. 2025;85(4):412–23. doi:10.1016/j.jacc.2024.11.032.eng
dcterms.referencesCheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. J Am Coll Cardiol. 2021;77(12):1451–64. doi:10.1016/j.jacc.2021.01.041.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaEspecialización en Cardiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
Resumen.pdf
Tamaño:
236.81 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
619.16 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones