Perfil de riesgo cardiovascular y rendimiento de modelos de inteligencia artificial para la detección de retinopatía diabética e hipertensiva en el Caribe Colombiano: un estudio transversal
| datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
| dc.contributor.advisor | Urina Triana, Manuel | |
| dc.contributor.advisor | Urina Triana, Miguel | |
| dc.contributor.advisor | Orozco Acosta, Erick | |
| dc.contributor.advisor | Scaf Jaraba, Luis | |
| dc.contributor.author | Pimienta Redondo, Camilo Andrés | |
| dc.date.accessioned | 2026-02-09T16:53:50Z | |
| dc.date.available | 2026-02-09T16:53:50Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | La prevalencia de diabetes mellitus e hipertensión se encuentra en creciente aumento siendo importante determinar la características y métodos diagnósticos para valoración de los pacientes que presentan retinopatía diabética (RD) e hipertensiva (RH) para prevención de progresión de la enfermedad. Métodos: Se realizó un estudio transversal descriptivo para identificar las características epidemiológicas y clínicas de pacientes con retinopatía hipertensiva y/o diabética de la consulta de retina de Centros Oftalmológicos del Caribe colombiano durante el periodo comprendido entre octubre del año 2017 y octubre del año 2019. La población quedó constituida por 219 pacientes. Se evaluó el desempeño diagnóstico de dos modelos de inteligencia artificial (IA) calculando certeza diagnóstica, sensibilidad y especificidad, comparándolo contra el patrón de oro (diagnóstico hecho por los Oftalmólogos), para establecer la presencia de retinopatía hipertensiva y/o diabética. | spa |
| dc.description.abstract | The prevalence of diabetes mellitus and hypertension is increasing, making it important to determine the characteristics and diagnostic methods for evaluating patients with diabetic retinopathy (DR) and hypertensive retinopathy (HR) to prevent disease progression. Methods: A cross-sectional study was conducted to identify the epidemiological and clinical characteristics of patients with hypertensive and/or diabetic retinopathy seen in retina clinics at ophthalmological centers in the Colombian Caribbean between October 2017 and October 2019. The study population consisted of 219 patients. The diagnostic performance of two artificial intelligence (AI) models was evaluated by calculating diagnostic accuracy, sensitivity, and specificity, comparing them against the gold standard (diagnosis by ophthalmologists) to establish the presence of hypertensive and/or diabetic retinopathy. | eng |
| dc.format.mimetype | ||
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17341 | |
| dc.language.iso | spa | |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Ciencias de la Salud | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Retinopatía diabética | spa |
| dc.subject | Retinopatía hipertensiva | spa |
| dc.subject | Fondo de ojo | spa |
| dc.subject | Inteligencia artificial | spa |
| dc.subject.keywords | Diabetic retinopathy | eng |
| dc.subject.keywords | Hypertensive retinopathy | eng |
| dc.subject.keywords | Fundus examination | eng |
| dc.subject.keywords | Artificial intelligence | eng |
| dc.title | Perfil de riesgo cardiovascular y rendimiento de modelos de inteligencia artificial para la detección de retinopatía diabética e hipertensiva en el Caribe Colombiano: un estudio transversal | spa |
| dc.type.driver | info:eu-repo/semantics/other | |
| dc.type.spa | Otros | |
| dcterms.references | Modjtahedi BS, Wu J, Luong TQ, Gandhi NK, Fong DS, Chen W. Severity of diabetic retinopathy and risk of cerebrovascular disease, cardiovascular disease, and all-cause mortality. Ophthalmology. 2021;128(8):1169–79. doi:10.1016/j.ophtha.2021.02.018. | eng |
| dcterms.references | Dziedziak J, Zaleska-Żmijewska A, Szaflik JP, Cudnoch-Jędrzejewska A. Impact of arterial hypertension on the eye: Pathogenesis, diagnosis, and treatment of hypertensive retinopathy. Med Sci Monit. 2022;28:e937658. doi:10.12659/MSM.937658. | eng |
| dcterms.references | Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. J Am Coll Cardiol. 2021;77(12):1451–64. doi:10.1016/j.jacc.2021.01.041. | eng |
| dcterms.references | American Diabetes Association Professional Practice Committee, ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, et al. Retinopathy, neuropathy, and foot care: Standards of Care in Diabetes—2025. Diabetes Care. 2025;48(Suppl 1):S252–65. doi:10.2337/dc25-S012. | eng |
| dcterms.references | Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. doi:10.2337/dc11-1909. | eng |
| dcterms.references | Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91. doi:10.1016/j.ophtha.2021.04.027. | eng |
| dcterms.references | Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Diabetic retinopathy preferred practice pattern®. Ophthalmology. 2020;127(1):P66–145. doi:10.1016/j.ophtha.2019.09.025. | eng |
| dcterms.references | Medina-Ramírez SA, Soriano-Moreno DR, Tuco KG, Castro-Díaz SD, Alvarado-Villacorta R, Pacheco-Mendoza J, et al. Prevalence and incidence of diabetic retinopathy in Latin America and the Caribbean: A systematic review and meta-analysis. Int J Ophthalmol. 2022;15(5):765–78. doi:10.18240/ijo.2022.05.14. | eng |
| dcterms.references | Hou X, Wang L, Zhu D, Guo L, Weng J, Zhang M, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat Commun. 2023;14:4296. doi:10.1038/s41467-023-40049-9. | eng |
| dcterms.references | Wong TY, Mitchell P. Hypertensive retinopathy. Hypertension. 2017;69(2):137–44. doi:10.1161/HYPERTENSIONAHA.116.08146. | eng |
| dcterms.references | Grzybowski A, Brona P, Lim G, Ting DSW. Artificial intelligence for diabetic retinopathy screening: From development to deployment. Ophthalmol Ther. 2023;12(1):23–40. doi:10.1007/s40123-022-00573-6. | eng |
| dcterms.references | Chia MA, Landers J, Tapp RJ, Harper CA, Fenwick EK. Validation of a deep learning system for detection of diabetic retinopathy. Br J Ophthalmol. 2024;108(1):113–20. doi:10.1136/bjo-2023-323105. | eng |
| dcterms.references | Wolf RM, Heisler M, Smith J, Johnson T, Patel H, Li M, et al. Autonomous artificial intelligence increases screening and follow-up for diabetic retinopathy in youth: The ACCESS randomized trial. Nat Commun. 2024;15:2291. doi:10.1038/s41467-024-46677-5. | eng |
| dcterms.references | Bhimavarapu U, Singh A, Gupta A, Rao A. Automatic detection and classification of hypertensive retinopathy using convolutional neural network and support vector machine. Biosensors. 2024;14(1):56. doi:10.3390/bios14010056. | eng |
| dcterms.references | Modjtahedi BS, Wu J, Luong TQ, Gandhi NK, Fong DS, Chen W. Severity of diabetic retinopathy and the risk of future cerebrovascular disease, cardiovascular disease, and all-cause mortality. Ophthalmology. 2021;128(8):1169–79. doi:10.1016/j.ophtha.2020.12.019. | eng |
| dcterms.references | Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. J Am Coll Cardiol. 2021;77(12):1451–64. doi:10.1016/j.jacc.2021.01.041. | eng |
| dcterms.references | Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64. doi:10.2337/dc11-1909. | eng |
| dcterms.references | Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Diabetic retinopathy preferred practice pattern®. Ophthalmology. 2020;127(1):P66–145. doi:10.1016/j.ophtha.2019.09.025. | eng |
| dcterms.references | Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91. doi:10.1016/j.ophtha.2021.04.027. | eng |
| dcterms.references | Medina-Ramírez SA, Soriano-Moreno DR, Tuco KG, Castro-Díaz SD, Alvarado-Villacorta R, Pacheco-Mendoza J, et al. Prevalence and incidence of diabetic retinopathy in Latin America and the Caribbean: A systematic review and meta-analysis. Int J Ophthalmol. 2022;15(5):765–78. doi:10.18240/ijo.2022.05.14. | eng |
| dcterms.references | Factores de riesgo cardiovasculares y su prevalencia en pacientes hospitalizados en una clínica de tercer nivel de Barranquilla. ILAPHAR | Revista de la OFIL. 2020. Disponible en: https://www.ilaphar.org/. | spa |
| dcterms.references | Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. doi:10.1038/s41591-018- 0300-7. | eng |
| dcterms.references | Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31–38. doi:10.1038/s41591-021-01654-6. | eng |
| dcterms.references | Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–29. doi:10.1038/s41591-018-0316-z. | eng |
| dcterms.references | Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy. JAMA. 2016;316(22):2402–2410. doi:10.1001/jama.2016.17216. | eng |
| dcterms.references | Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy. JAMA. 2017;318(22):2211–2223. doi:10.1001/jama.2017.18152. | eng |
| dcterms.references | Li Z, Keel S, Liu C, et al. An automated grading system for detection of visionthreatening diabetic retinopathy. Lancet Digit Health. 2019;1(6):e295–e304. doi:10.1016/S2589-7500(19)30144-9. | eng |
| dcterms.references | Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–164. doi:10.1038/s41551-018-0195-0. | eng |
| dcterms.references | Cheung CY, Xu D, Cheng CY, et al. A deep-learning system for the assessment of cardiovascular disease risk via retinal images. Nat Biomed Eng. 2021;5(6):498–508. doi:10.1038/s41551-021-00735-9. | eng |
| dcterms.references | Raman R, Srinivasan S, Virmani S, et al. Fundus photograph-based deep learning algorithms in hypertensive retinopathy. Eye (Lond). 2023;37(2):239– 247. doi:10.1038/s41433-022-02140-4. | eng |
| dcterms.references | Di Marco E, Aiello F, Lombardo M, Di Marino M, Missiroli F, Mancino R, et al. A literature review of hypertensive retinopathy: systemic correlations and new technologies. Eur Rev Med Pharmacol Sci. 2022;26:6424–43. doi:10.26355/eurrev_202209_29742. | eng |
| dcterms.references | Wong TY. Fred Hollows Lecture: Hypertensive retinopathy – a journey from fundoscopy to digital imaging. Clin Exp Ophthalmol. 2006;34:397–400. doi:10.1111/j.1442-9071.2006.01233.x. | eng |
| dcterms.references | Cheung CY, Biousse V, Keane PA, Schiffrin EL, Wong TY. Hypertensive eye disease. Nat Rev Dis Primers. 2022;8:14. doi:10.1038/s41572-022-00342-0. | eng |
| dcterms.references | Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26:71–83. doi:10.1038/jhh.2011.37. | eng |
| dcterms.references | Liew G, Xie J, Nguyen H, Keay L, Ikram MK, McGeechan K, et al. Hypertensive retinopathy and cardiovascular disease risk: 6 populationbased cohorts meta-analysis. Int J Cardiol Cardiovasc Risk Prev. 2023;17:200180. doi:10.1016/j.ijcrp.2023.200180. | eng |
| dcterms.references | Liu Y, Li J, Pan J, Wang Y, Mao G, Jiang Z. Morphological changes in and quantitative analysis of macular retinal microvasculature by optical coherence tomography angiography in hypertensive retinopathy. Hypertens Res. 2021;44:325–36. doi:10.1038/s41440-020-00583-0. | eng |
| dcterms.references | Peng Q, Hu Y, Huang M, Wu Y, Zhong P, Dong X, et al. Retinal neurovascular impairment in patients with essential hypertension: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2020;61:42. doi:10.1167/iovs.61.8.42. | eng |
| dcterms.references | Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012. doi:10.1038/nrdp.2016.12. | eng |
| dcterms.references | Jampol LM, Glassman AR, Sun J. Evaluation and care of patients with diabetic retinopathy. N Engl J Med. 2020;382:1629–37. doi:10.1056/NEJMra1909637. | eng |
| dcterms.references | Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:412–8. doi:10.2337/dc16-2641. | eng |
| dcterms.references | Seo H, Park S-J, Song M. Diabetic retinopathy (DR): mechanisms, current therapies, and emerging strategies. Cells. 2025;14:376. doi:10.3390/cells14050376. | eng |
| dcterms.references | Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, et al. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan—2022 Update. Endocr Pract. 2022;28:923–1049. doi:10.1016/j.eprac.2022.08.002. | eng |
| dcterms.references | Villegas VM, Schwartz SG. Current and future pharmacologic therapies for diabetic retinopathy. Curr Pharm Des. 2019;24:4903–10. doi:10.2174/1381612825666190130140717. | eng |
| dcterms.references | Sun W-J, An X-D, Zhang Y-H, Zhao X-F, Sun Y-T, Yang C-Q, et al. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne). 2023;14:1270145. doi:10.3389/fendo.2023.1270145. | eng |
| dcterms.references | Flora GD, Nayak MK. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr Pharm Des. 2019;25:4063– 84. doi:10.2174/1381612825666190925163827. | eng |
| dcterms.references | Kjeldsen SE. Hypertension and cardiovascular risk: general aspects. Pharmacol Res. 2018;129:95–9. doi:10.1016/j.phrs.2017.11.003. | eng |
| dcterms.references | Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20:685–95. doi:10.1038/s41569-023-00877-z. | eng |
| dcterms.references | American Diabetes Association Professional Practice Committee, ElSayed NA, McCoy RG, Aleppo G, Balapattabi K, Beverly EA, et al. 10. Cardiovascular disease and risk management: Standards of Care in Diabetes—2025. Diabetes Care. 2025;48:S207–38. doi:10.2337/dc25-S010. | eng |
| dcterms.references | De Ferranti SD, Steinberger J, Ameduri R, Baker A, Gooding H, Kelly AS, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association. Circulation. 2019;139. doi:10.1161/CIR.0000000000000618. | eng |
| dcterms.references | Roşu CD, Bratu ML, Stoicescu ER, Iacob R, Hațegan OA, Ghenciu LA, et al. Cardiovascular risk factors as independent predictors of diabetic retinopathy in type II diabetes mellitus: the development of a predictive model. Medicina (Kaunas). 2024;60:1617. doi:10.3390/medicina60101617 | eng |
| dcterms.references | Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045. Ophthalmology. 2021;128(11):1580–91. doi:10.1016/j.ophtha.2021.04.027. | eng |
| dcterms.references | Hou X, Wang L, Zhu D, Guo L, Weng J, Zhang M, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat Commun. 2023;14:4296. doi:10.1038/s41467-023-40049-9. | eng |
| dcterms.references | Medina-Ramírez SA, Soriano-Moreno DR, Tuco KG, Castro-Díaz SD, Alvarado-Villacorta R, Pacheco-Mendoza J, et al. Prevalence and incidence of diabetic retinopathy in Latin America. Int J Ophthalmol. 2022;15(5):765– 78. doi:10.18240/ijo.2022.05.14. | eng |
| dcterms.references | Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2019;42(3):522–9. doi:10.2337/dc18-1180. | eng |
| dcterms.references | Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with microvascular complications of type 2 diabetes. Diabetologia. 2018;61(8):1612–9. doi:10.1007/s00125-018-4641-0. | eng |
| dcterms.references | Dziedziak J, Zaleska-Żmijewska A, Szaflik JP, Cudnoch-Jędrzejewska A. Impact of arterial hypertension on the eye. Med Sci Monit. 2022;28:e937658. doi:10.12659/MSM.937658. | eng |
| dcterms.references | Wu L, Castillo J, Salinas RY, Aranguren L, Hidalgo F. Hypertensive retinopathy in Latin America. Int Ophthalmol. 2019;39(6):1363–74. doi:10.1007/s10792-018-0924-7. | eng |
| dcterms.references | Wong TY, Mitchell P. Hypertensive retinopathy. Hypertension. 2017;69(2):137–44. doi:10.1161/HYPERTENSIONAHA.116.08146. | eng |
| dcterms.references | Cheung CY, Ikram MK, Sabanayagam C, Wong TY. Retinal microvasculature as a model for systemic vascular disease. J Hypertens. 2019;37(6):1076–89. doi:10.1097/HJH.0000000000002033. | eng |
| dcterms.references | Kawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P. Cardiovascular risk and retinal microvascular signs. Diabetes Care. 2020;43(2):252–60. doi:10.2337/dc19-1191. | eng |
| dcterms.references | Pemp B, Schmetterer L. Ocular blood flow in hypertension. Curr Hypertens Rep. 2020;22(6):42. doi:10.1007/s11906-020-01054-4. | eng |
| dcterms.references | Jonas JB, Cheung CMG, Panda-Jonas S. Worldwide burden of visual impairment due to diabetic and hypertensive eye disease. Lancet Glob Health. 2021;9(9):e1330–40. doi:10.1016/S2214-109X(21)00256-0. | eng |
| dcterms.references | Grzybowski A, Brona P, Lim G, Ting DSW. Artificial intelligence for diabetic retinopathy screening. Ophthalmol Ther. 2023;12(1):23–40. doi:10.1007/s40123-022-00573-6. | eng |
| dcterms.references | Chia MA, Landers J, Tapp RJ, Harper CA, Fenwick EK. Detection of diabetic retinopathy using deep learning. Br J Ophthalmol. 2024;108(1):113–20. doi:10.1136/bjo-2023-323105. | eng |
| dcterms.references | Wolf RM, Heisler M, Smith J, Johnson T, Patel H, Li M, et al. Autonomous artificial intelligence increases screening in youth: The ACCESS trial. Nat Commun. 2024;15:2291. doi:10.1038/s41467-024-46677-5. | eng |
| dcterms.references | Díaz EA, Martínez Y, Rayo J, Muñoz C, Herrera M, Gómez S. AI-driven diabetic retinopathy screening in primary care. JAMA Netw Open. 2025;8(2):e257891. doi:10.1001/jamanetworkopen.2025.7891. | eng |
| dcterms.references | Bhimavarapu U, Singh A, Gupta A, Rao A. Artificial intelligence for hypertensive retinopathy using convolutional neural network–support vector machine. Biosensors. 2024;14(1):56. doi:10.3390/bios14010056. | eng |
| dcterms.references | Hassan T, Saeed N, Masood S, Ashraf A. Hybrid machine learning models for early detection of hypertensive retinopathy. Comput Biol Med. 2021;133:104404. doi:10.1016/j.compbiomed.2021.104404. | eng |
| dcterms.references | Wang J, Xie X, Zhang Y, Li Y, Zhao L, Chen Y, et al. Effect of intensive blood pressure–lowering treatment on retinal microvasculature. J Am Coll Cardiol. 2025;85(4):412–23. doi:10.1016/j.jacc.2024.11.032. | eng |
| dcterms.references | Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. J Am Coll Cardiol. 2021;77(12):1451–64. doi:10.1016/j.jacc.2021.01.041. | eng |
| oaire.version | info:eu-repo/semantics/acceptedVersion | |
| sb.programa | Especialización en Cardiología | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

