Inflammatory and lipotoxicity mechanisms in obesity related CKD

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorRico Fontalvo, Jorge
dc.contributor.authorRaad Sarabia, Maria
dc.contributor.authorMontejo Hernández, Juan
dc.contributor.authorRodríguez Yanez, Tomas
dc.contributor.authorCaparroso Ramos, Lacides Rafael
dc.contributor.authorParra Sánchez, Paula
dc.contributor.authorOvalle Gomez, Ana Alejandra
dc.contributor.authorJiménez Quintero, Javier
dc.contributor.authorDaza Ornedo, Rodríguez
dc.date.accessioned2026-01-19T19:22:14Z
dc.date.available2026-01-19T19:22:14Z
dc.date.issued2026
dc.description.abstractObesity has been a systemic disease that has been underrecognized for years. Obesity-related chronic kidney disease (Ob-CKD) is a multifaceted disorder that affects patients with CKD to varying degrees. Among the structural changes associated with obesity, obesity-related glomerulopathy (ORG) stands out (glomerular hypertrophy, podocytopathy, mesangial matrix expansion, focal segmental glomerulosclerosis, tubulointerstitial fibrosis, vascular lesions, and tubular atrophy) associated with other kidney diseases. There are direct and indirect mechanisms that affect the kidneys of obese patients. Among the direct mechanisms, several effects may occur: hyperfiltration, activation of the reninangiotensin- aldosterone system (RAAS), inflammation, lipotoxicity, and neurohormonal activation. This is a narrative review that will detail the inflammatory and lipotoxicity mechanisms involved in the genesis of Ob-CKD.eng
dc.format.mimetypepdf
dc.identifier.citationRico-Fontalvo J, Raad-Sarabia M, Montejo Hernández J, Rodríguez Yánez T, Caparroso Ramos LR, Parra Sánchez P, Ovalle Gomez AA, Quintero JJ and Daza-Arnedo R (2026) Inflammatory and lipotoxicity mechanisms in obesity related CKD. Front. Nephrol. 5:1684004. doi: 10.3389/fneph.2025.1684004
dc.identifier.doi10.3389/fneph.2025.1684004
dc.identifier.issn28130626 (Impreso)
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17292
dc.identifier.urlhttps://www.frontiersin.org/journals/nephrology/articles/10.3389/fneph.2025.1684004/full
dc.language.isoeng
dc.publisherFrontiers Mediaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceFrontiers in Nephrologyeng
dc.sourceFront. Nephrol.eng
dc.sourceVol. 5 No. Año  2026spa
dc.subject.keywordsInflammationeng
dc.subject.keywordsLipotoxicityeng
dc.subject.keywordsCytokineseng
dc.subject.keywordsObesityeng
dc.subject.keywordsChronic kidney diseaseeng
dc.titleInflammatory and lipotoxicity mechanisms in obesity related CKDeng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científico
dcterms.referencesNawaz S, Chinnadurai R, Al-Chalabi S, Evans P, Kalra PA, Syed AA, et al. Obesity and chronic kidney disease: A current review. Obes Sci Pract. (2022) 9:61–74. doi: 10.1002/osp4.629eng
dcterms.referencesRico-Fontalvo J, Ciudin A, Correa-Rotter R, Dı́az-Crespo FJ, Bonanno C, Lecube A, et al. SEN, SLANH, andSEEDOConsensus report on Obesity related kidney disease. Proposal for a new classification. Kidney Int. (2025) 108:572–83. doi: 10.1016/j.kint.2025.06.013eng
dcterms.referencesLu JL, Kalantar-Zadeh K, Ma JZ, Quarles LD, Kovesdy CP. Association of body mass index with outcomes in patients with CKD. J Am Soc Nephrol JASN. (2014) 25:2088–96. doi: 10.1681/ASN.2013070754eng
dcterms.referencesBello AK, Alrukhaimi M, Ashuntantang GE, Basnet S, Rotter RC, Douthat WG, et al. Complications of chronic kidney disease: current state, knowledge gaps, and strategy for action. Kidney Int Suppl. (2017) 7:122–9. doi: 10.1016/j.kisu.2017.07.007eng
dcterms.referencesAristizábal-Colorado D, Corredor-Rengifo D, Sierra-Castillo S, López-Corredor C, Vernaza-Trujillo DA, Weir-Restrepo D, et al. A decade of progress in type 2 diabetes and cardiovascular disease: advances in SGLT2 inhibitors and GLP-1 receptor agonists – a comprehensive review. Front Endocrinol. (2025) 16:1605746. doi: 10.3389/ fendo.2025.1605746eng
dcterms.referencesHojs R, Ekart R, Bevc S, Vodošek Hojs N. Chronic kidney disease and obesity. Nephron. (2023) 147:660–4. doi: 10.1159/000531379eng
dcterms.referencesHall JE. The kidney, hypertension, and obesity. Hypertens Dallas Tex 1979. (2003) 41:625–33. doi: 10.1161/01.HYP.0000052314.95497.78eng
dcterms.referencesHaruhara K, Okabayashi Y, Sasaki T, Kubo E, D’Agati VD, Bertram JF, et al. Podocyte density as a predictor of long-term kidney outcome in obesity-related glomerulopathy. Kidney Int. (2024) 106:496–507. doi: 10.1016/j.kint.2024.05.025eng
dcterms.referencesHall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z, Li X, et al. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc Res. (2021) 117:1859–76. doi: 10.1093/cvr/cvaa336eng
dcterms.referencesEllington AA, Malik AR, Klee GG, Turner ST, Rule AD, Mosley TH, et al. Association of plasma resistin with glomerular filtration rate and albuminuria in hypertensive adults. Hypertens Dallas Tex 1979. (2007) 50:708–14. doi: 10.1161/ HYPERTENSIONAHA.107.095257eng
dcterms.referencesRico-Fontalvo J, Daza-Arnedo R, Rodrı́guez-Yanez T, Osorio W, Suarez- Romero B, Soto O, et al. Obesidad y enfermedad renal crónica. Una mirada desde los mecanismos fisiopatológicos.: Revisión narrativa. Rev Soc Ecuat Nefrol Diálisis Traspl. (2022) 10:97–107. doi: 10.56867/32spa
dcterms.referencesPereira MJ, Mathioudaki A, Otero AG, Duvvuri PP, Vranic M, Sedigh A, et al. Renal sinus adipose tissue: exploratory study of metabolic features and transcriptome compared with omental and subcutaneous adipose tissue. Obes Silver Spring Md. (2024) 32:1870–84. doi: 10.1002/oby.24114eng
dcterms.referencesMartin-Taboada M, Vila-Bedmar R, Medina-Gómez G. From obesity to chronic kidney disease: how can adipose tissue affect renal function? Nephron. (2021) 145:609– 13. doi: 10.1159/000515418eng
dcterms.referencesRico-Fontalvo J, Daza-Arnedo R, Montejo-Hernandez J, Cardona-Blanco M, Rodrı́guez-Yanez T. Reflexiones de la enfermedad renal crónica asociada a obesidad: de una vieja relación causal hasta un enfoque basado en la fenotipificación. Rev Soc Ecuat Nefrol Diálisis Traspl. (2022) 10:137–9. doi: 10.56867/37spa
dcterms.referencesZbrzeźniak-Suszczewicz J, Winiarska A, Perkowska-Ptasińska A, Stompór T. Obesity-related glomerulosclerosis—How adiposity damages the kidneys. Int J Mol Sci. (2025) 26:6247. doi: 10.3390/ijms26136247eng
dcterms.referencesLeón-Román J, López-Martı́nez M, Esteves A, Ciudin A, Núñez-Delgado S, Á lvarez T, et al. Obesity-related kidney disease: A growing threat to renal health. Int J Mol Sci. (2025) 26:6641. doi: 10.3390/ijms26146641eng
dcterms.referencesD’Agati VD, Chagnac A, de Vries APJ, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. (2016) 12:453–71. doi: 10.1038/nrneph.2016.75eng
dcterms.referencesYang S, Cao C, Deng T, Zhou Z. Obesity-related glomerulopathy: A latent change in obesity requiring more attention. Kidney Blood Press Res. (2020) 45:510–22. doi: 10.1159/000507784eng
dcterms.referencesDaza-Arnedo R, Rico-Fontalvo J, Aroca-Martı́nez G, Rodrı́guez-Yanez T, Martı́nez-Ávila MC, Almanza-Hurtado A, et al. Insulin and the kidneys: a contemporary view on the molecular basis. Front Nephrol. (2023) 3:1133352. doi: 10.3389/fneph.2023.1133352eng
dcterms.referencesKambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. (2001) 59:1498–509. doi: 10.1046/ j.1523-1755.2001.0590041498.xeng
dcterms.referencesTobar A, Ori Y, Benchetrit S, Milo G, Herman-Edelstein M, Zingerman B, et al. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PloS One. (2013) 8:e75547. doi: 10.1371/ journal.pone.0075547eng
dcterms.referencesChen Y, Dabbas W, Gangemi A, Benedetti E, Lash J, Finn PW, et al. Obesity management and chronic kidney disease. Semin Nephrol. (2021) 41:392–402. doi: 10.1016/j.semnephrol.2021.06.010eng
dcterms.referencesNeeland IJ, Poirier P, Després JP. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation. (2018) 137:1391–406. doi: 10.1161/CIRCULATIONAHA.117.029617eng
dcterms.referencesGarbarino J, Sturley SL. Saturated with fat: new perspectives on lipotoxicity. Curr Opin Clin Nutr Metab Care. (2009) 12:110–6. doi: 10.1097/MCO.0b013e32832182eeeng
dcterms.referencesSweiss N, Sharma K. Adiponectin effects on the kidney. Best Pract Res Clin Endocrinol Metab. (2014) 28:71–9. doi: 10.1016/j.beem.2013.08.002eng
dcterms.referencesRen L, Cui H, Wang Y, Ju F, Cai Y, Gang X, et al. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. BioMed Pharmacother Biomedecine Pharmacother. (2023) 161:114465. doi: 10.1016/ j.biopha.2023.114465eng
dcterms.referencesOpazo-Rı́os L, Mas S, Marı́n-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities. Int J Mol Sci. (2020) 21:E2632. doi: 10.3390/ijms21072632eng
dcterms.referencesZhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol. (2018) 14:105–20. doi: 10.1038/ nrneph.2017.157eng
dcterms.referencesLi LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta. (2010) 1801:246–51. doi: 10.1016/ j.bbalip.2009.09.024eng
dcterms.referencesJorge RF, Rodrigo DA, Tomas RY, Maria Cristina MA, Jose C, Maria Ximena CB, et al. Inflammation and diabetic kidney disease: new perspectives. J BioMed Res Environ Sci. (2022) 3:779–86. doi: 10.37871/jbres1513eng
dcterms.referencesSchelling JR. The contribution of lipotoxicity to diabetic kidney disease. Cells. (2022) 11:3236. doi: 10.3390/cells11203236eng
dcterms.referencesAli MM, Parveen S, Williams V, Dons R, Uwaifo GI. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J Clin Transl Endocrinol. (2024) 36:100341. doi: 10.1016/j.jcte.2024.100341eng
dcterms.referencesStasi A, Cosola C, Caggiano G, Cimmarusti MT, Palieri R, Acquaviva PM, et al. Obesity-related chronic kidney disease: principal mechanisms and new approaches in nutritional management. Front Nutr. (2022) 9:925619. doi: 10.3389/fnut.2022.925619eng
dcterms.referencesWang Y, Liu T, Wu Y, Wang L, Ding S, Hou B, et al. Lipid homeostasis in diabetic kidney disease. Int J Biol Sci. (2024) 20:3710–24. doi: 10.7150/ijbs.95216eng
dcterms.referencesYoshioka K, Hirakawa Y, Kurano M, Ube Y, Ono Y, Kojima K, et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. (2022) 101:510–26. doi: 10.1016/j.kint.2021.10.039eng
dcterms.referencesNicholson RJ, Pezzolesi MG, Summers SA. Rotten to the cortex: ceramidemediated lipotoxicity in diabetic kidney disease. Front Endocrinol. (2020) 11:622692. doi: 10.3389/fendo.2020.622692eng
dcterms.referencesZuo F, Wang Y, Xu X, Ding R, Tang W, Sun Y, et al. CCDC92 deficiency ameliorates podocyte lipotoxicity in diabetic kidney disease. Metabolism. (2024) 150:155724. doi: 10.1016/j.metabol.2023.155724eng
dcterms.referencesHerman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. (2014) 55:561–72. doi: 10.1194/jlr.P040501eng
dcterms.referencesChen Y, Deb DK, Fu X, Yi B, Liang Y, Du J, et al. ATP-citrate lyase is an epigenetic regulator to promote obesity-related kidney injury. FASEB J. (2019) 33:9602–15. doi: 10.1096/fj.201900213Reng
dcterms.referencesYamamoto T, Takabatake Y, Takahashi A, Kimura T, Namba T, Matsuda J, et al. High-fat diet-induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. J Am Soc Nephrol JASN. (2017) 28:1534–51. doi: 10.1681/ ASN.2016070731eng
dcterms.referencesChae SY, Kim Y, Park CW. Oxidative stress induced by lipotoxicity and renal hypoxia in diabetic kidney disease and possible therapeutic interventions: targeting the lipid metabolism and hypoxia. Antioxid Basel Switz. (2023) 12:2083. doi: 10.3390/ antiox12122083eng
dcterms.referencesMinami S, Sakai S, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, et al. FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity. Autophagy. (2024) 20:489–504. doi: 10.1080/ 15548627.2023.2259282eng
dcterms.referencesFazeli SA, Nourollahi S, Alirezaei A, Mirhashemi S, Davarian A, Hosseini I. Perirenal adipose tissue: clinical implication and therapeutic interventions. Indian J Nephrol. (2024) 34:573–82. doi: 10.25259/ijn_532_23eng
dcterms.referencesOzbek L, Abdel-Rahman SM, Unlu S, Guldan M, Copur S, Burlacu A, et al. Exploring adiposity and chronic kidney disease: clinical implications, management strategies, prognostic considerations. Med (Mex). (2024) 60:1668. doi: 10.3390/ medicina60101668eng
dcterms.referencesD’Marco L, Salazar J, Cortez M, Salazar M, Wettel M, Lima-Martı́nez M, et al. Perirenal fat thickness is associated with metabolic risk factors in patients with chronic kidney disease. Kidney Res Clin Pract. (2019) 38:365–72. doi: 10.23876/j.krcp.18.0155eng
dcterms.referencesMartinez-Sanchez N, Sweeney O, Sidarta-Oliveira D, Caron A, Stanley SA, Domingos AI. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron. (2022) 110:3597–626. doi: 10.1016/j.neuron.2022.10.017eng
dcterms.referencesOuchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta Int J Clin Chem. (2007) 380:24–30. doi: 10.1016/j.cca.2007.01.026eng
dcterms.referencesVilariño-Garcı́a T, Polonio-González ML, Pérez-Pérez A, Ribalta J, Arrieta F, Aguilar M, et al. Role of leptin in obesity, cardiovascular disease, and type 2 diabetes. Int J Mol Sci. (2024) 25:2338. doi: 10.3390/ijms25042338eng
dcterms.referencesSelvarajah V, Robertson D, Hansen L, Jermutus L, Smith K, Coggi A, et al. A randomized phase 2b trial examined the effects of the glucagon-like peptide-1 and glucagon receptor agonist cotadutide on kidney outcomes in patients with diabetic kidney disease. Kidney Int. (2024) 106:1170–80. doi: 10.1016/j.kint.2024.08.023eng
dcterms.referencesRadwan RM, Lee YA, Kotecha P, Wright DR, Hernandez I, Ramon R, et al. Regional trends and disparities in newer GLP1 receptor agonist initiation among realworld adult patients eligible for obesity treatment. Diabetes Obes Metab. (2025) 27:3113–23. doi: 10.1111/dom.16318eng
dcterms.referencesAl-Ozairi E, Narula K, Miras AD, Taghadom E, Samad AE, Al Kandari J, et al. Obesity Treatments to Improve Type 1 Diabetes (OTID): a randomized controlled trial of the combination of glucagon-like peptide 1 analogues and sodium-glucose cotransporter 2 inhibitors-protocol for Obesity Treatments to Improve Type 1 Diabetes (the OTID trial). Trials. (2024) 25:129. doi: 10.1186/s13063-024-07930-3eng
dcterms.referencesPatel R, Wadid M, Makwana B, Kumar A, Khadke S, Bhatti A, et al. GLP-1 receptor agonists among patients with overweight or obesity, diabetes, and HFpEF on SGLT2 inhibitors. JACC Heart Fail. (2024) 12:1814–26. doi: 10.1016/j.jchf.2024.07.006eng
dcterms.referencesGourdy P, Darmon P, Dievart F, Halimi JM, Guerci B. Combining glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) in patients with type 2 diabetes mellitus (T2DM). Cardiovasc Diabetol. (2023) 22:79. doi: 10.1186/s12933-023-01798-4eng
dcterms.referencesAristizábal-Colorado D, Ocampo-Posada M, Rivera-Martı́nez WA, Corredor- Rengifo D, Rico-Fontalvo J, Gómez-Mesa JE, et al. SGLT2 inhibitors and how they work beyond the glucosuric effect. State of the art. Am J Cardiovasc Drugs Drugs Devices Interv. (2024) 24:707–18. doi: 10.1007/s40256-024-00673-1eng
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
pdf.pdf
Tamaño:
2.37 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones