Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library

dc.contributor.authorSáenz Garcia, José L.
dc.contributor.authorYamanaka, Isabel B.
dc.contributor.authorPacheco Lugo, Lisandro A.
dc.contributor.authorMiranda, Juliana S.
dc.contributor.authorCórneo, Emily S.
dc.contributor.authorMachado de Ávila, Ricardo A.
dc.contributor.authorDe Moura, Juliana F.
dc.contributor.authorDaRocha, Wanderson D.
dc.date.accessioned2020-01-16T19:35:00Z
dc.date.available2020-01-16T19:35:00Z
dc.date.issued2020-01
dc.description.abstractChagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.eng
dc.format.mimetypepdfspa
dc.identifier.issn00144894
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4528
dc.language.isoengeng
dc.publisherElsevierspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.sourceExperimental Parasitologyeng
dc.source(2020)
dc.source.urihttps://doi.org/10.1016/j.exppara.2020.107830
dc.subjectPhage displayeng
dc.subjectTrypanosoma cruzieng
dc.subjectSurfaceeng
dc.subjectEpimastigoteseng
dc.subjectEPI18eng
dc.titleTargeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random libraryeng
dc.typearticleeng
dcterms.referencesAdade et al., 2013 C.M. Adade, I.R.S. Oliveira, J.A.R. Pais, T. Souto-Padrón Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways Toxicon, 69 (2013), pp. 227-239, 10.1016/j.toxicon.2013.03.011eng
dcterms.referencesAltschul et al., 1990 S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman Basic local alignment search tool J. Mol. Biol., 215 (1990), pp. 403-410, 10.1016/S0022-2836(05)80360-2eng
dcterms.referencesBalczun et al., 2012 C. Balczun, J. Siemanowski, J.K. Pausch, S. Helling, K. Marcus, C. Stephan, et al. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity Insect Biochem. Mol. Biol., 42 (2012), pp. 240-250, 10.1016/j.ibmb.2011.12.006eng
dcterms.referencesBeard et al., 2002 C.B. Beard, C. Cordon-Rosales, R.V. Durvasula Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission Annu. Rev. Entomol., 47 (2002), pp. 123-141, 10.1146/annurev.ento.47.091201.145144eng
dcterms.referencesBongio et al., 2015 N.J. Bongio, D.J. Lampe Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. bacteria using a novel native secretion signal G. Favia (Ed.), PLoS One, 10 (2015), Article e0143541, 10.1371/journal.pone.0143541eng
dcterms.referencesBonnycastle et al., 1996 L.L.C. Bonnycastle, J.S. Mehroke, M. Rashed, X. Gong, J.K. Scott Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage J. Mol. Biol., 258 (1996), pp. 747-762, 0.1006/jmbi.1996.0284eng
dcterms.referencesBontempi et al., 2015 I.A. Bontempi, M.H. Vicco, G. Cabrera, S.R. Villar, F.B. González, E.A. Roggero, et al. Efficacy of a trans-sialidase-ISCOMATRIX subunit vaccine candidate to protect against experimental Chagas disease Vaccine, 33 (2015), pp. 1274-1283, 10.1016/j.vaccine.2015.01.044eng
dcterms.referencesBorges et al., 2006 E.C. Borges, E.M.M. Machado, E.S. Garcia, P. Azambuja Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus Exp. Parasitol., 112 (2006), pp. 130-133, 10.1016/j.exppara.2005.09.008eng
dcterms.referencesBrenière et al., 2016 S.F. Brenière, E. Waleckx, C. Barnabé Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. Debrabant A, editor PLoS Neglected Trop. Dis., 10 (2016), Article e0004792, 0.1371/journal.pntd.0004792eng
dcterms.referencesBuchini et al., 2008 S. Buchini, A. Buschiazzo, S.G. Withers A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors Angew. Chem. Int. Ed., 47 (2008), pp. 2700-2703, 10.1002/anie.200705435eng
dcterms.referencesContreras et al., 1985 V.T. Contreras, J.M. Salles, N. Thomas, C.M. Morel, S. Goldenberg In vitro differentiation of Trypanosoma cruzi under chemically defined conditions Mol. Biochem. Parasitol., 16 (1985), pp. 315-327, 10.1016/0166-6851(85)90073-8eng
dcterms.referencesCordero et al., 2009 E.M. Cordero, E.S. Nakayasu, L.G. Gentil, N. Yoshida, I.C. Almeida, J.F. da Silveira Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi † J. Proteome Res., 8 (2009), pp. 3642-3652, 10.1021/pr800887ueng
dcterms.referencesDias, 2007 J.C.P. Dias Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusional Chagas disease. Historical aspects, present situation, and perspectives Mem. Inst. Oswaldo Cruz, 102 (Suppl. 1) (2007), pp. 11-18, 10.1590/s0074-02762007005000092eng
dcterms.referencesDurvasula et al., 1997 R.V. Durvasula, A. Gumbs, A. Panackal, O. Kruglov, S. Aksoy, R.B. Merrifield, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria Proc. Natl. Acad. Sci. U. S. A., 94 (1997), pp. 3274-3278, 10.1073/pnas.94.7.3274eng
dcterms.referencesEl-Sayed, 2005 N.M. El-Sayed The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease Science, 309 (2005), pp. 409-415, 10.1126/science.1112631eng
dcterms.referencesFlower et al., 2000 D.R. Flower, A.C.T. North, C.E. Sansom The lipocalin protein family: structural and sequence overview Biochim Biophys Acta BBA - Protein Struct Mol Enzymol., 1482 (2000), pp. 9-24, 10.1016/S0167-4838(00)00148-5eng
dcterms.referencesGhosh et al., 2001 A.K. Ghosh, P.E.M. Ribolla, M. Jacobs-Lorena Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library Proc. Natl. Acad. Sci., 98 (2001), pp. 13278-13281, 10.1073/pnas.241491198eng
dcterms.referencesGourbière et al., 2012 S. Gourbière, P. Dorn, F. Tripet, E. Dumonteil Genetics and evolution of triatomines: from phylogeny to vector control Heredity, 108 (2012), pp. 190-202, 10.1038/hdy.2011.71eng
dcterms.referencesHall, 1999 T.A. Hall BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp. Ser., 41 (1999), pp. 95-98eng
dcterms.referencesHansen et al., 2015 P.R. Hansen, A. Oddo Fmoc solid-phase peptide synthesis G. Houen (Ed.), Peptide Antibodies, Springer New York, New York, NY (2015), pp. 33-50, 10.1007/978-1-4939-2999-3_5eng
dcterms.referencesKato et al., 2017 H. Kato, R.C. Jochim, E.A. Gomez, S. Tsunekawa, J.G. Valenzuela, Y. Hashiguchi Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease Acta Trop., 174 (2017), pp. 122-129, 10.1016/j.actatropica.2017.06.022eng
dcterms.referencesKhusal et al., 2015 K.G. Khusal, R.R. Tonelli, E.C. Mattos, C.O. Soares, B.M. Di Genova, M.A. Juliano, et al. Prokineticin receptor identified by phage display is an entry receptor for Trypanosoma cruzi into mammalian cells Parasitol. Res., 114 (1) (2015), pp. 155-165, 10.1007/s00436-014-4172-6eng
dcterms.referencesLi et al., 2016 Y. Li, S. Shah-Simpson, K. Okrah, A.T. Belew, J. Choi, K.L. Caradonna, et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. Clayton C PLoS Pathog., 12 (2016), Article e1005511, 10.1371/journal.ppat.1005511eng
dcterms.referencesLuque-Ortega et al., 2012 J.R. Luque-Ortega, B.G. de la Torre, V. Hornillos, J.-M. Bart, C. Rueda, M. Navarro, et al. Defeating Leishmania resistance to Miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy J. Control. Release, 161 (2012), pp. 835-842, 10.1016/j.jconrel.2012.05.023eng
dcterms.referencesMcWilliam et al., 2013 H. McWilliam, W. Li, M. Uludag, S. Squizzato, Y.M. Park, N. Buso, et al. Analysis tool web services from the EMBL-EBI Nucleic Acids Res., 41 (2013), pp. W597-600, 10.1093/nar/gkt376eng
dcterms.referencesMello et al., 2017 C.P. Mello, D.B. Lima, RRPPB de Menezes, I.C.J. Bandeira, L.D. Tessarolo, T.L. Sampaio, et al. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland Toxicon, 130 (2017), pp. 56-62, 10.1016/j.toxicon.2017.02.031eng
dcterms.referencesMorillo et al., 2015 C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, F. Rosas, et al. Randomized trial of benznidazole for chronic Chagas' cardiomyopathy N. Engl. J. Med., 373 (2015), pp. 1295-1306, 10.1056/NEJMoa1507574eng
dcterms.referencesQueiroz et al., 2013 R.M.L. Queiroz, S. Charneau, F.N. Motta, J.M. Santana, P. Roepstorff, C.A.O. Ricart Comprehensive proteomic analysis of trypanosoma cruzi epimastigote cell surface proteins by two complementary methods J. Proteome Res., 12 (2013), pp. 3255-3263, 10.1021/pr400110heng
dcterms.referencesRhaiem and Houimel, 2016 R.B. Rhaiem, M. Houimel Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library Acta Trop., 159 (2016), pp. 11-19, 10.1016/j.actatropica.2016.03.018eng
dcterms.referencesSamuels et al., 2013 A.M. Samuels, E.H. Clark, G. Galdos-Cardenas, R.E. Wiegand, L. Ferrufino, S. Menacho, et al. Epidemiology of and impact of insecticide spraying on Chagas disease in communities in the Bolivian Chaco P.J. McCall (Ed.), PLoS Neglected Trop. Dis., 7 (2013), p. e2358, 10.1371/journal.pntd.0002358eng
dcterms.referencesSerna et al., 2014 C. Serna, J.A. Lara, S.P. Rodrigues, A.F. Marques, I.C. Almeida, R.A. Maldonado A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease Vaccine, 32 (2014), pp. 3525-3532, 10.1016/j.vaccine.2014.04.026eng
dcterms.referencesWang and Jacobs-Lorena, 2013 S. Wang, M. Jacobs-Lorena Genetic approaches to interfere with malaria transmission by vector mosquitoes Trends Biotechnol., 31 (2013), pp. 185-193, 10.1016/j.tibtech.2013.01.001eng
dcterms.referencesZingales et al., 2009 B. Zingales, S.G. Andrade, M.R.S. Briones, D.A. Campbell, E. Chiari, O. Fernandes, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI Mem. Inst. Oswaldo Cruz, 104 (2009), pp. 1051-1054, 10.1590/s0074-02762009000700021eng
dcterms.referencesZou et al., 2017 L. Zou, Q. Peng, P. Wang, B. Zhou Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide J. Membr. Biol., 250 (2017), pp. 115-122, 10.1007/s00232-016-9940-zeng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones