Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
dc.contributor.author | Sáenz Garcia, José L. | |
dc.contributor.author | Yamanaka, Isabel B. | |
dc.contributor.author | Pacheco Lugo, Lisandro A. | |
dc.contributor.author | Miranda, Juliana S. | |
dc.contributor.author | Córneo, Emily S. | |
dc.contributor.author | Machado de Ávila, Ricardo A. | |
dc.contributor.author | De Moura, Juliana F. | |
dc.contributor.author | DaRocha, Wanderson D. | |
dc.date.accessioned | 2020-01-16T19:35:00Z | |
dc.date.available | 2020-01-16T19:35:00Z | |
dc.date.issued | 2020-01 | |
dc.description.abstract | Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission. | eng |
dc.format.mimetype | spa | |
dc.identifier.issn | 00144894 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4528 | |
dc.language.iso | eng | eng |
dc.publisher | Elsevier | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | eng |
dc.source | Experimental Parasitology | eng |
dc.source | (2020) | |
dc.source.uri | https://doi.org/10.1016/j.exppara.2020.107830 | |
dc.subject | Phage display | eng |
dc.subject | Trypanosoma cruzi | eng |
dc.subject | Surface | eng |
dc.subject | Epimastigotes | eng |
dc.subject | EPI18 | eng |
dc.title | Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library | eng |
dc.type | article | eng |
dcterms.references | Adade et al., 2013 C.M. Adade, I.R.S. Oliveira, J.A.R. Pais, T. Souto-Padrón Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways Toxicon, 69 (2013), pp. 227-239, 10.1016/j.toxicon.2013.03.011 | eng |
dcterms.references | Altschul et al., 1990 S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman Basic local alignment search tool J. Mol. Biol., 215 (1990), pp. 403-410, 10.1016/S0022-2836(05)80360-2 | eng |
dcterms.references | Balczun et al., 2012 C. Balczun, J. Siemanowski, J.K. Pausch, S. Helling, K. Marcus, C. Stephan, et al. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity Insect Biochem. Mol. Biol., 42 (2012), pp. 240-250, 10.1016/j.ibmb.2011.12.006 | eng |
dcterms.references | Beard et al., 2002 C.B. Beard, C. Cordon-Rosales, R.V. Durvasula Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission Annu. Rev. Entomol., 47 (2002), pp. 123-141, 10.1146/annurev.ento.47.091201.145144 | eng |
dcterms.references | Bongio et al., 2015 N.J. Bongio, D.J. Lampe Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. bacteria using a novel native secretion signal G. Favia (Ed.), PLoS One, 10 (2015), Article e0143541, 10.1371/journal.pone.0143541 | eng |
dcterms.references | Bonnycastle et al., 1996 L.L.C. Bonnycastle, J.S. Mehroke, M. Rashed, X. Gong, J.K. Scott Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage J. Mol. Biol., 258 (1996), pp. 747-762, 0.1006/jmbi.1996.0284 | eng |
dcterms.references | Bontempi et al., 2015 I.A. Bontempi, M.H. Vicco, G. Cabrera, S.R. Villar, F.B. González, E.A. Roggero, et al. Efficacy of a trans-sialidase-ISCOMATRIX subunit vaccine candidate to protect against experimental Chagas disease Vaccine, 33 (2015), pp. 1274-1283, 10.1016/j.vaccine.2015.01.044 | eng |
dcterms.references | Borges et al., 2006 E.C. Borges, E.M.M. Machado, E.S. Garcia, P. Azambuja Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus Exp. Parasitol., 112 (2006), pp. 130-133, 10.1016/j.exppara.2005.09.008 | eng |
dcterms.references | Brenière et al., 2016 S.F. Brenière, E. Waleckx, C. Barnabé Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. Debrabant A, editor PLoS Neglected Trop. Dis., 10 (2016), Article e0004792, 0.1371/journal.pntd.0004792 | eng |
dcterms.references | Buchini et al., 2008 S. Buchini, A. Buschiazzo, S.G. Withers A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors Angew. Chem. Int. Ed., 47 (2008), pp. 2700-2703, 10.1002/anie.200705435 | eng |
dcterms.references | Contreras et al., 1985 V.T. Contreras, J.M. Salles, N. Thomas, C.M. Morel, S. Goldenberg In vitro differentiation of Trypanosoma cruzi under chemically defined conditions Mol. Biochem. Parasitol., 16 (1985), pp. 315-327, 10.1016/0166-6851(85)90073-8 | eng |
dcterms.references | Cordero et al., 2009 E.M. Cordero, E.S. Nakayasu, L.G. Gentil, N. Yoshida, I.C. Almeida, J.F. da Silveira Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi † J. Proteome Res., 8 (2009), pp. 3642-3652, 10.1021/pr800887u | eng |
dcterms.references | Dias, 2007 J.C.P. Dias Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusional Chagas disease. Historical aspects, present situation, and perspectives Mem. Inst. Oswaldo Cruz, 102 (Suppl. 1) (2007), pp. 11-18, 10.1590/s0074-02762007005000092 | eng |
dcterms.references | Durvasula et al., 1997 R.V. Durvasula, A. Gumbs, A. Panackal, O. Kruglov, S. Aksoy, R.B. Merrifield, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria Proc. Natl. Acad. Sci. U. S. A., 94 (1997), pp. 3274-3278, 10.1073/pnas.94.7.3274 | eng |
dcterms.references | El-Sayed, 2005 N.M. El-Sayed The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease Science, 309 (2005), pp. 409-415, 10.1126/science.1112631 | eng |
dcterms.references | Flower et al., 2000 D.R. Flower, A.C.T. North, C.E. Sansom The lipocalin protein family: structural and sequence overview Biochim Biophys Acta BBA - Protein Struct Mol Enzymol., 1482 (2000), pp. 9-24, 10.1016/S0167-4838(00)00148-5 | eng |
dcterms.references | Ghosh et al., 2001 A.K. Ghosh, P.E.M. Ribolla, M. Jacobs-Lorena Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library Proc. Natl. Acad. Sci., 98 (2001), pp. 13278-13281, 10.1073/pnas.241491198 | eng |
dcterms.references | Gourbière et al., 2012 S. Gourbière, P. Dorn, F. Tripet, E. Dumonteil Genetics and evolution of triatomines: from phylogeny to vector control Heredity, 108 (2012), pp. 190-202, 10.1038/hdy.2011.71 | eng |
dcterms.references | Hall, 1999 T.A. Hall BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp. Ser., 41 (1999), pp. 95-98 | eng |
dcterms.references | Hansen et al., 2015 P.R. Hansen, A. Oddo Fmoc solid-phase peptide synthesis G. Houen (Ed.), Peptide Antibodies, Springer New York, New York, NY (2015), pp. 33-50, 10.1007/978-1-4939-2999-3_5 | eng |
dcterms.references | Kato et al., 2017 H. Kato, R.C. Jochim, E.A. Gomez, S. Tsunekawa, J.G. Valenzuela, Y. Hashiguchi Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease Acta Trop., 174 (2017), pp. 122-129, 10.1016/j.actatropica.2017.06.022 | eng |
dcterms.references | Khusal et al., 2015 K.G. Khusal, R.R. Tonelli, E.C. Mattos, C.O. Soares, B.M. Di Genova, M.A. Juliano, et al. Prokineticin receptor identified by phage display is an entry receptor for Trypanosoma cruzi into mammalian cells Parasitol. Res., 114 (1) (2015), pp. 155-165, 10.1007/s00436-014-4172-6 | eng |
dcterms.references | Li et al., 2016 Y. Li, S. Shah-Simpson, K. Okrah, A.T. Belew, J. Choi, K.L. Caradonna, et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. Clayton C PLoS Pathog., 12 (2016), Article e1005511, 10.1371/journal.ppat.1005511 | eng |
dcterms.references | Luque-Ortega et al., 2012 J.R. Luque-Ortega, B.G. de la Torre, V. Hornillos, J.-M. Bart, C. Rueda, M. Navarro, et al. Defeating Leishmania resistance to Miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy J. Control. Release, 161 (2012), pp. 835-842, 10.1016/j.jconrel.2012.05.023 | eng |
dcterms.references | McWilliam et al., 2013 H. McWilliam, W. Li, M. Uludag, S. Squizzato, Y.M. Park, N. Buso, et al. Analysis tool web services from the EMBL-EBI Nucleic Acids Res., 41 (2013), pp. W597-600, 10.1093/nar/gkt376 | eng |
dcterms.references | Mello et al., 2017 C.P. Mello, D.B. Lima, RRPPB de Menezes, I.C.J. Bandeira, L.D. Tessarolo, T.L. Sampaio, et al. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland Toxicon, 130 (2017), pp. 56-62, 10.1016/j.toxicon.2017.02.031 | eng |
dcterms.references | Morillo et al., 2015 C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, F. Rosas, et al. Randomized trial of benznidazole for chronic Chagas' cardiomyopathy N. Engl. J. Med., 373 (2015), pp. 1295-1306, 10.1056/NEJMoa1507574 | eng |
dcterms.references | Queiroz et al., 2013 R.M.L. Queiroz, S. Charneau, F.N. Motta, J.M. Santana, P. Roepstorff, C.A.O. Ricart Comprehensive proteomic analysis of trypanosoma cruzi epimastigote cell surface proteins by two complementary methods J. Proteome Res., 12 (2013), pp. 3255-3263, 10.1021/pr400110h | eng |
dcterms.references | Rhaiem and Houimel, 2016 R.B. Rhaiem, M. Houimel Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library Acta Trop., 159 (2016), pp. 11-19, 10.1016/j.actatropica.2016.03.018 | eng |
dcterms.references | Samuels et al., 2013 A.M. Samuels, E.H. Clark, G. Galdos-Cardenas, R.E. Wiegand, L. Ferrufino, S. Menacho, et al. Epidemiology of and impact of insecticide spraying on Chagas disease in communities in the Bolivian Chaco P.J. McCall (Ed.), PLoS Neglected Trop. Dis., 7 (2013), p. e2358, 10.1371/journal.pntd.0002358 | eng |
dcterms.references | Serna et al., 2014 C. Serna, J.A. Lara, S.P. Rodrigues, A.F. Marques, I.C. Almeida, R.A. Maldonado A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease Vaccine, 32 (2014), pp. 3525-3532, 10.1016/j.vaccine.2014.04.026 | eng |
dcterms.references | Wang and Jacobs-Lorena, 2013 S. Wang, M. Jacobs-Lorena Genetic approaches to interfere with malaria transmission by vector mosquitoes Trends Biotechnol., 31 (2013), pp. 185-193, 10.1016/j.tibtech.2013.01.001 | eng |
dcterms.references | Zingales et al., 2009 B. Zingales, S.G. Andrade, M.R.S. Briones, D.A. Campbell, E. Chiari, O. Fernandes, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI Mem. Inst. Oswaldo Cruz, 104 (2009), pp. 1051-1054, 10.1590/s0074-02762009000700021 | eng |
dcterms.references | Zou et al., 2017 L. Zou, Q. Peng, P. Wang, B. Zhou Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide J. Membr. Biol., 250 (2017), pp. 115-122, 10.1007/s00232-016-9940-z | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: