Revisión sobre el papel de la microglia en el glioblastoma entre los años 1990 a 2020

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorNavarro Quiroz, Elkin
dc.contributor.authorPuentes Velásquez, Erika Lorena
dc.date.accessioned2021-12-06T19:12:08Z
dc.date.available2021-12-06T19:12:08Z
dc.date.issued2021
dc.description.abstractLa información que rodea los fenómenos de interacción entre el glioblastomas y las células es amplio y contradictorio entre autores, por lo que una síntesis de los aspectos más destacado de la clínica que involucra esta interacción es trabajo que tiene un gran costo intelectual que a su vez se ha de traducir en un largo tiempo en depuración de los datos asociado a este fenómeno. Objetivo General: Describir el estado actual del conocimiento de las interacciones de la microglía con las células del glioblastoma y los mecanismos epigenéticos implicados en esta interacción. Materiales y Métodos: Revisión sistemática Estrategias de búsqueda y fuentes de información: Varias estrategias de búsqueda se utilizaron para intentar localizar todos los estudios que cumplieran los criterios de inclusión. Las búsquedas fueron realizadas por los investigadores durante los años 1990 a 2020. Las bases de datos consultadas fueron las siguientes: PubMed-Medline, Web of Science, EMBASE (a través de Scopus). Los términos del MeSH seleccionados fueron: “Neural Stem Cells”, “Microglia”,”oblastoma Stem Cells”, “Interactions in The Neurogenic Niche“, “Signaling Pathways in Microglia”, and “Therapeutic Target for Glioblastoma.spa
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9206
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNeural Stem Cellsspa
dc.subjectMicrogliaspa
dc.subjectOblastoma Stem Celleng
dc.subjectInteractions in The Neurogenic Nicheeng
dc.subjectSignaling Pathways in Microgliaeng
dc.subjectTherapeutic Target for Glioblastomaeng
dc.titleRevisión sobre el papel de la microglia en el glioblastoma entre los años 1990 a 2020spa
dc.type.driverinfo:eu-repo/semantics/otherspa
dc.type.spaOtrosspa
dcterms.referencesAkhavan, D., Alizadeh, D., Wang, D., Weist, M. R., Shepphird, J. K., & Brown, C. E. (2019). CAR T cells for brain tumors: Lessons learned and road ahead. Immunological Reviews, 290(1), 60–84. https://doi.org/10.1111/imr.12773eng
dcterms.referencesAlexander, B. M., & Cloughesy, T. F. (2017). Adult Glioblastoma. Journal of Clinical Oncology, 35(21), 2402–2409. https://doi.org/10.1200/JCO.2017.73.0119eng
dcterms.referencesAnfray, C., Ummarino, A., Andón, F. T., & Allavena, P. (2020). Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells, 9(1), 46. https://doi.org/10.3390/cells9010046eng
dcterms.referencesBeroukhim, R., Getz, G., Nghiemphu, L., Barretina, J., Hsueh, T., Linhart, D., Vivanco, I., Lee, J. C., Huang, J. H., Alexander, S., Du, J., Kau, T., Thomas, R. K., Shah, K., Soto, H., Perner, S., Prensner, J., Debiasi, R. M., Demichelis, F., … Sellers, W. R. (2007). Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20007–20012. https://doi.org/10.1073/pnas.0710052104eng
dcterms.referencesBowman, R. L., Klemm, F., Akkari, L., Pyonteck, S. M., Sevenich, L., Quail, D. F., Dhara, S., Simpson, K., Gardner, E. E., Iacobuzio-Donahue, C. A., Brennan, C. W., Tabar, V., Gutin, P. H., & Joyce, J. A. (2016). Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 17(9), 2445–2459. https://doi.org/10.1016/j.celrep.2016.10.052eng
dcterms.referencesBrandenburg, S., Müller, A., Turkowski, K., Radev, Y. T., Rot, S., Schmidt, C., Bungert, A. D., Acker, G., Schorr, A., Hippe, A., Miller, K., Heppner, F. L., Homey, B., & Vajkoczy, P. (2016). Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathologica, 131(3), 365–378. https://doi.org/10.1007/s00401-015-1529-6eng
dcterms.referencesBrennan, C., Momota, H., Hambardzumyan, D., Ozawa, T., Tandon, A., Pedraza, A., & Holland, E. (2009). Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations. PLOS ONE, 4(11), e7752. https://doi.org/10.1371/journal.pone.0007752eng
dcterms.referencesBrown, N. F., Carter, T. J., Ottaviani, D., & Mulholland, P. (2018). Harnessing the immune system in glioblastoma. British Journal of Cancer, 119(10), 1171–1181. https://doi.org/10.1038/s41416-018-0258-8eng
dcterms.referencesCahill, D. P., Levine, K. K., Betensky, R. A., Codd, P. J., Romany, C. A., Reavie, L. B., Batchelor, T. T., Futreal, P. A., Stratton, M. R., Curry, W. T., Iafrate, A. J., & Louis, D. N. (2007). Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 13(7), 2038–2045. https://doi.org/10.1158/1078-0432.CCR-06-2149eng
dcterms.referencesCambruzzi, E. (2017). The role of IDH1/2 mutations in the pathogenesis of secondary glioblastomas. Jornal Brasileiro de Patologia e Medicina Laboratorial, 53, 338–344. https://doi.org/10.5935/1676-2444.20170055eng
dcterms.referencesCampos, B., Olsen, L. R., Urup, T., & Poulsen, H. S. (2016). A comprehensive profile of recurrent glioblastoma. Oncogene, 35(45), 5819–5825. https://doi.org/10.1038/onc.2016.85eng
dcterms.referencesCancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. https://doi.org/10.1038/nature07385eng
dcterms.referencesCarter, J. L., Hege, K., Yang, J., Kalpage, H. A., Su, Y., Edwards, H., Hüttemann, M., Taub, J. W., & Ge, Y. (2020). Targeting multiple signaling pathways: The new approach to acute myeloid leukemia therapy. Signal Transduction and Targeted Therapy, 5(1), 1–29. https://doi.org/10.1038/s41392-020-00361-xeng
dcterms.referencesCarvalho, J. A. D. V., Barbosa, C. C. de L., Feher, O., Maldaun, M. V. C., Camargo, V. P. de, Moraes, F. Y., & Marta, G. N. (2019). Systemic dissemination of glioblastoma: Literature review. Revista Da Associação Médica Brasileira, 65, 460–468. https://doi.org/10.1590/1806-9282.65.3.460eng
dcterms.referencesChaichana, K. L., Parker, S. L., Olivi, A., & Quiñones-Hinojosa, A. (2009). Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. Journal of Neurosurgery, 111(2), 282–292. https://doi.org/10.3171/2009.2.JNS081132eng
dcterms.referencesCohen, A., Holmen, S., & Colman, H. (2013). IDH1 and IDH2 Mutations in Gliomas. Current Neurology and Neuroscience Reports, 13(5), 345. https://doi.org/10.1007/s11910-013-0345-4eng
dcterms.referencesDobes, M., Khurana, V. G., Shadbolt, B., Jain, S., Smith, S. F., Smee, R., Dexter, M., & Cook, R. (2011). Increasing incidence of glioblastoma multiforme and meningioma, and decreasing incidence of Schwannoma (2000–2008): Findings of a multicenter Australian study. Surgical Neurology International, 2, 176. https://doi.org/10.4103/2152-7806.90696eng
dcterms.referencesDoetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703–716. https://doi.org/10.1016/s0092-8674(00)80783-7eng
dcterms.referencesFan, C.-H., Liu, W.-L., Cao, H., Wen, C., Chen, L., & Jiang, G. (2013). O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death & Disease, 4(10), e876. https://doi.org/10.1038/cddis.2013.388eng
dcterms.referencesFan, Q.-W., Cheng, C., Knight, Z. A., Haas-Kogan, D., Stokoe, D., James, C. D., McCormick, F., Shokat, K. M., & Weiss, W. A. (2009). EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma. Science Signaling, 2(55), ra4–ra4. https://doi.org/10.1126/scisignal.2000014eng
dcterms.referencesGabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., & Kaminska, B. (2011). Characteristics of the Alternative Phenotype of Microglia/Macrophages and its Modulation in Experimental Gliomas. PLOS ONE, 6(8), e23902. https://doi.org/10.1371/journal.pone.0023902eng
dcterms.referencesGholamin, S., Mitra, S. S., Feroze, A. H., Liu, J., Kahn, S. A., Zhang, M., Esparza, R., Richard, C., Ramaswamy, V., Remke, M., Volkmer, A. K., Willingham, S., Ponnuswami, A., McCarty, A., Lovelace, P., Storm, T. A., Schubert, S., Hutter, G., Narayanan, C., … Cheshier, S. H. (2017). Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 9(381), eaaf2968. https://doi.org/10.1126/scitranslmed.aaf2968eng
dcterms.referencesGinhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and differentiation of microglia. Frontiers in Cellular Neuroscience, 7, 45. https://doi.org/10.3389/fncel.2013.00045eng
dcterms.referencesGonzalez-Perez, O., Gutierrez-Fernandez, F., Lopez-Virgen, V., Collas-Aguilar, J., Quinones-Hinojosa, A., & Garcia-Verdugo, J. M. (2012). Immunological regulation of neurogenic niches in the adult brain. Neuroscience, 226, 270–281. https://doi.org/10.1016/j.neuroscience.2012.08.053eng
dcterms.referencesGousias, K., Markou, M., Voulgaris, S., Goussia, A., Voulgari, P., Bai, M., Polyzoidis, K., Kyritsis, A., & Alamanos, Y. (2009). Descriptive Epidemiology of Cerebral Gliomas in Northwest Greece and Study of Potential Predisposing Factors, 2005–2007. Neuroepidemiology, 33(2), 89–95. https://doi.org/10.1159/000222090eng
dcterms.referencesGrech, N., Dalli, T., Mizzi, S., Meilak, L., Calleja, N., & Zrinzo, A. (2020). Rising Incidence of Glioblastoma Multiforme in a Well-Defined Population. Cureus, 12(5), e8195. https://doi.org/10.7759/cureus.8195eng
dcterms.referencesHambardzumyan, D., Gutmann, D. H., & Kettenmann, H. (2016). The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 19(1), 20–27. https://doi.org/10.1038/nn.4185eng
dcterms.referencesHan, S., Liu, Y., Cai, S. J., Qian, M., Ding, J., Larion, M., Gilbert, M. R., & Yang, C. (2020). IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets. British Journal of Cancer, 122(11), 1580–1589. https://doi.org/10.1038/s41416-020-0814-xeng
dcterms.referencesHira, V. V. V., Breznik, B., Vittori, M., Loncq de Jong, A., Mlakar, J., Oostra, R.-J., Khurshed, M., Molenaar, R. J., Lah, T., & Van Noorden, C. J. F. (2020). Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 68(1), 33–57. https://doi.org/10.1369/0022155419878416eng
dcterms.referencesHolland, E. C. (2000). Glioblastoma multiforme: The terminator. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6242–6244. https://doi.org/10.1073/pnas.97.12.6242eng
dcterms.referencesJ, J., Vanisree, A. J., Ravisankar, S., & K, R. (2019). Site specific hypermethylation of CpGs in Connexin genes 30, 26 and 43 in different grades of glioma and attenuated levels of their mRNAs. The International Journal of Neuroscience, 129(3), 273–282. https://doi.org/10.1080/00207454.2018.1526802eng
dcterms.referencesJiang, L., Fang, X., Bao, Y., Zhou, J.-Y., Shen, X.-Y., Ding, M.-H., Chen, Y., Hu, G.-H., & Lu, Y.-C. (2013). Association between the XRCC1 Polymorphisms and Glioma Risk: A Meta-Analysis of Case-Control Studies. PLOS ONE, 8(1), e55597. https://doi.org/10.1371/journal.pone.0055597eng
dcterms.referencesJuratli, T. A., Kirsch, M., Robel, K., Soucek, S., Geiger, K., von Kummer, R., Schackert, G., & Krex, D. (2012). IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. Journal of Neuro-Oncology, 108(3), 403–410. https://doi.org/10.1007/s11060-012-0844-1eng
dcterms.referencesKlopfenstein, Q., Truntzer, C., Vincent, J., & Ghiringhelli, F. (2019). Cell lines and immune classification of glioblastoma define patient’s prognosis. British Journal of Cancer, 120(8), 806–814. https://doi.org/10.1038/s41416-019-0404-yeng
dcterms.referencesKrämer, O. H., Zhu, P., Ostendorff, H. P., Golebiewski, M., Tiefenbach, J., Peters, M. A., Brill, B., Groner, B., Bach, I., Heinzel, T., & Göttlicher, M. (2003). The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. The EMBO Journal, 22(13), 3411–3420. https://doi.org/10.1093/emboj/cdg315eng
dcterms.referencesKuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(6), 2027–2033.eng
dcterms.referencesLi, Q., & Barres, B. A. (2018). Microglia and macrophages in brain homeostasis and disease. Nature Reviews. Immunology, 18(4), 225–242. https://doi.org/10.1038/nri.2017.125eng
dcterms.referencesLi, W., & Graeber, M. B. (2012). The molecular profile of microglia under the influence of glioma. Neuro-Oncology, 14(8), 958–978. https://doi.org/10.1093/neuonc/nos116eng
dcterms.referencesLitak, J., Mazurek, M., Grochowski, C., Kamieniak, P., & Roliński, J. (2019). PD-L1/PD-1 Axis in Glioblastoma Multiforme. International Journal of Molecular Sciences, 20(21), 5347. https://doi.org/10.3390/ijms20215347eng
dcterms.referencesLouis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W., & Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97–109. https://doi.org/10.1007/s00401-007-0243-4eng
dcterms.referencesLu, G., Rao, M., Zhu, P., Liang, B., El-Nazer, R. T., Fonkem, E., Bhattacharjee, M. B., & Zhu, J.-J. (2019). Triple-drug Therapy With Bevacizumab, Irinotecan, and Temozolomide Plus Tumor Treating Fields for Recurrent Glioblastoma: A Retrospective Study. Frontiers in Neurology, 10, 42. https://doi.org/10.3389/fneur.2019.00042eng
dcterms.referencesNakada, M., Hayashi, Y., & Hamada, J. (2011). Role of Eph/ephrin tyrosine kinase in malignant glioma. Neuro-Oncology, 13(11), 1163–1170. https://doi.org/10.1093/neuonc/nor102eng
dcterms.referencesOstrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y., Stroup, N. E., Kruchko, C., & Barnholtz-Sloan, J. S. (2013). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology, 15(Suppl 2), ii1–ii56. https://doi.org/10.1093/neuonc/not151eng
dcterms.referencesOstrom, Q. T., Gittleman, H., Xu, J., Kromer, C., Wolinsky, Y., Kruchko, C., & Barnholtz-Sloan, J. S. (2016). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro-Oncology, 18(suppl_5), v1–v75. https://doi.org/10.1093/neuonc/now207eng
dcterms.referencesPang, L., Qin, J., Han, L., Zhao, W., Liang, J., Xie, Z., Yang, P., & Wang, J. (2016). Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget, 7(24), 37081–37091. https://doi.org/10.18632/oncotarget.9464eng
dcterms.referencesPatel, A. R., Ritzel, R., McCullough, L. D., & Liu, F. (2013). Microglia and ischemic stroke: A double-edged sword. International Journal of Physiology, Pathophysiology and Pharmacology, 5(2), 73–90.eng
dcterms.referencesPearson, J. R. D., Cuzzubbo, S., McArthur, S., Durrant, L. G., Adhikaree, J., Tinsley, C. J., Pockley, A. G., & McArdle, S. E. B. (2020). Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment. Frontiers in Immunology, 11, 582106. https://doi.org/10.3389/fimmu.2020.582106eng
dcterms.referencesPurow, B., & Schiff, D. (2009). Advances in the genetics of glioblastoma: Are we reaching critical mass? Nature Reviews. Neurology, 5(8), 419–426. https://doi.org/10.1038/nrneurol.2009.96eng
dcterms.referencesReid, G., Métivier, R., Lin, C.-Y., Denger, S., Ibberson, D., Ivacevic, T., Brand, H., Benes, V., Liu, E. T., & Gannon, F. (2005). Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene, 24(31), 4894–4907. https://doi.org/10.1038/sj.onc.1208662eng
dcterms.referencesRibeiro Xavier, A. L., Kress, B. T., Goldman, S. A., Lacerda de Menezes, J. R., & Nedergaard, M. (2015). A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(34), 11848–11861. https://doi.org/10.1523/JNEUROSCI.1217-15.2015eng
dcterms.referencesRivera, A. L., Pelloski, C. E., Gilbert, M. R., Colman, H., De La Cruz, C., Sulman, E. P., Bekele, B. N., & Aldape, K. D. (2010). MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-Oncology, 12(2), 116–121. https://doi.org/10.1093/neuonc/nop020eng
dcterms.referencesSamokhvalov, I. M., Samokhvalova, N. I., & Nishikawa, S. (2007). Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature, 446(7139), 1056–1061. https://doi.org/10.1038/nature05725eng
dcterms.referencesSankowski, R., Böttcher, C., Masuda, T., Geirsdottir, L., Sagar, Sindram, E., Seredenina, T., Muhs, A., Scheiwe, C., Shah, M. J., Heiland, D. H., Schnell, O., Grün, D., Priller, J., & Prinz, M. (2019). Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nature Neuroscience, 22(12), 2098–2110. https://doi.org/10.1038/s41593-019-0532-yeng
dcterms.referencesSarkar, S., Döring, A., Zemp, F. J., Silva, C., Lun, X., Wang, X., Kelly, J., Hader, W., Hamilton, M., Mercier, P., Dunn, J. F., Kinniburgh, D., van Rooijen, N., Robbins, S., Forsyth, P., Cairncross, G., Weiss, S., & Yong, V. W. (2014). Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nature Neuroscience, 17(1), 46–55. https://doi.org/10.1038/nn.3597eng
dcterms.referencesSchelper, R. L., & Adrian, E. K. (1986). Monocytes become macrophages; they do not become microglia: A light and electron microscopic autoradiographic study using 125-iododeoxyuridine. Journal of Neuropathology and Experimental Neurology, 45(1), 1–19. https://doi.org/10.1097/00005072-198601000-00001eng
dcterms.referencesSedgwick, J. D., Schwender, S., Imrich, H., Dörries, R., Butcher, G. W., & ter Meulen, V. (1991). Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 88(16), 7438–7442. https://doi.org/10.1073/pnas.88.16.7438eng
dcterms.referencesSievers, J., Parwaresch, R., & Wottge, H. U. (1994). Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: Morphology. Glia, 12(4), 245–258. https://doi.org/10.1002/glia.440120402eng
dcterms.referencesSo, J.-S., Kim, H., & Han, K.-S. (2021). Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca2+ Signaling, and Glutamate. Frontiers in Cellular Neuroscience, 15, 190. https://doi.org/10.3389/fncel.2021.663092eng
dcterms.referencesStark, A. M., Doukas, A., Hugo, H.-H., Hedderich, J., Hattermann, K., Maximilian Mehdorn, H., & Held-Feindt, J. (2015). Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma. Neurological Research, 37(2), 95–105. https://doi.org/10.1179/1743132814Y.0000000409eng
dcterms.referencesStupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., Mirimanoff, R. O., … National Cancer Institute of Canada Clinical Trials Group. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330eng
dcterms.referencesStupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D. M., Lhermitte, B., Toms, S., Idbaih, A., Ahluwalia, M. S., Fink, K., Di Meco, F., Lieberman, F., Zhu, J.-J., Stragliotto, G., Tran, D. D., Brem, S., Hottinger, A. F., Kirson, E. D., Lavy-Shahaf, G., … Ram, Z. (2017). Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma. JAMA, 318(23), 2306–2316. https://doi.org/10.1001/jama.2017.18718eng
dcterms.referencesTamimi, A. F., & Juweid, M. (2017). Epidemiology and Outcome of Glioblastoma. In S. De Vleeschouwer (Ed.), Glioblastoma. Codon Publications. http://www.ncbi.nlm.nih.gov/books/NBK470003/eng
dcterms.referencesTan, A. C., Ashley, D. M., López, G. Y., Malinzak, M., Friedman, H. S., & Khasraw, M. (2020). Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians, 70(4), 299–312. https://doi.org/10.3322/caac.21613eng
dcterms.referencesTi-Fei, Y., & Oscar, A.-C. (2011). Adult Neurogenesis in the Hypothalamus: Evidence, Functions and Implications. CNS & Neurological Disorders - Drug Targets, 10(4), 433–439. https://www.eurekaselect.com/94462/articleeng
dcterms.referencesTimms, J. F., Carlberg, K., Gu, H., Chen, H., Kamatkar, S., Nadler, M. J., Rohrschneider, L. R., & Neel, B. G. (1998). Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Molecular and Cellular Biology, 18(7), 3838–3850. https://doi.org/10.1128/MCB.18.7.3838eng
dcterms.referencesWaitkus, M. S., Diplas, B., & Yan, H. (2018). Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell, 34(2), 186–195. https://doi.org/10.1016/j.ccell.2018.04.011eng
dcterms.referencesWalentynowicz, K. A., Ochocka, N., Pasierbinska, M., Wojnicki, K., Stepniak, K., Mieczkowski, J., Ciechomska, I. A., & Kaminska, B. (2018). In Search for Reliable Markers of Glioma-Induced Polarization of Microglia. Frontiers in Immunology, 9, 1329. https://doi.org/10.3389/fimmu.2018.01329eng
dcterms.referencesWallmann, T., Zhang, X.-M., Wallerius, M., Bolin, S., Joly, A.-L., Sobocki, C., Leiss, L., Jiang, Y., Bergh, J., Holland, E. C., Enger, P. Ø., Andersson, J., Swartling, F. J., Miletic, H., Uhrbom, L., Harris, R. A., & Rolny, C. (2018). Microglia Induce PDGFRB Expression in Glioma Cells to Enhance Their Migratory Capacity. IScience, 9, 71–83. https://doi.org/10.1016/j.isci.2018.10.011eng
dcterms.referencesWillingham, S. B., Volkmer, J.-P., Gentles, A. J., Sahoo, D., Dalerba, P., Mitra, S. S., Wang, J., Contreras-Trujillo, H., Martin, R., Cohen, J. D., Lovelace, P., Scheeren, F. A., Chao, M. P., Weiskopf, K., Tang, C., Volkmer, A. K., Naik, T. J., Storm, T. A., Mosley, A. R., … Weissman, I. L. (2012). The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6662–6667. https://doi.org/10.1073/pnas.1121623109eng
dcterms.referencesWu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13(5), 497–505. https://doi.org/10.1038/ncb0511-497eng
dcterms.referencesXia, Z., Ouyang, D., Li, Q., Li, M., Zou, Q., Li, L., Yi, W., & Zhou, E. (2019). The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. Journal of Cancer, 10(7), 1663–1674. https://doi.org/10.7150/jca.28231eng
dcterms.referencesXu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.-H., Ito, S., Yang, C., Wang, P., Xiao, M.-T., Liu, L., Jiang, W., Liu, J., Zhang, J., Wang, B., Frye, S., Zhang, Y., Xu, Y., Lei, Q., … Xiong, Y. (2011). Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 19(1), 17–30. https://doi.org/10.1016/j.ccr.2010.12.014eng
dcterms.referencesYoshimura, T. (2017). The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine, 98, 71–78. https://doi.org/10.1016/j.cyto.2017.02.001eng
dcterms.referencesZernecke, A., Winkels, H., Cochain, C., Williams, J. W., Wolf, D., Soehnlein, O., Robbins, C. S., Monaco, C., Park, I., McNamara, C. A., Binder, C. J., Cybulsky, M. I., Scipione, C. A., Hedrick, C. C., Galkina, E. V., Kyaw, T., Ghosheh, Y., Dinh, H. Q., & Ley, K. (2020). Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 127(3), 402–426. https://doi.org/10.1161/CIRCRESAHA.120.316903eng
dcterms.referencesZhang, H., Zhang, H., Zhao, M., Lv, Z., Zhang, X., Qin, X., Wang, H., Wang, S., Su, J., Lv, X., Liu, H., Du, W., Zhou, W., Chen, X., & Fei, K. (2013). MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 31(1), 56–65. https://doi.org/10.1159/000343349eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaEspecialización en Medicina Internaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
909.41 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
680.57 KB
Formato:
Adobe Portable Document Format

Colecciones