Revisión sobre el papel de la microglia en el glioblastoma entre los años 1990 a 2020
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Navarro Quiroz, Elkin | |
dc.contributor.author | Puentes Velásquez, Erika Lorena | |
dc.date.accessioned | 2021-12-06T19:12:08Z | |
dc.date.available | 2021-12-06T19:12:08Z | |
dc.date.issued | 2021 | |
dc.description.abstract | La información que rodea los fenómenos de interacción entre el glioblastomas y las células es amplio y contradictorio entre autores, por lo que una síntesis de los aspectos más destacado de la clínica que involucra esta interacción es trabajo que tiene un gran costo intelectual que a su vez se ha de traducir en un largo tiempo en depuración de los datos asociado a este fenómeno. Objetivo General: Describir el estado actual del conocimiento de las interacciones de la microglía con las células del glioblastoma y los mecanismos epigenéticos implicados en esta interacción. Materiales y Métodos: Revisión sistemática Estrategias de búsqueda y fuentes de información: Varias estrategias de búsqueda se utilizaron para intentar localizar todos los estudios que cumplieran los criterios de inclusión. Las búsquedas fueron realizadas por los investigadores durante los años 1990 a 2020. Las bases de datos consultadas fueron las siguientes: PubMed-Medline, Web of Science, EMBASE (a través de Scopus). Los términos del MeSH seleccionados fueron: “Neural Stem Cells”, “Microglia”,”oblastoma Stem Cells”, “Interactions in The Neurogenic Niche“, “Signaling Pathways in Microglia”, and “Therapeutic Target for Glioblastoma. | spa |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/9206 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Neural Stem Cells | spa |
dc.subject | Microglia | spa |
dc.subject | Oblastoma Stem Cell | eng |
dc.subject | Interactions in The Neurogenic Niche | eng |
dc.subject | Signaling Pathways in Microglia | eng |
dc.subject | Therapeutic Target for Glioblastoma | eng |
dc.title | Revisión sobre el papel de la microglia en el glioblastoma entre los años 1990 a 2020 | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.spa | Otros | spa |
dcterms.references | Akhavan, D., Alizadeh, D., Wang, D., Weist, M. R., Shepphird, J. K., & Brown, C. E. (2019). CAR T cells for brain tumors: Lessons learned and road ahead. Immunological Reviews, 290(1), 60–84. https://doi.org/10.1111/imr.12773 | eng |
dcterms.references | Alexander, B. M., & Cloughesy, T. F. (2017). Adult Glioblastoma. Journal of Clinical Oncology, 35(21), 2402–2409. https://doi.org/10.1200/JCO.2017.73.0119 | eng |
dcterms.references | Anfray, C., Ummarino, A., Andón, F. T., & Allavena, P. (2020). Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells, 9(1), 46. https://doi.org/10.3390/cells9010046 | eng |
dcterms.references | Beroukhim, R., Getz, G., Nghiemphu, L., Barretina, J., Hsueh, T., Linhart, D., Vivanco, I., Lee, J. C., Huang, J. H., Alexander, S., Du, J., Kau, T., Thomas, R. K., Shah, K., Soto, H., Perner, S., Prensner, J., Debiasi, R. M., Demichelis, F., … Sellers, W. R. (2007). Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20007–20012. https://doi.org/10.1073/pnas.0710052104 | eng |
dcterms.references | Bowman, R. L., Klemm, F., Akkari, L., Pyonteck, S. M., Sevenich, L., Quail, D. F., Dhara, S., Simpson, K., Gardner, E. E., Iacobuzio-Donahue, C. A., Brennan, C. W., Tabar, V., Gutin, P. H., & Joyce, J. A. (2016). Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 17(9), 2445–2459. https://doi.org/10.1016/j.celrep.2016.10.052 | eng |
dcterms.references | Brandenburg, S., Müller, A., Turkowski, K., Radev, Y. T., Rot, S., Schmidt, C., Bungert, A. D., Acker, G., Schorr, A., Hippe, A., Miller, K., Heppner, F. L., Homey, B., & Vajkoczy, P. (2016). Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathologica, 131(3), 365–378. https://doi.org/10.1007/s00401-015-1529-6 | eng |
dcterms.references | Brennan, C., Momota, H., Hambardzumyan, D., Ozawa, T., Tandon, A., Pedraza, A., & Holland, E. (2009). Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations. PLOS ONE, 4(11), e7752. https://doi.org/10.1371/journal.pone.0007752 | eng |
dcterms.references | Brown, N. F., Carter, T. J., Ottaviani, D., & Mulholland, P. (2018). Harnessing the immune system in glioblastoma. British Journal of Cancer, 119(10), 1171–1181. https://doi.org/10.1038/s41416-018-0258-8 | eng |
dcterms.references | Cahill, D. P., Levine, K. K., Betensky, R. A., Codd, P. J., Romany, C. A., Reavie, L. B., Batchelor, T. T., Futreal, P. A., Stratton, M. R., Curry, W. T., Iafrate, A. J., & Louis, D. N. (2007). Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 13(7), 2038–2045. https://doi.org/10.1158/1078-0432.CCR-06-2149 | eng |
dcterms.references | Cambruzzi, E. (2017). The role of IDH1/2 mutations in the pathogenesis of secondary glioblastomas. Jornal Brasileiro de Patologia e Medicina Laboratorial, 53, 338–344. https://doi.org/10.5935/1676-2444.20170055 | eng |
dcterms.references | Campos, B., Olsen, L. R., Urup, T., & Poulsen, H. S. (2016). A comprehensive profile of recurrent glioblastoma. Oncogene, 35(45), 5819–5825. https://doi.org/10.1038/onc.2016.85 | eng |
dcterms.references | Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. https://doi.org/10.1038/nature07385 | eng |
dcterms.references | Carter, J. L., Hege, K., Yang, J., Kalpage, H. A., Su, Y., Edwards, H., Hüttemann, M., Taub, J. W., & Ge, Y. (2020). Targeting multiple signaling pathways: The new approach to acute myeloid leukemia therapy. Signal Transduction and Targeted Therapy, 5(1), 1–29. https://doi.org/10.1038/s41392-020-00361-x | eng |
dcterms.references | Carvalho, J. A. D. V., Barbosa, C. C. de L., Feher, O., Maldaun, M. V. C., Camargo, V. P. de, Moraes, F. Y., & Marta, G. N. (2019). Systemic dissemination of glioblastoma: Literature review. Revista Da Associação Médica Brasileira, 65, 460–468. https://doi.org/10.1590/1806-9282.65.3.460 | eng |
dcterms.references | Chaichana, K. L., Parker, S. L., Olivi, A., & Quiñones-Hinojosa, A. (2009). Long-term seizure outcomes in adult patients undergoing primary resection of malignant brain astrocytomas. Clinical article. Journal of Neurosurgery, 111(2), 282–292. https://doi.org/10.3171/2009.2.JNS081132 | eng |
dcterms.references | Cohen, A., Holmen, S., & Colman, H. (2013). IDH1 and IDH2 Mutations in Gliomas. Current Neurology and Neuroscience Reports, 13(5), 345. https://doi.org/10.1007/s11910-013-0345-4 | eng |
dcterms.references | Dobes, M., Khurana, V. G., Shadbolt, B., Jain, S., Smith, S. F., Smee, R., Dexter, M., & Cook, R. (2011). Increasing incidence of glioblastoma multiforme and meningioma, and decreasing incidence of Schwannoma (2000–2008): Findings of a multicenter Australian study. Surgical Neurology International, 2, 176. https://doi.org/10.4103/2152-7806.90696 | eng |
dcterms.references | Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703–716. https://doi.org/10.1016/s0092-8674(00)80783-7 | eng |
dcterms.references | Fan, C.-H., Liu, W.-L., Cao, H., Wen, C., Chen, L., & Jiang, G. (2013). O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death & Disease, 4(10), e876. https://doi.org/10.1038/cddis.2013.388 | eng |
dcterms.references | Fan, Q.-W., Cheng, C., Knight, Z. A., Haas-Kogan, D., Stokoe, D., James, C. D., McCormick, F., Shokat, K. M., & Weiss, W. A. (2009). EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma. Science Signaling, 2(55), ra4–ra4. https://doi.org/10.1126/scisignal.2000014 | eng |
dcterms.references | Gabrusiewicz, K., Ellert-Miklaszewska, A., Lipko, M., Sielska, M., Frankowska, M., & Kaminska, B. (2011). Characteristics of the Alternative Phenotype of Microglia/Macrophages and its Modulation in Experimental Gliomas. PLOS ONE, 6(8), e23902. https://doi.org/10.1371/journal.pone.0023902 | eng |
dcterms.references | Gholamin, S., Mitra, S. S., Feroze, A. H., Liu, J., Kahn, S. A., Zhang, M., Esparza, R., Richard, C., Ramaswamy, V., Remke, M., Volkmer, A. K., Willingham, S., Ponnuswami, A., McCarty, A., Lovelace, P., Storm, T. A., Schubert, S., Hutter, G., Narayanan, C., … Cheshier, S. H. (2017). Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 9(381), eaaf2968. https://doi.org/10.1126/scitranslmed.aaf2968 | eng |
dcterms.references | Ginhoux, F., Lim, S., Hoeffel, G., Low, D., & Huber, T. (2013). Origin and differentiation of microglia. Frontiers in Cellular Neuroscience, 7, 45. https://doi.org/10.3389/fncel.2013.00045 | eng |
dcterms.references | Gonzalez-Perez, O., Gutierrez-Fernandez, F., Lopez-Virgen, V., Collas-Aguilar, J., Quinones-Hinojosa, A., & Garcia-Verdugo, J. M. (2012). Immunological regulation of neurogenic niches in the adult brain. Neuroscience, 226, 270–281. https://doi.org/10.1016/j.neuroscience.2012.08.053 | eng |
dcterms.references | Gousias, K., Markou, M., Voulgaris, S., Goussia, A., Voulgari, P., Bai, M., Polyzoidis, K., Kyritsis, A., & Alamanos, Y. (2009). Descriptive Epidemiology of Cerebral Gliomas in Northwest Greece and Study of Potential Predisposing Factors, 2005–2007. Neuroepidemiology, 33(2), 89–95. https://doi.org/10.1159/000222090 | eng |
dcterms.references | Grech, N., Dalli, T., Mizzi, S., Meilak, L., Calleja, N., & Zrinzo, A. (2020). Rising Incidence of Glioblastoma Multiforme in a Well-Defined Population. Cureus, 12(5), e8195. https://doi.org/10.7759/cureus.8195 | eng |
dcterms.references | Hambardzumyan, D., Gutmann, D. H., & Kettenmann, H. (2016). The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience, 19(1), 20–27. https://doi.org/10.1038/nn.4185 | eng |
dcterms.references | Han, S., Liu, Y., Cai, S. J., Qian, M., Ding, J., Larion, M., Gilbert, M. R., & Yang, C. (2020). IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets. British Journal of Cancer, 122(11), 1580–1589. https://doi.org/10.1038/s41416-020-0814-x | eng |
dcterms.references | Hira, V. V. V., Breznik, B., Vittori, M., Loncq de Jong, A., Mlakar, J., Oostra, R.-J., Khurshed, M., Molenaar, R. J., Lah, T., & Van Noorden, C. J. F. (2020). Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 68(1), 33–57. https://doi.org/10.1369/0022155419878416 | eng |
dcterms.references | Holland, E. C. (2000). Glioblastoma multiforme: The terminator. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6242–6244. https://doi.org/10.1073/pnas.97.12.6242 | eng |
dcterms.references | J, J., Vanisree, A. J., Ravisankar, S., & K, R. (2019). Site specific hypermethylation of CpGs in Connexin genes 30, 26 and 43 in different grades of glioma and attenuated levels of their mRNAs. The International Journal of Neuroscience, 129(3), 273–282. https://doi.org/10.1080/00207454.2018.1526802 | eng |
dcterms.references | Jiang, L., Fang, X., Bao, Y., Zhou, J.-Y., Shen, X.-Y., Ding, M.-H., Chen, Y., Hu, G.-H., & Lu, Y.-C. (2013). Association between the XRCC1 Polymorphisms and Glioma Risk: A Meta-Analysis of Case-Control Studies. PLOS ONE, 8(1), e55597. https://doi.org/10.1371/journal.pone.0055597 | eng |
dcterms.references | Juratli, T. A., Kirsch, M., Robel, K., Soucek, S., Geiger, K., von Kummer, R., Schackert, G., & Krex, D. (2012). IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. Journal of Neuro-Oncology, 108(3), 403–410. https://doi.org/10.1007/s11060-012-0844-1 | eng |
dcterms.references | Klopfenstein, Q., Truntzer, C., Vincent, J., & Ghiringhelli, F. (2019). Cell lines and immune classification of glioblastoma define patient’s prognosis. British Journal of Cancer, 120(8), 806–814. https://doi.org/10.1038/s41416-019-0404-y | eng |
dcterms.references | Krämer, O. H., Zhu, P., Ostendorff, H. P., Golebiewski, M., Tiefenbach, J., Peters, M. A., Brill, B., Groner, B., Bach, I., Heinzel, T., & Göttlicher, M. (2003). The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. The EMBO Journal, 22(13), 3411–3420. https://doi.org/10.1093/emboj/cdg315 | eng |
dcterms.references | Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(6), 2027–2033. | eng |
dcterms.references | Li, Q., & Barres, B. A. (2018). Microglia and macrophages in brain homeostasis and disease. Nature Reviews. Immunology, 18(4), 225–242. https://doi.org/10.1038/nri.2017.125 | eng |
dcterms.references | Li, W., & Graeber, M. B. (2012). The molecular profile of microglia under the influence of glioma. Neuro-Oncology, 14(8), 958–978. https://doi.org/10.1093/neuonc/nos116 | eng |
dcterms.references | Litak, J., Mazurek, M., Grochowski, C., Kamieniak, P., & Roliński, J. (2019). PD-L1/PD-1 Axis in Glioblastoma Multiforme. International Journal of Molecular Sciences, 20(21), 5347. https://doi.org/10.3390/ijms20215347 | eng |
dcterms.references | Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W., & Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97–109. https://doi.org/10.1007/s00401-007-0243-4 | eng |
dcterms.references | Lu, G., Rao, M., Zhu, P., Liang, B., El-Nazer, R. T., Fonkem, E., Bhattacharjee, M. B., & Zhu, J.-J. (2019). Triple-drug Therapy With Bevacizumab, Irinotecan, and Temozolomide Plus Tumor Treating Fields for Recurrent Glioblastoma: A Retrospective Study. Frontiers in Neurology, 10, 42. https://doi.org/10.3389/fneur.2019.00042 | eng |
dcterms.references | Nakada, M., Hayashi, Y., & Hamada, J. (2011). Role of Eph/ephrin tyrosine kinase in malignant glioma. Neuro-Oncology, 13(11), 1163–1170. https://doi.org/10.1093/neuonc/nor102 | eng |
dcterms.references | Ostrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y., Stroup, N. E., Kruchko, C., & Barnholtz-Sloan, J. S. (2013). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006-2010. Neuro-Oncology, 15(Suppl 2), ii1–ii56. https://doi.org/10.1093/neuonc/not151 | eng |
dcterms.references | Ostrom, Q. T., Gittleman, H., Xu, J., Kromer, C., Wolinsky, Y., Kruchko, C., & Barnholtz-Sloan, J. S. (2016). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro-Oncology, 18(suppl_5), v1–v75. https://doi.org/10.1093/neuonc/now207 | eng |
dcterms.references | Pang, L., Qin, J., Han, L., Zhao, W., Liang, J., Xie, Z., Yang, P., & Wang, J. (2016). Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget, 7(24), 37081–37091. https://doi.org/10.18632/oncotarget.9464 | eng |
dcterms.references | Patel, A. R., Ritzel, R., McCullough, L. D., & Liu, F. (2013). Microglia and ischemic stroke: A double-edged sword. International Journal of Physiology, Pathophysiology and Pharmacology, 5(2), 73–90. | eng |
dcterms.references | Pearson, J. R. D., Cuzzubbo, S., McArthur, S., Durrant, L. G., Adhikaree, J., Tinsley, C. J., Pockley, A. G., & McArdle, S. E. B. (2020). Immune Escape in Glioblastoma Multiforme and the Adaptation of Immunotherapies for Treatment. Frontiers in Immunology, 11, 582106. https://doi.org/10.3389/fimmu.2020.582106 | eng |
dcterms.references | Purow, B., & Schiff, D. (2009). Advances in the genetics of glioblastoma: Are we reaching critical mass? Nature Reviews. Neurology, 5(8), 419–426. https://doi.org/10.1038/nrneurol.2009.96 | eng |
dcterms.references | Reid, G., Métivier, R., Lin, C.-Y., Denger, S., Ibberson, D., Ivacevic, T., Brand, H., Benes, V., Liu, E. T., & Gannon, F. (2005). Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene, 24(31), 4894–4907. https://doi.org/10.1038/sj.onc.1208662 | eng |
dcterms.references | Ribeiro Xavier, A. L., Kress, B. T., Goldman, S. A., Lacerda de Menezes, J. R., & Nedergaard, M. (2015). A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(34), 11848–11861. https://doi.org/10.1523/JNEUROSCI.1217-15.2015 | eng |
dcterms.references | Rivera, A. L., Pelloski, C. E., Gilbert, M. R., Colman, H., De La Cruz, C., Sulman, E. P., Bekele, B. N., & Aldape, K. D. (2010). MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-Oncology, 12(2), 116–121. https://doi.org/10.1093/neuonc/nop020 | eng |
dcterms.references | Samokhvalov, I. M., Samokhvalova, N. I., & Nishikawa, S. (2007). Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature, 446(7139), 1056–1061. https://doi.org/10.1038/nature05725 | eng |
dcterms.references | Sankowski, R., Böttcher, C., Masuda, T., Geirsdottir, L., Sagar, Sindram, E., Seredenina, T., Muhs, A., Scheiwe, C., Shah, M. J., Heiland, D. H., Schnell, O., Grün, D., Priller, J., & Prinz, M. (2019). Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nature Neuroscience, 22(12), 2098–2110. https://doi.org/10.1038/s41593-019-0532-y | eng |
dcterms.references | Sarkar, S., Döring, A., Zemp, F. J., Silva, C., Lun, X., Wang, X., Kelly, J., Hader, W., Hamilton, M., Mercier, P., Dunn, J. F., Kinniburgh, D., van Rooijen, N., Robbins, S., Forsyth, P., Cairncross, G., Weiss, S., & Yong, V. W. (2014). Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nature Neuroscience, 17(1), 46–55. https://doi.org/10.1038/nn.3597 | eng |
dcterms.references | Schelper, R. L., & Adrian, E. K. (1986). Monocytes become macrophages; they do not become microglia: A light and electron microscopic autoradiographic study using 125-iododeoxyuridine. Journal of Neuropathology and Experimental Neurology, 45(1), 1–19. https://doi.org/10.1097/00005072-198601000-00001 | eng |
dcterms.references | Sedgwick, J. D., Schwender, S., Imrich, H., Dörries, R., Butcher, G. W., & ter Meulen, V. (1991). Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 88(16), 7438–7442. https://doi.org/10.1073/pnas.88.16.7438 | eng |
dcterms.references | Sievers, J., Parwaresch, R., & Wottge, H. U. (1994). Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: Morphology. Glia, 12(4), 245–258. https://doi.org/10.1002/glia.440120402 | eng |
dcterms.references | So, J.-S., Kim, H., & Han, K.-S. (2021). Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca2+ Signaling, and Glutamate. Frontiers in Cellular Neuroscience, 15, 190. https://doi.org/10.3389/fncel.2021.663092 | eng |
dcterms.references | Stark, A. M., Doukas, A., Hugo, H.-H., Hedderich, J., Hattermann, K., Maximilian Mehdorn, H., & Held-Feindt, J. (2015). Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma. Neurological Research, 37(2), 95–105. https://doi.org/10.1179/1743132814Y.0000000409 | eng |
dcterms.references | Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E., Mirimanoff, R. O., … National Cancer Institute of Canada Clinical Trials Group. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330 | eng |
dcterms.references | Stupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D. M., Lhermitte, B., Toms, S., Idbaih, A., Ahluwalia, M. S., Fink, K., Di Meco, F., Lieberman, F., Zhu, J.-J., Stragliotto, G., Tran, D. D., Brem, S., Hottinger, A. F., Kirson, E. D., Lavy-Shahaf, G., … Ram, Z. (2017). Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma. JAMA, 318(23), 2306–2316. https://doi.org/10.1001/jama.2017.18718 | eng |
dcterms.references | Tamimi, A. F., & Juweid, M. (2017). Epidemiology and Outcome of Glioblastoma. In S. De Vleeschouwer (Ed.), Glioblastoma. Codon Publications. http://www.ncbi.nlm.nih.gov/books/NBK470003/ | eng |
dcterms.references | Tan, A. C., Ashley, D. M., López, G. Y., Malinzak, M., Friedman, H. S., & Khasraw, M. (2020). Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians, 70(4), 299–312. https://doi.org/10.3322/caac.21613 | eng |
dcterms.references | Ti-Fei, Y., & Oscar, A.-C. (2011). Adult Neurogenesis in the Hypothalamus: Evidence, Functions and Implications. CNS & Neurological Disorders - Drug Targets, 10(4), 433–439. https://www.eurekaselect.com/94462/article | eng |
dcterms.references | Timms, J. F., Carlberg, K., Gu, H., Chen, H., Kamatkar, S., Nadler, M. J., Rohrschneider, L. R., & Neel, B. G. (1998). Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Molecular and Cellular Biology, 18(7), 3838–3850. https://doi.org/10.1128/MCB.18.7.3838 | eng |
dcterms.references | Waitkus, M. S., Diplas, B., & Yan, H. (2018). Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell, 34(2), 186–195. https://doi.org/10.1016/j.ccell.2018.04.011 | eng |
dcterms.references | Walentynowicz, K. A., Ochocka, N., Pasierbinska, M., Wojnicki, K., Stepniak, K., Mieczkowski, J., Ciechomska, I. A., & Kaminska, B. (2018). In Search for Reliable Markers of Glioma-Induced Polarization of Microglia. Frontiers in Immunology, 9, 1329. https://doi.org/10.3389/fimmu.2018.01329 | eng |
dcterms.references | Wallmann, T., Zhang, X.-M., Wallerius, M., Bolin, S., Joly, A.-L., Sobocki, C., Leiss, L., Jiang, Y., Bergh, J., Holland, E. C., Enger, P. Ø., Andersson, J., Swartling, F. J., Miletic, H., Uhrbom, L., Harris, R. A., & Rolny, C. (2018). Microglia Induce PDGFRB Expression in Glioma Cells to Enhance Their Migratory Capacity. IScience, 9, 71–83. https://doi.org/10.1016/j.isci.2018.10.011 | eng |
dcterms.references | Willingham, S. B., Volkmer, J.-P., Gentles, A. J., Sahoo, D., Dalerba, P., Mitra, S. S., Wang, J., Contreras-Trujillo, H., Martin, R., Cohen, J. D., Lovelace, P., Scheeren, F. A., Chao, M. P., Weiskopf, K., Tang, C., Volkmer, A. K., Naik, T. J., Storm, T. A., Mosley, A. R., … Weissman, I. L. (2012). The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6662–6667. https://doi.org/10.1073/pnas.1121623109 | eng |
dcterms.references | Wu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13(5), 497–505. https://doi.org/10.1038/ncb0511-497 | eng |
dcterms.references | Xia, Z., Ouyang, D., Li, Q., Li, M., Zou, Q., Li, L., Yi, W., & Zhou, E. (2019). The Expression, Functions, Interactions and Prognostic Values of PTPRZ1: A Review and Bioinformatic Analysis. Journal of Cancer, 10(7), 1663–1674. https://doi.org/10.7150/jca.28231 | eng |
dcterms.references | Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.-H., Ito, S., Yang, C., Wang, P., Xiao, M.-T., Liu, L., Jiang, W., Liu, J., Zhang, J., Wang, B., Frye, S., Zhang, Y., Xu, Y., Lei, Q., … Xiong, Y. (2011). Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 19(1), 17–30. https://doi.org/10.1016/j.ccr.2010.12.014 | eng |
dcterms.references | Yoshimura, T. (2017). The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine, 98, 71–78. https://doi.org/10.1016/j.cyto.2017.02.001 | eng |
dcterms.references | Zernecke, A., Winkels, H., Cochain, C., Williams, J. W., Wolf, D., Soehnlein, O., Robbins, C. S., Monaco, C., Park, I., McNamara, C. A., Binder, C. J., Cybulsky, M. I., Scipione, C. A., Hedrick, C. C., Galkina, E. V., Kyaw, T., Ghosheh, Y., Dinh, H. Q., & Ley, K. (2020). Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 127(3), 402–426. https://doi.org/10.1161/CIRCRESAHA.120.316903 | eng |
dcterms.references | Zhang, H., Zhang, H., Zhao, M., Lv, Z., Zhang, X., Qin, X., Wang, H., Wang, S., Su, J., Lv, X., Liu, H., Du, W., Zhou, W., Chen, X., & Fei, K. (2013). MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 31(1), 56–65. https://doi.org/10.1159/000343349 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Especialización en Medicina Interna | spa |
sb.sede | Sede Barranquilla | spa |