Bacillus strain selection with plant growth-promoting mechanisms as potential elicitors of systemic resistance to gray mold in pepper plants

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.authorMárquez, Robert
dc.contributor.authorLorena Blanco, Erika
dc.contributor.authorAranguren, Yani
dc.date.accessioned2020-07-27T18:25:45Z
dc.date.available2020-07-27T18:25:45Z
dc.date.issued2020
dc.description.abstractCertain soil bacteria produce beneficial effects on the growth and health of plants; hence, their use is steadily increasing. Five strains of Bacillus with plant growth-promoting potential were selected in this study, which produced indole-3-acetic acid levels below 50 mg.mL 1. On the other hand, while only strains M8 and M15 dissolved phosphorus, the latter was the only strain that did not produce siderophores. Only strains M8 and M16 significantly inhibited the in vitro growth of Botrytis cinerea and Fusarium solani phytopathogens, whose inhibition ranges fluctuated between 60% and 63% for strains M8 and M16 against B. cinerea and between 40% and 53% for strains M8 and M16 against F. solani. Based on these results, the need to implement resistance induction against gray mold on pepper plants was determined using strains M8 and M16. In this case, strain M16 inhibited the propagation of the necrotic spot by approximately 70%, whereas strain M8 significantly reduced the superoxide dismutase activity in systemic leaves, which substantially increased in plants inoculated with strain M8 and infected with the pathogen. Accordingly, the use of native rhizobacteria may entail biotechnological progress for the integrated management of crops in agriculture industry.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1016/j.sjbs.2020.06.015
dc.identifier.issn22137106
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6238
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S1319562X20302540
dc.language.isoengeng
dc.publisherElsevierspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceSaudi Journal of Biological Scienceseng
dc.sourceVol 27, N° 8, (2020)
dc.subjectBacilluseng
dc.subjectBotrytis cinereaeng
dc.subjectCapsicum annuumeng
dc.subjectInduced systemic resistanceeng
dc.subjectPlant growth-promoting rhizobacteriaeng
dc.titleBacillus strain selection with plant growth-promoting mechanisms as potential elicitors of systemic resistance to gray mold in pepper plantseng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesAbbey, J.A., Percival, D., Abbey, Lord, Asiedu, S.K., Schilder, A., 2019. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)— prospects and challenges. Biocontrol. Sci. Technol. 29, 207–228. https://doi.org/ 10.1080/09583157.2018.1548574.eng
dcterms.referencesAguado-Santacruz, G.A., Moreno-Gómez, B., Jiménez-Francisco, B., García-Moya, E., Preciado-Ortiz, R.E., 2012. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: una síntesis. Rev. Fitotec. Mex. 35, 9–21.spa
dcterms.referencesAkinrinlola, R.J., Yuen, G.Y., Drijber, R.A., Adesemoye, A.O., 2018. Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int. J. Microbiol. 2018, 1–11. https://doi.org/ 10.1155/2018/5686874.eng
dcterms.referencesAltschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 27, 3389–3402. https://doi.org/ 10.1093/nar/25.17.3389.eng
dcterms.referencesBaldan, E., Nigris, S., Romualdi, C., D’Alessandro, S., Clocchiatti, A., Zottini., M., Stevanato, P., Squartini, A., Baldan, B., 2015. Beneficial bacteria isolated from grapevine inner tissues shape Arabidopsis thaliana roots. PLoS One. 10, 1–18. https://doi.org/10.1371/journal.pone.0140252.eng
dcterms.referencesBenson, S., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2012. GenBank. Nucleic Acids Res. 41, D36–42.eng
dcterms.referencesBarriuso, J., Ramos Solano, B., Lucas, J.A., Probanza Lobo, A., García-Villaraco, A., Gutiérrez Mañero, F.J., 2008. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad, I., Pichtel, J., Hayat, S. (Eds.), Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth, WILEY-VCH, Weinheim, pp. 1–13.eng
dcterms.referencesBergkessel, M., Guthire, C., 2013. Colony PCR. Methods Enzymol. 529, 299–309, https://doi.org/10.1016/B978-0-12-418687-3.00025-2.eng
dcterms.referencesBeauchamp, C., Fridovich, I., 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.eng
dcterms.referencesBlanco, E.L., Castro, Y., Olivo, A., Skwierinski, R., Moronta, F., 2018. Germinación y crecimiento de plántulas de pimentón y lechuga inoculadas con rizobios e identificación molecular de las cepas. Bioagro 30, 207–218.spa
dcterms.referencesBric, J.M., Bostock, R.M., Silverstone, S.E., 1991. Raid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57, 535–538.eng
dcterms.referencesCastellano-Hinojosa, A., Pérez-Tapia, V., Bedmar, E.J., Santillana, N., 2018. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124, 1254–1264. https://doi.org/10.1111/jam.13708.eng
dcterms.referencesCawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thornart, P., Dommes, J., Ongena, M., 2014. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant. Microbe Interact. 27, 87– 100. https://doi.org/10.1094/MPMI-09-13-0262-R.eng
dcterms.referencesCheewawiriyakul, S., Conn, K., Gabor, B., Woodland, J.K., Salati, R., 2006. Pepper & eggplant disease guide. Seminis grow forward.eng
dcterms.referencesChoudhary, D.K., Johri, B.N., 2009. Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493– 513. https://doi.org/10.1016/j.micres.2008.08.007.eng
dcterms.referencesChowdhury, S.P., Hartmann, A., Gao, X., Borriss, R., 2015. Biocontrol mechanism by root- associated Bacillus amyloliquefaciens FZB42—a review. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.00780.eng
dcterms.referencesDe Meyer, G., Bigirimana, J., Elad, Y., Höfte, M., 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104, 279–286.eng
dcterms.referencesDe Vos, P., Ludwing, W., Schleifer, K.H., Whitman, W.B., 2009. Family IV. Paenibacillaceae fam. nov., in: Bergey’s Manual of Systematic Bacteriology. Springer, Dordrecht, pp. 269–295.eng
dcterms.referencesDhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101.eng
dcterms.referencesDoetsch, R.N., 1981. Determinative methods of light Microscopy, en: Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, pp. 21–32.eng
dcterms.referencesDomínguez, I., Cedeño, L., Briceño, A., Pino, H., Quintero, K., Rodríguez, L., 2008. Primer reporte en Venezuela de Botrytis cinerea causando quema foliar en lisianto (Eustoma grandiflorum). Rev. For. Venezol. 52, 173–176.eng
dcterms.referencesDuca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant– microbe interactions. Antonie Van Leeuwenhoek 106, 85–125. https://doi.org/ 10.1007/s10482-013-0095-y.eng
dcterms.referencesEnebe, M.C., Babalola, O.O., 2019. The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Appl. Microbiol. Biotechnol. 103, 9–25.eng
dcterms.referencesFEDEAGRO, 2018. Continúa la recesión agrícola y la indiferencia por la producción de alimentos. Los resultados de la agricultura vegetal en el año 2017. https:// fedeagro.org/resultados-de-la-agricultura-vegetal-del-2017/ (accessed 8 July 2019).spa
dcterms.referencesFiguereido, M.V.B., Bonifacio, A., Cerqueira-Rodrigues, A., de Araujo, F.F., 2016. Plant growth-promoting rhizobateria: key mechanisms of action. In: Choudhary, D.K., Varma, A. (Eds.), Microbial-Mediated Induced Systemic Resistance in Plants. Springer, Noida, pp. 23–33.eng
dcterms.referencesGerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., Rey, P., 2014. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ. Sci. Pollut. Res. 21, 4847–4860.eng
dcterms.referencesGiannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutase: I. occurrence in higher plants. Plant Physiol. 59, 309–314. https://doi.org/10.1104/pp.59.2.309.eng
dcterms.referencesGlickmann, E., Dessaux, Y., 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793–796eng
dcterms.referencesGornall, A.G., Bardawill, C.J., David, M.M., 1948. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751–766.eng
dcterms.referencesGovrin, E.M., Levine, A., 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751–757.eng
dcterms.referencesGrady, E.N., MacDonald, J., Liu, L., Richman, A., Yuan, Z.C., 2016. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 15, 1–18. https:// doi.org/10.1186/s12934-016-0603-7.eng
dcterms.referencesGullino, M., 1992. Chemical control of Botrytis spp., in: Verhoeff, K., Malathrakis, N., Williamson, B. (Eds.), Recent Advances in Botrytis Research. Centre for Agricultural Publishing and documentation (Pudoc), Wageningen, Netherlands, pp. 217–220.eng
dcterms.referencesGumiere, T., Rousseau, A.N., da Costa, D.P., Cassetari, A., Raposo Cotta, S., Dini Andreote, F., Gumiere, S.J., Pavinato, P.S., 2019. Phosphorus source driving the soil microbial interactions and improving sugarcane development. Sci Rep 9, 4400. https://doi.org/10.1038/s41598-019-40910-1.eng
dcterms.referencesGutiérrez, M., 2008. Segundo informe nacional sobre el estado de los recursos fitogenéticos para la agricultura y la alimentación. INIA y FAO, Venezuela, p. 26.spa
dcterms.referencesJaimez, R.E., Cedeño, L., Añez, B., Espinoza, W., 2010. Pimentón en invernadero, Primera. ed, Cultivos en invernadero. Universidad de Los Andes, Mérida, pp. 45.spa
dcterms.referencesJain, S., Varma, A., Tuteja, N., Choudhary, D.K., 2016. Plant growth-promoting microbial-mediated induced systemic resistance in plants: induction, mechanisms, and expression. In: Choudhary, D.K., Varma, A. (Eds.), Microbial- Mediated Induced Systemic Resistance in Plants. Springer, pp. 213–222.eng
dcterms.referencesJiang, C., Liao, M.J., Wang, H.K., Zheng, M.Z., Xu, J.J., Guo, J.H., 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control. 126, 147–157. https://doi.org/10.1016/j. biocontrol.2018.07.017.eng
dcterms.referencesKavamura, V.N., Santos, S.N., da Silva, J.L., Parma, M.M., Ávila, L.A., Visconti, A., Zucchi, T.D., Taketani, R.G., Andreote, F.D., de Melo, I.S., 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 168, 183–191. https://doi.org/10.1016/j.micres.2012.12.002.eng
dcterms.referencesKesaulya, H., Hasinu, J.V., Tuhumury, G.N., 2018. Potential of Bacillus spp. produces siderophores in suppressing the wilt disease of banana plants. IOP Conf. Ser. Earth. Environ. Sci. 102,. https://doi.org/10.1088/1755-1315/102/1/012016 012016.eng
dcterms.referencesKhan, M.S., Zaidi, A., Ahmad, E., 2014. Mechanisms of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan, M. S., Zaidi, A., Musarrat, J. (Eds.), Phosphate Solubilizing Microorganisms Principles and Application of Microphos Technology. Springer International Publishing, Switzerland, pp. 31–62.eng
dcterms.referencesKim, Y.S., Song, J.G., Lee, I.K., Yeo, W.H., Yun, B.S., 2013. Bacillus sp. BS061 suppresses powdery Mildew and gray mold. Mycobiology 42, 108–111. https://doi.org/ 10.5941/MYCO.2013.41.2.108.eng
dcterms.referencesKumar, A., Prakash, A., Johri, B.N., 2011. Bacillus as PGPR in crop ecosystem. In: Maheshwari, D.K. (Ed.), Bacteria in Agrobiology. Springer-Verlag, Berlin, pp. 37– 59.eng
dcterms.referencesKumar, M., Teotia, P., Varma, A., Tuteja, N., Kumar, V., 2016. Induced systemic resistance by rhizospheric microbes. In: Choudhary, D.K., Varma, A. (Eds.), Microbial-Mediated Induced Systemic Resistance in Plants. Springer, Noida, pp. 197–204.eng
dcterms.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.eng
dcterms.referencesLiang, J., Tao, R., Hao, Z., Wang, L., Zhang, X., 2011. Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. Afr. J. Biotechnol. 10, 6920–6927. https://doi.org/10.5897/AJB11.260.eng
dcterms.referencesLippolis, R., Siciliano, R.A., Mazzeo, M.F., Abbrescia, A., Gnoni, A., Sardanelli, A.M., Papa, S., 2013. Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains. Proteome Sci. 11, 28. https://doi.org/10.1186/1477-5956-11- 28.eng
dcterms.referencesLogan, N.A., De Vos, P., 2009. Family I. Bacillaceae, in: Bergey’s Manual of Systematic Bacteriology. Springer, Dordrecht, pp. 20–227.eng
dcterms.referencesMa, Y.C., Chen, S.F., 2008. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int. J. Syst. Evol. Microbiol. 58, 319–323. https://doi.org/DOI 10.1099/ijs.0.65238-0.eng
dcterms.referencesNie, P., Li, X., Wang, S., Guo, J., Zhao, H., Niu, D., 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1- dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00238.eng
dcterms.referencesNigris, S., Baldan, E., Tondello, A., Zanella, F., Vitulo, N., Favaro, G., Guidolin, V., Bordin, N., Telatin, A., Barizza, E., Marcato, S., Zottini, M., Aquartini, A., Valle, G., Baldan, B., 2018. Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinífera cv. Glera. BMC Microbiology 18, 1–16.eng
dcterms.referencesOlanrewaju, O.S., Glick, B.R., Babalola, O.O., 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33, 197. https://doi. org/10.1007/s11274-017-2364-9.eng
dcterms.referencesPodile, A.R., Kishore, G.K., 2006. Plant growth-promoting rhizobacteria. In: Gnanamanickam, S. (Ed.), Plant-Associated Bacteria. Springer, Dordrecht, pp. 195–230.eng
dcterms.referencesPremono, M.E., Moawad, A.M., Vlek, P.L.G., 1996. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian J. Crop Sci. 11, 13–23.eng
dcterms.referencesRamšak,Zˇ ., Coll, A., Stare, T., Tzfadia, O., Baebler, Š., Van de Peer, Y., Gruden, K., 2018. Network modeling unravels mechanisms of crosstalk between ethylene and salicylate signaling in potato 1. Plant Physiol. 178, 488–499. https://doi.org/ 10.1104/pp.18.00450.eng
dcterms.referencesReyes, I., Bernier, L., Simard, R.R., Tanguay, P., Antoun, H., 1999. Characteristics of phosphate solubilization by an isolated of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. 28, 291–295.eng
dcterms.referencesRupp, S., Weber, R.W.S., Rieger, D., Detzel, P., Hahn, M., 2017. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front. Microbiol. 7, 2075. https://doi.org/10.3389/fmicb.2016.02075.eng
dcterms.referencesSaikia, R., Srivastava, A.K., Singh, K., Arora, D.K., Lee, M.W., 2005. Effect of iron availability on induction of systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology 33, 35–40.eng
dcterms.referencesSingletary, K., 2011. Red pepper overview of potential health benefits. Nutr. Today 46, 33–47.eng
dcterms.referencesSmibert, R.M., Krieg, N.R., 1981. General characterization. In: Manual of Methods for General Bacteriology. American Society for Microbiology, Washington DC, pp. 410–423.eng
dcterms.referencesSon, J.S., Sumayo, M., Hwang, Y.J., Kim, B.S., Ghim, S.Y., 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 73, 1–8. https://doi.org/10.1016/j. apsoil.2013.07.016.eng
dcterms.referencesSpaepen, S., Vanderleyden, J., Remans, R., 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448. https:// doi.org/10.1111/j.1574-6976.2007.00072.x.eng
dcterms.referencesSchwyn, B., Neilands, J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.eng
dcterms.referencesTaiz, L., Zeiger, E., 2010. Plant Physiology. Sinauer Associates, USA.eng
dcterms.referencesTimmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T., Nevo, E., 2011. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, 1–7. https://doi.org/10.1371/journal.pone.0017968.eng
dcterms.referencesTiwari, S., Prasad, V., Lata, C., 2019. Bacillus: plant growth promoting bacteria for sustainable agriculture and environment, in: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp. 43–55. https://doi. org/10.1016/B978-0-444-64191-5.00003-1.eng
dcterms.referencesTsitsigiannis, D.I., Antoniou, P.P., Tjamos, S.E., Paplomatas, E.J., 2008. Major diseases of tomato, pepper and eggplant in greenhouses. Eur. J. Plant Sci. Biotechnol. 2, 106–124.eng
dcterms.referencesVerma, V., Ravindran, P., Kumar, P.P., 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86. https://doi.org/10.1186/s12870-016- 0771-y.eng
dcterms.referencesWang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial TaxonomyO y. Appl Environ Microbiol 73, 5261–5267.eng
dcterms.referencesWang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., Xie, G., Sun, G., 2012. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr. J. Microbiol. Res. 6, 4567–4573. https://doi.org/10.5897/AJMR12.261.eng
dcterms.referencesWilson, K.H., Blichington, R.B., Greene, R.C., 1990. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol. 28, 1942– 1946.eng
dcterms.referencesXu, S.J., Park, D.H., Kim, J.Y., Kim, B.S., 2016. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop. Plant Pathol. 41, 169–176. https://doi.org/10.1007/s40858-016-0082-8.eng
dcterms.referencesYu, X., Ai, C., Xin, L., Zhou, G., 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145. https://doi.org/10.1016/j. ejsobi.2010.11.00.eng
dcterms.referencesZeigler, D.R., 2013. The family Paenibacillaceae. In: Bacillus Genetic Stock Center Catalog of Strains. Bacillus Genetic Stock Center, Columbus, pp. 2–23.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones