Bacillus strain selection with plant growth-promoting mechanisms as potential elicitors of systemic resistance to gray mold in pepper plants
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.author | Márquez, Robert | |
dc.contributor.author | Lorena Blanco, Erika | |
dc.contributor.author | Aranguren, Yani | |
dc.date.accessioned | 2020-07-27T18:25:45Z | |
dc.date.available | 2020-07-27T18:25:45Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Certain soil bacteria produce beneficial effects on the growth and health of plants; hence, their use is steadily increasing. Five strains of Bacillus with plant growth-promoting potential were selected in this study, which produced indole-3-acetic acid levels below 50 mg.mL 1. On the other hand, while only strains M8 and M15 dissolved phosphorus, the latter was the only strain that did not produce siderophores. Only strains M8 and M16 significantly inhibited the in vitro growth of Botrytis cinerea and Fusarium solani phytopathogens, whose inhibition ranges fluctuated between 60% and 63% for strains M8 and M16 against B. cinerea and between 40% and 53% for strains M8 and M16 against F. solani. Based on these results, the need to implement resistance induction against gray mold on pepper plants was determined using strains M8 and M16. In this case, strain M16 inhibited the propagation of the necrotic spot by approximately 70%, whereas strain M8 significantly reduced the superoxide dismutase activity in systemic leaves, which substantially increased in plants inoculated with strain M8 and infected with the pathogen. Accordingly, the use of native rhizobacteria may entail biotechnological progress for the integrated management of crops in agriculture industry. | eng |
dc.format.mimetype | spa | |
dc.identifier.doi | https://doi.org/10.1016/j.sjbs.2020.06.015 | |
dc.identifier.issn | 22137106 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6238 | |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S1319562X20302540 | |
dc.language.iso | eng | eng |
dc.publisher | Elsevier | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Saudi Journal of Biological Sciences | eng |
dc.source | Vol 27, N° 8, (2020) | |
dc.subject | Bacillus | eng |
dc.subject | Botrytis cinerea | eng |
dc.subject | Capsicum annuum | eng |
dc.subject | Induced systemic resistance | eng |
dc.subject | Plant growth-promoting rhizobacteria | eng |
dc.title | Bacillus strain selection with plant growth-promoting mechanisms as potential elicitors of systemic resistance to gray mold in pepper plants | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Abbey, J.A., Percival, D., Abbey, Lord, Asiedu, S.K., Schilder, A., 2019. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)— prospects and challenges. Biocontrol. Sci. Technol. 29, 207–228. https://doi.org/ 10.1080/09583157.2018.1548574. | eng |
dcterms.references | Aguado-Santacruz, G.A., Moreno-Gómez, B., Jiménez-Francisco, B., García-Moya, E., Preciado-Ortiz, R.E., 2012. Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: una síntesis. Rev. Fitotec. Mex. 35, 9–21. | spa |
dcterms.references | Akinrinlola, R.J., Yuen, G.Y., Drijber, R.A., Adesemoye, A.O., 2018. Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int. J. Microbiol. 2018, 1–11. https://doi.org/ 10.1155/2018/5686874. | eng |
dcterms.references | Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 27, 3389–3402. https://doi.org/ 10.1093/nar/25.17.3389. | eng |
dcterms.references | Baldan, E., Nigris, S., Romualdi, C., D’Alessandro, S., Clocchiatti, A., Zottini., M., Stevanato, P., Squartini, A., Baldan, B., 2015. Beneficial bacteria isolated from grapevine inner tissues shape Arabidopsis thaliana roots. PLoS One. 10, 1–18. https://doi.org/10.1371/journal.pone.0140252. | eng |
dcterms.references | Benson, S., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2012. GenBank. Nucleic Acids Res. 41, D36–42. | eng |
dcterms.references | Barriuso, J., Ramos Solano, B., Lucas, J.A., Probanza Lobo, A., García-Villaraco, A., Gutiérrez Mañero, F.J., 2008. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad, I., Pichtel, J., Hayat, S. (Eds.), Plant-Bacteria Interactions. Strategies and Techniques to Promote Plant Growth, WILEY-VCH, Weinheim, pp. 1–13. | eng |
dcterms.references | Bergkessel, M., Guthire, C., 2013. Colony PCR. Methods Enzymol. 529, 299–309, https://doi.org/10.1016/B978-0-12-418687-3.00025-2. | eng |
dcterms.references | Beauchamp, C., Fridovich, I., 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287. | eng |
dcterms.references | Blanco, E.L., Castro, Y., Olivo, A., Skwierinski, R., Moronta, F., 2018. Germinación y crecimiento de plántulas de pimentón y lechuga inoculadas con rizobios e identificación molecular de las cepas. Bioagro 30, 207–218. | spa |
dcterms.references | Bric, J.M., Bostock, R.M., Silverstone, S.E., 1991. Raid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57, 535–538. | eng |
dcterms.references | Castellano-Hinojosa, A., Pérez-Tapia, V., Bedmar, E.J., Santillana, N., 2018. Purple corn-associated rhizobacteria with potential for plant growth promotion. J. Appl. Microbiol. 124, 1254–1264. https://doi.org/10.1111/jam.13708. | eng |
dcterms.references | Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thornart, P., Dommes, J., Ongena, M., 2014. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol. Plant. Microbe Interact. 27, 87– 100. https://doi.org/10.1094/MPMI-09-13-0262-R. | eng |
dcterms.references | Cheewawiriyakul, S., Conn, K., Gabor, B., Woodland, J.K., Salati, R., 2006. Pepper & eggplant disease guide. Seminis grow forward. | eng |
dcterms.references | Choudhary, D.K., Johri, B.N., 2009. Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493– 513. https://doi.org/10.1016/j.micres.2008.08.007. | eng |
dcterms.references | Chowdhury, S.P., Hartmann, A., Gao, X., Borriss, R., 2015. Biocontrol mechanism by root- associated Bacillus amyloliquefaciens FZB42—a review. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.00780. | eng |
dcterms.references | De Meyer, G., Bigirimana, J., Elad, Y., Höfte, M., 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104, 279–286. | eng |
dcterms.references | De Vos, P., Ludwing, W., Schleifer, K.H., Whitman, W.B., 2009. Family IV. Paenibacillaceae fam. nov., in: Bergey’s Manual of Systematic Bacteriology. Springer, Dordrecht, pp. 269–295. | eng |
dcterms.references | Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. | eng |
dcterms.references | Doetsch, R.N., 1981. Determinative methods of light Microscopy, en: Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, DC, pp. 21–32. | eng |
dcterms.references | Domínguez, I., Cedeño, L., Briceño, A., Pino, H., Quintero, K., Rodríguez, L., 2008. Primer reporte en Venezuela de Botrytis cinerea causando quema foliar en lisianto (Eustoma grandiflorum). Rev. For. Venezol. 52, 173–176. | eng |
dcterms.references | Duca, D., Lorv, J., Patten, C.L., Rose, D., Glick, B.R., 2014. Indole-3-acetic acid in plant– microbe interactions. Antonie Van Leeuwenhoek 106, 85–125. https://doi.org/ 10.1007/s10482-013-0095-y. | eng |
dcterms.references | Enebe, M.C., Babalola, O.O., 2019. The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Appl. Microbiol. Biotechnol. 103, 9–25. | eng |
dcterms.references | FEDEAGRO, 2018. Continúa la recesión agrícola y la indiferencia por la producción de alimentos. Los resultados de la agricultura vegetal en el año 2017. https:// fedeagro.org/resultados-de-la-agricultura-vegetal-del-2017/ (accessed 8 July 2019). | spa |
dcterms.references | Figuereido, M.V.B., Bonifacio, A., Cerqueira-Rodrigues, A., de Araujo, F.F., 2016. Plant growth-promoting rhizobateria: key mechanisms of action. In: Choudhary, D.K., Varma, A. (Eds.), Microbial-Mediated Induced Systemic Resistance in Plants. Springer, Noida, pp. 23–33. | eng |
dcterms.references | Gerbore, J., Benhamou, N., Vallance, J., Le Floch, G., Grizard, D., Regnault-Roger, C., Rey, P., 2014. Biological control of plant pathogens: advantages and limitations seen through the case study of Pythium oligandrum. Environ. Sci. Pollut. Res. 21, 4847–4860. | eng |
dcterms.references | Giannopolitis, C.N., Ries, S.K., 1977. Superoxide dismutase: I. occurrence in higher plants. Plant Physiol. 59, 309–314. https://doi.org/10.1104/pp.59.2.309. | eng |
dcterms.references | Glickmann, E., Dessaux, Y., 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793–796 | eng |
dcterms.references | Gornall, A.G., Bardawill, C.J., David, M.M., 1948. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751–766. | eng |
dcterms.references | Govrin, E.M., Levine, A., 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10, 751–757. | eng |
dcterms.references | Grady, E.N., MacDonald, J., Liu, L., Richman, A., Yuan, Z.C., 2016. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact. 15, 1–18. https:// doi.org/10.1186/s12934-016-0603-7. | eng |
dcterms.references | Gullino, M., 1992. Chemical control of Botrytis spp., in: Verhoeff, K., Malathrakis, N., Williamson, B. (Eds.), Recent Advances in Botrytis Research. Centre for Agricultural Publishing and documentation (Pudoc), Wageningen, Netherlands, pp. 217–220. | eng |
dcterms.references | Gumiere, T., Rousseau, A.N., da Costa, D.P., Cassetari, A., Raposo Cotta, S., Dini Andreote, F., Gumiere, S.J., Pavinato, P.S., 2019. Phosphorus source driving the soil microbial interactions and improving sugarcane development. Sci Rep 9, 4400. https://doi.org/10.1038/s41598-019-40910-1. | eng |
dcterms.references | Gutiérrez, M., 2008. Segundo informe nacional sobre el estado de los recursos fitogenéticos para la agricultura y la alimentación. INIA y FAO, Venezuela, p. 26. | spa |
dcterms.references | Jaimez, R.E., Cedeño, L., Añez, B., Espinoza, W., 2010. Pimentón en invernadero, Primera. ed, Cultivos en invernadero. Universidad de Los Andes, Mérida, pp. 45. | spa |
dcterms.references | Jain, S., Varma, A., Tuteja, N., Choudhary, D.K., 2016. Plant growth-promoting microbial-mediated induced systemic resistance in plants: induction, mechanisms, and expression. In: Choudhary, D.K., Varma, A. (Eds.), Microbial- Mediated Induced Systemic Resistance in Plants. Springer, pp. 213–222. | eng |
dcterms.references | Jiang, C., Liao, M.J., Wang, H.K., Zheng, M.Z., Xu, J.J., Guo, J.H., 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control. 126, 147–157. https://doi.org/10.1016/j. biocontrol.2018.07.017. | eng |
dcterms.references | Kavamura, V.N., Santos, S.N., da Silva, J.L., Parma, M.M., Ávila, L.A., Visconti, A., Zucchi, T.D., Taketani, R.G., Andreote, F.D., de Melo, I.S., 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 168, 183–191. https://doi.org/10.1016/j.micres.2012.12.002. | eng |
dcterms.references | Kesaulya, H., Hasinu, J.V., Tuhumury, G.N., 2018. Potential of Bacillus spp. produces siderophores in suppressing the wilt disease of banana plants. IOP Conf. Ser. Earth. Environ. Sci. 102,. https://doi.org/10.1088/1755-1315/102/1/012016 012016. | eng |
dcterms.references | Khan, M.S., Zaidi, A., Ahmad, E., 2014. Mechanisms of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan, M. S., Zaidi, A., Musarrat, J. (Eds.), Phosphate Solubilizing Microorganisms Principles and Application of Microphos Technology. Springer International Publishing, Switzerland, pp. 31–62. | eng |
dcterms.references | Kim, Y.S., Song, J.G., Lee, I.K., Yeo, W.H., Yun, B.S., 2013. Bacillus sp. BS061 suppresses powdery Mildew and gray mold. Mycobiology 42, 108–111. https://doi.org/ 10.5941/MYCO.2013.41.2.108. | eng |
dcterms.references | Kumar, A., Prakash, A., Johri, B.N., 2011. Bacillus as PGPR in crop ecosystem. In: Maheshwari, D.K. (Ed.), Bacteria in Agrobiology. Springer-Verlag, Berlin, pp. 37– 59. | eng |
dcterms.references | Kumar, M., Teotia, P., Varma, A., Tuteja, N., Kumar, V., 2016. Induced systemic resistance by rhizospheric microbes. In: Choudhary, D.K., Varma, A. (Eds.), Microbial-Mediated Induced Systemic Resistance in Plants. Springer, Noida, pp. 197–204. | eng |
dcterms.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. | eng |
dcterms.references | Liang, J., Tao, R., Hao, Z., Wang, L., Zhang, X., 2011. Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. Afr. J. Biotechnol. 10, 6920–6927. https://doi.org/10.5897/AJB11.260. | eng |
dcterms.references | Lippolis, R., Siciliano, R.A., Mazzeo, M.F., Abbrescia, A., Gnoni, A., Sardanelli, A.M., Papa, S., 2013. Comparative secretome analysis of four isogenic Bacillus clausii probiotic strains. Proteome Sci. 11, 28. https://doi.org/10.1186/1477-5956-11- 28. | eng |
dcterms.references | Logan, N.A., De Vos, P., 2009. Family I. Bacillaceae, in: Bergey’s Manual of Systematic Bacteriology. Springer, Dordrecht, pp. 20–227. | eng |
dcterms.references | Ma, Y.C., Chen, S.F., 2008. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int. J. Syst. Evol. Microbiol. 58, 319–323. https://doi.org/DOI 10.1099/ijs.0.65238-0. | eng |
dcterms.references | Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., Niu, D., 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1- dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00238. | eng |
dcterms.references | Nigris, S., Baldan, E., Tondello, A., Zanella, F., Vitulo, N., Favaro, G., Guidolin, V., Bordin, N., Telatin, A., Barizza, E., Marcato, S., Zottini, M., Aquartini, A., Valle, G., Baldan, B., 2018. Biocontrol traits of Bacillus licheniformis GL174, a culturable endophyte of Vitis vinífera cv. Glera. BMC Microbiology 18, 1–16. | eng |
dcterms.references | Olanrewaju, O.S., Glick, B.R., Babalola, O.O., 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33, 197. https://doi. org/10.1007/s11274-017-2364-9. | eng |
dcterms.references | Podile, A.R., Kishore, G.K., 2006. Plant growth-promoting rhizobacteria. In: Gnanamanickam, S. (Ed.), Plant-Associated Bacteria. Springer, Dordrecht, pp. 195–230. | eng |
dcterms.references | Premono, M.E., Moawad, A.M., Vlek, P.L.G., 1996. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian J. Crop Sci. 11, 13–23. | eng |
dcterms.references | Ramšak,Zˇ ., Coll, A., Stare, T., Tzfadia, O., Baebler, Š., Van de Peer, Y., Gruden, K., 2018. Network modeling unravels mechanisms of crosstalk between ethylene and salicylate signaling in potato 1. Plant Physiol. 178, 488–499. https://doi.org/ 10.1104/pp.18.00450. | eng |
dcterms.references | Reyes, I., Bernier, L., Simard, R.R., Tanguay, P., Antoun, H., 1999. Characteristics of phosphate solubilization by an isolated of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol. 28, 291–295. | eng |
dcterms.references | Rupp, S., Weber, R.W.S., Rieger, D., Detzel, P., Hahn, M., 2017. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front. Microbiol. 7, 2075. https://doi.org/10.3389/fmicb.2016.02075. | eng |
dcterms.references | Saikia, R., Srivastava, A.K., Singh, K., Arora, D.K., Lee, M.W., 2005. Effect of iron availability on induction of systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology 33, 35–40. | eng |
dcterms.references | Singletary, K., 2011. Red pepper overview of potential health benefits. Nutr. Today 46, 33–47. | eng |
dcterms.references | Smibert, R.M., Krieg, N.R., 1981. General characterization. In: Manual of Methods for General Bacteriology. American Society for Microbiology, Washington DC, pp. 410–423. | eng |
dcterms.references | Son, J.S., Sumayo, M., Hwang, Y.J., Kim, B.S., Ghim, S.Y., 2014. Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in pepper. Appl. Soil Ecol. 73, 1–8. https://doi.org/10.1016/j. apsoil.2013.07.016. | eng |
dcterms.references | Spaepen, S., Vanderleyden, J., Remans, R., 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448. https:// doi.org/10.1111/j.1574-6976.2007.00072.x. | eng |
dcterms.references | Schwyn, B., Neilands, J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56. | eng |
dcterms.references | Taiz, L., Zeiger, E., 2010. Plant Physiology. Sinauer Associates, USA. | eng |
dcterms.references | Timmusk, S., Paalme, V., Pavlicek, T., Bergquist, J., Vangala, A., Danilas, T., Nevo, E., 2011. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, 1–7. https://doi.org/10.1371/journal.pone.0017968. | eng |
dcterms.references | Tiwari, S., Prasad, V., Lata, C., 2019. Bacillus: plant growth promoting bacteria for sustainable agriculture and environment, in: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp. 43–55. https://doi. org/10.1016/B978-0-444-64191-5.00003-1. | eng |
dcterms.references | Tsitsigiannis, D.I., Antoniou, P.P., Tjamos, S.E., Paplomatas, E.J., 2008. Major diseases of tomato, pepper and eggplant in greenhouses. Eur. J. Plant Sci. Biotechnol. 2, 106–124. | eng |
dcterms.references | Verma, V., Ravindran, P., Kumar, P.P., 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16, 86. https://doi.org/10.1186/s12870-016- 0771-y. | eng |
dcterms.references | Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial TaxonomyO y. Appl Environ Microbiol 73, 5261–5267. | eng |
dcterms.references | Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., Xie, G., Sun, G., 2012. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr. J. Microbiol. Res. 6, 4567–4573. https://doi.org/10.5897/AJMR12.261. | eng |
dcterms.references | Wilson, K.H., Blichington, R.B., Greene, R.C., 1990. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol. 28, 1942– 1946. | eng |
dcterms.references | Xu, S.J., Park, D.H., Kim, J.Y., Kim, B.S., 2016. Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil. Trop. Plant Pathol. 41, 169–176. https://doi.org/10.1007/s40858-016-0082-8. | eng |
dcterms.references | Yu, X., Ai, C., Xin, L., Zhou, G., 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47, 138–145. https://doi.org/10.1016/j. ejsobi.2010.11.00. | eng |
dcterms.references | Zeigler, D.R., 2013. The family Paenibacillaceae. In: Bacillus Genetic Stock Center Catalog of Strains. Bacillus Genetic Stock Center, Columbus, pp. 2–23. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: