A score function as quality measure for cardiac image enhancement techniques assessment
dc.contributor.author | Chacón, Gerardo | |
dc.contributor.author | Rodríguez, Johel E. | |
dc.contributor.author | Bermúdez, Valmore | |
dc.contributor.author | Flórez, Anderson | |
dc.contributor.author | Del Mar, Atilio | |
dc.contributor.author | Pardo, Aldo | |
dc.contributor.author | Lameda, Carlos | |
dc.contributor.author | Madriz, Delia | |
dc.contributor.author | Bravo, Antonio J. | |
dc.date.accessioned | 2019-07-17T22:20:29Z | |
dc.date.available | 2019-07-17T22:20:29Z | |
dc.date.issued | 2019 | |
dc.description.abstract | A score function useful as a quantitative measure of the performance of the medical image enhancement techniques is reported in this paper. The measure proposed is based on merging of full–reference and blind–reference image enhancement measures. The score function is the average of the weighted sum of the image enhancement measures normalized between zero and one. The novel measure is validated considering as a hypothesis that values maximizing score function have that maximize the values of the metrics (Dice coefficient) used to evaluate certain previously reported cardiac image segmentation approach. The values of score function and Dice score reached the maximum value for the same cardiac volumes segmented. | eng |
dc.description.abstract | En este artículo se presenta una función de puntuación útil como medida cuantitativa del rendimiento de técnicas de mejora de imágenes médicas. La métrica propuesta se basa en la fusión de medidas de mejora de imagen de referencia completa y referencia ciega. La función de puntuación es el promedio de la suma ponderada de las medidas de mejora de imagen normalizadas entre cero y uno. La nueva medida se valida considerando la hipótesis de que los valores que maximizan la función de puntuación tienen como máximo los valores de las métricas (coeficiente de Dice) utilizados para evaluar cierto enfoque de segmentación de imágenes cardíacas reportado previamente. Los valores de la función de puntuación y el coeficiente de Dice alcanzaron el valor máximo para los mismos volúmenes cardíacos segmentados. | spa |
dc.identifier.issn | 18564550 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/3562 | |
dc.language.iso | eng | eng |
dc.publisher | Sociedad Latinoamericana de Hipertensión | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Revista Latinoamericana de Hipertensión | spa |
dc.source | Vol. 14 No. 2 (2019) | spa |
dc.source.uri | http://caelum.ucv.ve/ojs/index.php/rev_lh/article/view/16349 | eng |
dc.subject | Image enhancement | eng |
dc.subject | Cardiac images | eng |
dc.subject | Image quality | eng |
dc.subject | Image enhancement assessment | eng |
dc.subject | Realce imágenes | spa |
dc.subject | Imágenes cardíacas | spa |
dc.subject | Calidad de imagen | spa |
dc.subject | Evaluación del realce de imagen | spa |
dc.title | A score function as quality measure for cardiac image enhancement techniques assessment | eng |
dc.title.alternative | Una función de puntuación como medida de calidad para la evaluación de técnicas de mejora de la imagen cardíaca | spa |
dc.type | article | eng |
dcterms.references | Rangayyan, R. Biomedical Image Analysis. CRC Press, USA, 2005. | eng |
dcterms.references | Kruger, R. X-ray digital cineangiocardiography, in: Collins, S., Skorton, D. (Eds.), Cardiac imaging and image processing. McGraw–Hill, USA, 1986 | eng |
dcterms.references | Faletra, F., Pandian, N., Ho, S. Anatomy of the Heart by Multislice Computed Tomography. Wiley, UK, 2008 | eng |
dcterms.references | Li, H., Hu, W., Xu, Z. Automatic no–reference image quality assessment. SpringerPlus. 2016; 5(1):1097. | eng |
dcterms.references | Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing. 2004; 13(4):600–612. | eng |
dcterms.references | Pitas, I., Venetsanopoulos, A. Order statistics in digital image processing. Proc. IEEE. 1992; 80(12):1893–1921. | eng |
dcterms.references | Rosenfeld, A., Kak, A., 1982. Digital Picture Processing. Volume 1. Academic Press. | eng |
dcterms.references | Gabarda, S., Cristóbal, G. Blind image quality assessment through anisotropy. J. Opt. Soc. Am. A. 2007; 24(12):B42–B51. | eng |
dcterms.references | Girod, B., 1993. What’s wrong with mean-squared error?, in: Watson, A. (Ed.), Digital Images and Human Vision. MIT Press, USA, pp. 207–220. | eng |
dcterms.references | Wang, Z., Bovik, A. Mean squared error: Love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Mag. 2009; 26(1):98–117. | eng |
dcterms.references | Wang, Z., Li, Q. Information content weighting for perceptual image quality assessment. IEEE Trans. Image Processing. 2011; 20(5):1185– 1198. | eng |
dcterms.references | Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W. A patch–structure representation method for quality assessment of contrast changed images. IEEE Signal Processing Lett. 2015; 22(12):2387–2390. | eng |
dcterms.references | Loizou, C., Theofanous, C., Pantziaris, M., Kasparis, T. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput. Methods Prog. Biomed. 2014; 114(1):109–124. | eng |
dcterms.references | Agaian, S., Panetta, K., Grigoryan, A. A new measure of image enhancement, in: IASTED Int. Conf. Sign. Proc. & Commun., Spain. pp. 19–22, 2000. | eng |
dcterms.references | Hecht, S. The visual discrimination of intensity and the Weber–Fechner Law. J. Gen. Physiol. 1924; 7(2):235–267. | eng |
dcterms.references | Jacko, J. Human–Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications. CRC Press, USA, 2012. | eng |
dcterms.references | Michelson, A. Studies in Optics. The University of Chicago Press, USA, 1927. | eng |
dcterms.references | Agaian, S., Panetta, K., Grigoryan, A. Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Processing. 2001; 10(3):367–382. | eng |
dcterms.references | DelMarco, S., Agaian, S. The design of wavelets for image enhancement and target detection, in: Proc. SPIE Mobile Multimedia/Image Process., Security, Appl., Orlando, USA. pp. 735103–1–735103–12, 2009. | eng |
dcterms.references | Panetta, K., Zhou, Y., Agaian, S., Jia, H. Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inform. Technol. Biomed. 2011; 15(6):918–928. | eng |
dcterms.references | Nercessian, S., Agaian, S., Panetta, K. Multi–scale image enhancement using a second derivative –likemeasure of contrast. Proc. SPIE 8295, 82950Q–82950Q–9, 2012. | eng |
dcterms.references | Aubury, M., Luk, W. Binomial filters. J VLSI Signal Process Syst Signal Image Video Technol. 1996; 12(1):35–50. | eng |
dcterms.references | Arce, G. A general weighted median filter structure admitting negative weights. IEEE Trans. Image Processing. 1998; 46(12):3195–3205. | eng |
dcterms.references | Schroeder, W., Martin, K., Lorensen, B. The Visualization Toolkit–An Object-Oriented Approach To 3D Graphics. Fourth ed., Kitware, Inc, 2006. | eng |
dcterms.references | Vera, M. [Cardiac structures segmentation in multislice computerized images]. Ph.D. thesis. Universidad de Los Andes. Mérida, Venezuela. In Spanish, 2014. | eng |
dcterms.references | Barrett, J., Keat, N. Artifacts in CT: Recognition and avoidance1. Radio- Graph. 2004; 24(6):1679–1691. | eng |
dcterms.references | Primak, A., McCollough, C., Bruesewitz, M., Zhang, J., Fletcher, J. Relationship between noise, dose, and pitch in cardiac multi–detector row CT. RadioGraph. 2006; 26(6):1785–1794. | eng |