A score function as quality measure for cardiac image enhancement techniques assessment

dc.contributor.authorChacón, Gerardo
dc.contributor.authorRodríguez, Johel E.
dc.contributor.authorBermúdez, Valmore
dc.contributor.authorFlórez, Anderson
dc.contributor.authorDel Mar, Atilio
dc.contributor.authorPardo, Aldo
dc.contributor.authorLameda, Carlos
dc.contributor.authorMadriz, Delia
dc.contributor.authorBravo, Antonio J.
dc.date.accessioned2019-07-17T22:20:29Z
dc.date.available2019-07-17T22:20:29Z
dc.date.issued2019
dc.description.abstractA score function useful as a quantitative measure of the performance of the medical image enhancement techniques is reported in this paper. The measure proposed is based on merging of full–reference and blind–reference image enhancement measures. The score function is the average of the weighted sum of the image enhancement measures normalized between zero and one. The novel measure is validated considering as a hypothesis that values maximizing score function have that maximize the values of the metrics (Dice coefficient) used to evaluate certain previously reported cardiac image segmentation approach. The values of score function and Dice score reached the maximum value for the same cardiac volumes segmented.eng
dc.description.abstractEn este artículo se presenta una función de puntuación útil como medida cuantitativa del rendimiento de técnicas de mejora de imágenes médicas. La métrica propuesta se basa en la fusión de medidas de mejora de imagen de referencia completa y referencia ciega. La función de puntuación es el promedio de la suma ponderada de las medidas de mejora de imagen normalizadas entre cero y uno. La nueva medida se valida considerando la hipótesis de que los valores que maximizan la función de puntuación tienen como máximo los valores de las métricas (coeficiente de Dice) utilizados para evaluar cierto enfoque de segmentación de imágenes cardíacas reportado previamente. Los valores de la función de puntuación y el coeficiente de Dice alcanzaron el valor máximo para los mismos volúmenes cardíacos segmentados.spa
dc.identifier.issn18564550
dc.identifier.urihttps://hdl.handle.net/20.500.12442/3562
dc.language.isoengeng
dc.publisherSociedad Latinoamericana de Hipertensiónspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 14 No. 2 (2019)spa
dc.source.urihttp://caelum.ucv.ve/ojs/index.php/rev_lh/article/view/16349eng
dc.subjectImage enhancementeng
dc.subjectCardiac imageseng
dc.subjectImage qualityeng
dc.subjectImage enhancement assessmenteng
dc.subjectRealce imágenesspa
dc.subjectImágenes cardíacasspa
dc.subjectCalidad de imagenspa
dc.subjectEvaluación del realce de imagenspa
dc.titleA score function as quality measure for cardiac image enhancement techniques assessmenteng
dc.title.alternativeUna función de puntuación como medida de calidad para la evaluación de técnicas de mejora de la imagen cardíacaspa
dc.typearticleeng
dcterms.referencesRangayyan, R. Biomedical Image Analysis. CRC Press, USA, 2005.eng
dcterms.referencesKruger, R. X-ray digital cineangiocardiography, in: Collins, S., Skorton, D. (Eds.), Cardiac imaging and image processing. McGraw–Hill, USA, 1986eng
dcterms.referencesFaletra, F., Pandian, N., Ho, S. Anatomy of the Heart by Multislice Computed Tomography. Wiley, UK, 2008eng
dcterms.referencesLi, H., Hu, W., Xu, Z. Automatic no–reference image quality assessment. SpringerPlus. 2016; 5(1):1097.eng
dcterms.referencesWang, Z., Bovik, A., Sheikh, H., Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing. 2004; 13(4):600–612.eng
dcterms.referencesPitas, I., Venetsanopoulos, A. Order statistics in digital image processing. Proc. IEEE. 1992; 80(12):1893–1921.eng
dcterms.referencesRosenfeld, A., Kak, A., 1982. Digital Picture Processing. Volume 1. Academic Press.eng
dcterms.referencesGabarda, S., Cristóbal, G. Blind image quality assessment through anisotropy. J. Opt. Soc. Am. A. 2007; 24(12):B42–B51.eng
dcterms.referencesGirod, B., 1993. What’s wrong with mean-squared error?, in: Watson, A. (Ed.), Digital Images and Human Vision. MIT Press, USA, pp. 207–220.eng
dcterms.referencesWang, Z., Bovik, A. Mean squared error: Love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Mag. 2009; 26(1):98–117.eng
dcterms.referencesWang, Z., Li, Q. Information content weighting for perceptual image quality assessment. IEEE Trans. Image Processing. 2011; 20(5):1185– 1198.eng
dcterms.referencesWang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W. A patch–structure representation method for quality assessment of contrast changed images. IEEE Signal Processing Lett. 2015; 22(12):2387–2390.eng
dcterms.referencesLoizou, C., Theofanous, C., Pantziaris, M., Kasparis, T. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput. Methods Prog. Biomed. 2014; 114(1):109–124.eng
dcterms.referencesAgaian, S., Panetta, K., Grigoryan, A. A new measure of image enhancement, in: IASTED Int. Conf. Sign. Proc. & Commun., Spain. pp. 19–22, 2000.eng
dcterms.referencesHecht, S. The visual discrimination of intensity and the Weber–Fechner Law. J. Gen. Physiol. 1924; 7(2):235–267.eng
dcterms.referencesJacko, J. Human–Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications. CRC Press, USA, 2012.eng
dcterms.referencesMichelson, A. Studies in Optics. The University of Chicago Press, USA, 1927.eng
dcterms.referencesAgaian, S., Panetta, K., Grigoryan, A. Transform-based image enhancement algorithms with performance measure. IEEE Trans. Image Processing. 2001; 10(3):367–382.eng
dcterms.referencesDelMarco, S., Agaian, S. The design of wavelets for image enhancement and target detection, in: Proc. SPIE Mobile Multimedia/Image Process., Security, Appl., Orlando, USA. pp. 735103–1–735103–12, 2009.eng
dcterms.referencesPanetta, K., Zhou, Y., Agaian, S., Jia, H. Nonlinear unsharp masking for mammogram enhancement. IEEE Trans. Inform. Technol. Biomed. 2011; 15(6):918–928.eng
dcterms.referencesNercessian, S., Agaian, S., Panetta, K. Multi–scale image enhancement using a second derivative –likemeasure of contrast. Proc. SPIE 8295, 82950Q–82950Q–9, 2012.eng
dcterms.referencesAubury, M., Luk, W. Binomial filters. J VLSI Signal Process Syst Signal Image Video Technol. 1996; 12(1):35–50.eng
dcterms.referencesArce, G. A general weighted median filter structure admitting negative weights. IEEE Trans. Image Processing. 1998; 46(12):3195–3205.eng
dcterms.referencesSchroeder, W., Martin, K., Lorensen, B. The Visualization Toolkit–An Object-Oriented Approach To 3D Graphics. Fourth ed., Kitware, Inc, 2006.eng
dcterms.referencesVera, M. [Cardiac structures segmentation in multislice computerized images]. Ph.D. thesis. Universidad de Los Andes. Mérida, Venezuela. In Spanish, 2014.eng
dcterms.referencesBarrett, J., Keat, N. Artifacts in CT: Recognition and avoidance1. Radio- Graph. 2004; 24(6):1679–1691.eng
dcterms.referencesPrimak, A., McCollough, C., Bruesewitz, M., Zhang, J., Fletcher, J. Relationship between noise, dose, and pitch in cardiac multi–detector row CT. RadioGraph. 2006; 26(6):1785–1794.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
360.09 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones