Variations for Some Painlevé Equations

dc.contributor.authorAcosta-Humañez, Primitivo B.
dc.contributor.authorVan Der Put, Marius
dc.contributor.authorTop, Jaap
dc.date.accessioned2019-11-12T20:08:30Z
dc.date.available2019-11-12T20:08:30Z
dc.date.issued2019
dc.description.abstractThis paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrability of H is shown to imply that all solutions to P are classical (which includes algebraic), so in particular P is solvable by \quadratures". Next, we show that the variational equation of P at a given algebraic solution coincides with the normal variational equation of H at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the di erential Galois group for the rst two variational equations. As expected there are no cases where this group is commutative.eng
dc.identifier.issn18150659
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4330
dc.publisherSIGMAeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceSymmetry, Integrability and Geometry: Methods and Applicationseng
dc.sourceVol. 15, (2019)spa
dc.source.bibliographicCitationAcosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x = f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028.eng
dc.source.bibliographicCitationAcosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.eng
dc.source.bibliographicCitationCasale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134.eng
dc.source.bibliographicCitationClarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http: //www.math.rug.nl/~top/Clarkson.pdf.eng
dc.source.bibliographicCitationClarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com- put. Appl. Math. 178 (2005), 111{129.eng
dc.source.bibliographicCitationClarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331{411.eng
dc.source.bibliographicCitationGromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.eng
dc.source.bibliographicCitationHorozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622{629.eng
dc.source.bibliographicCitationJimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407{448.eng
dc.source.bibliographicCitationLukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923.eng
dc.source.bibliographicCitationLukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420.eng
dc.source.bibliographicCitationMatsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980.eng
dc.source.bibliographicCitationMorales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235.eng
dc.source.bibliographicCitationMorales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33{96.eng
dc.source.bibliographicCitationMorales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884.eng
dc.source.bibliographicCitationMuntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633.eng
dc.source.bibliographicCitationNagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1{27, arXiv:1112.2916.eng
dc.source.bibliographicCitationNgo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960.eng
dc.source.bibliographicCitationOhyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204.eng
dc.source.bibliographicCitationOhyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243.eng
dc.source.bibliographicCitationStoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201{2230.eng
dc.source.bibliographicCitationStoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170{183.eng
dc.source.bibliographicCitationStoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157.eng
dc.source.bibliographicCitationStoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044.eng
dc.source.bibliographicCitationStoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443.eng
dc.source.bibliographicCitationUmemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789.eng
dc.source.bibliographicCitationUmemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125{171.eng
dc.source.bibliographicCitationUmemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1{80.eng
dc.source.bibliographicCitationUmemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151{198.eng
dc.source.bibliographicCitationvan der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702.eng
dc.source.bibliographicCitationvan der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.eng
dc.source.bibliographicCitationZ_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa- tions 258 (2015), 1303{1355.eng
dc.source.urihttps://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdfeng
dc.subjectHamiltonian systemseng
dc.subjectVariational equationseng
dc.subjectPainlevé equationseng
dc.subjectdifferential Galois groupseng
dc.titleVariations for Some Painlevé Equationseng
dc.typearticleeng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
365.04 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones