Una introducción a las aplicaciones de la inteligencia artificial en Medicina: Aspectos históricos

dc.contributor.authorArias, Victor
dc.contributor.authorSalazar, Juan
dc.contributor.authorGariciano, Carlos
dc.contributor.authorContreras, Julio
dc.contributor.authorChacón, Gerardo
dc.contributor.authorChacín-González, Maricarmen
dc.contributor.authorAñez, Roberto
dc.contributor.authorRojas, Joselyn
dc.contributor.authorBermúdez-Pirela, Valmore
dc.date.accessioned2020-01-30T14:39:58Z
dc.date.available2020-01-30T14:39:58Z
dc.date.issued2019
dc.description.abstractEn un sentido amplio la inteligencia artificial y el aprendizaje automático se ha aplicado a los datos médicos desde los inicios de la informática dado el profundo arraigo de esta área en la innovación, pero los últimos años han sido testigo de una generación cada vez mayor de datos relacionados con las ciencias de la salud, cuestión que ha dado nacimiento a un nuevo campo de las ciencias de la computación llamado big data. Los datos médicos a gran escala (en forma de bases de datos estructuradas y no estructuradas) si son apropiadamente adquiridos e interpretados pueden generar grandes beneficios al reducir los costos y los tiempos del servicio de salud, pero también podrían servir para predecir epidemias, mejorar los esquemas terapéuticos, asesorar a médicos en lugares remotos y mejorar la calidad de vida. Los algoritmos de deep learning son especialmente útiles para manejar esta gran cantidad de datos complejos, poco documentados y generalmente no estructurados; todo esto debido a que el deep learning puede irrumpir al crear modelos que descubren de forma automática las características principales, así como las que mejor predicen el comportamiento de otras variables dentro de una gran cantidad de datos complejos. En el futuro, la relación hombre-máquina en biomedicina será más estrecha; mientras que la máquina se encargará de tareas de extracción, limpieza y búsquedas de correlaciones, el médico se concentraría en interpretar estas correlaciones y buscar nuevos tratamientos que mejoren la atención y en última instancia la calidad de vida del paciente.spa
dc.description.abstractIn a broad sense, artificial intelligence and machine learning have been applied to medical data since the beginning of computing given the deep roots of this area in innovation, but recent years have witnessed an increasing generation of data related to health sciences, an issue that has given birth to a new field of computer science called big data. Large-scale medical data (in the form of structured and unstructured databases) if properly acquired and interpreted can generate great benefits by reducing costs and times of health service, but could also serve to predict epidemics, improve therapeutic schemes, advise doctors in remote places and improve the quality of life. The deep learning algorithms are especially useful to deal with this large amount of complex, poorly documented and generally unstructured data, all this because deep learning can break when creating models that automatically discover the predictive characteristics of a large amount of complex data. In the future, the human-machine relationship in the medical evaluation will be narrower and complex; while the machine would be responsible for extraction, cleaning and assisted searches, the physician will be concentrate on both, data interpretation and the best treatment option, improving the patient´s attention and ultimately, quality of life.eng
dc.format.mimetypepdfspa
dc.identifier.issn18564550
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4605
dc.language.isospaspa
dc.publisherCooperativa servicios y suministros 212518 RSspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 14, No. 5 (2019)spa
dc.source.urihttp://www.revhipertension.com/rlh_5_2019/13_una_introduccion.pdf
dc.subjectInteligencia artificialspa
dc.subjectInnovaciónspa
dc.subjectRegistros médicosspa
dc.subjectArtificial intelligenceeng
dc.subjectMedical recordseng
dc.titleUna introducción a las aplicaciones de la inteligencia artificial en Medicina: Aspectos históricosspa
dc.title.alternativeAn introduction to artificial intelligence applications in medicine: Historical aspectseng
dc.typearticleeng
dc.type.driverarticleeng
dcterms.referencesDiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. el 9 de febrero de 2012;73(3):415–34.eng
dcterms.referencesWan J, Wang D, Hoi SCH, Wu P, Zhu J, Zhang Y, et al. Deep Learning for Content-Based Image Retrieval: A Comprehensive Study. En: Proceedings of the 22Nd ACM International Conference on Multimedia [Internet]. New York, NY, USA: ACM; 2014 [citado el 18 de octubre de 2017]. p. 157–166. (MM ’14). Disponible en: http://doi.acm. org/10.1145/2647868.2654948eng
dcterms.referencesNilsson F. Intelligent network video: understanding modern video surveillance systems. Boca Raton: CRC Press; 2009. 389 p.eng
dcterms.referencesLeuba G, Kraftsik R. Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age. Anat Embryol (Berl). el 1 de octubre de 1994;190(4):351–66.eng
dcterms.referencesHof RD. Is Artificial Intelligence Finally Coming into Its Own? [Internet]. MIT Technology Review. [citado el 23 de octubre de 2017]. Disponible en: https://www.technologyreview.com/s/513696/deep-learning/eng
dcterms.referencesEsteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. el 2 de febrero de 2017;542(7639):115–8.eng
dcterms.referencesBrouillette M. AI diagnostics are coming [Internet]. MIT Technology Review. [citado el 23 de octubre de 2017]. Disponible en: https://www. technologyreview.com/s/604271/deep-learning-is-a-black-box-buthealth- care-wont-mind/eng
dcterms.referencesEastwood G. How deep learning is transforming healthcare [Internet]. Network World. 2017 [citado el 23 de octubre de 2017]. Disponible en: https://www.networkworld.com/article/3183745/health/howdeep- learning-is-transforming-healthcare.htmleng
dcterms.referencesSuk H-I. An Introduction to Neural Networks and Deep Learning. En: Deep Learning for Medical Image Analysis [Internet]. Elsevier; 2017 [citado el 13 de agosto de 2017]. p. 3–24. Disponible en: http://linkinghub. elsevier.com/retrieve /pii/B978012810408800002Xeng
dcterms.referencesRosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. noviembre de 1958;65(6):386–408.eng
dcterms.referencesMcCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. el 1 de diciembre de 1943;5(4):115– 33.eng
dcterms.referencesMinsky M, Papert S. Perceptrons. Oxford, England: M.I.T. Press; 1969.eng
dcterms.referencesHornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66.eng
dcterms.referencesLinnainmaa S. Taylor expansion of the accumulated rounding error. BIT Numer Math. el 1 de junio de 1976;16(2):146–60.eng
dcterms.referencesWerbos PJ. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University; 1975.906 p.eng
dcterms.referencesRumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. el 9 de octubre de 1986;323(6088):533–6.eng
dcterms.referencesRumelhart DE, Hinton GE, Williams RJ. Learning Internal Representations by Error Propagation. 1985 sep.eng
dcterms.referencesBengio Y. Learning Deep Architectures for AI. Found Trends® Mach Learn. 2009;2(1):1–127.eng
dcterms.referencesBay H, Ess A, Tuytelaars T, Van Gool L. Speeded-Up Robust Features (SURF). Comput Vis Image Underst. el 1 de junio de 2008;110(3):346– 59.eng
dcterms.referencesZhou H, Yuan Y, Shi C. Object tracking using SIFT features and mean shift. Comput Vis Image Underst. el 1 de marzo de 2009;113(3):345–52.eng
dcterms.referencesDalal N, Triggs B. Histograms of oriented gradients for human detection. En: Computer Vision and Pattern Recognition, 2005 CVPR 2005 IEEE Computer Society Conference on [Internet]. IEEE; 2005 [citado el 11 de mayo de 2017]. p. 886–893. Disponible en: http://ieeexplore.ieee.org/abstract/document/1467360/eng
dcterms.referencesLeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. diciembre de 1989;1(4):541–51.eng
dcterms.referencesHubel DH, Wiesel TN. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J Neurophysiol. 1965;28(2):229–289.eng
dcterms.referencesLecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. noviembre de 1998;86(11):2278–324.eng
dcterms.referencesWaibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ. Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process. marzo de 1989;37(3):328–39.eng
dcterms.referencesWerbos PJ. Backpropagation through time: what it does and how to do it. Proc IEEE. octubre de 1990;78(10):1550–60.eng
dcterms.referencesBengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. marzo de 1994;5(2):157–66.eng
dcterms.referencesSchwarz G. Estimating the Dimension of a Model. Ann Stat. marzo de 1978;6(2):461–4.eng
dcterms.referencesSchmidhuber J. Deep Learning in Neural Networks: An Overview. Neural Netw. enero de 2015;61:85–117.eng
dcterms.referencesBengio Y. A connectionist approach to speech recognition. Int J Pattern Recognit Artif Intell. el 1 de agosto de 1993;07(04):647–67.eng
dcterms.referencesHochreiter S. {Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f\\”{u}r Informatik, Lehrstuhl Prof. Brauer, Technische Universit\\”{a}t M\\”{u}nchen}. 1991;eng
dcterms.referencesHochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. el 1 de noviembre de 1997;9(8):1735–80.eng
dcterms.referencesLeCun Y, Jackel LD, Bottou L, Brunot A, Cortes C, Denker JS, et al. Comparison of learning algorithms for handwritten digit recognition. En: International conference on artificial neural networks [Internet]. Perth, Australia; 1995 [citado el 2 de mayo de 2017]. p. 53–60. Disponible en: https://pdfs.semanticscholar.org/d50d/ce749321301f0104689f2dc582303a83be65. pdfeng
dcterms.referencesHinton GE, Osindero S, Teh Y-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. el 17 de mayo de 2006;18(7):1527–54.eng
dcterms.referencesDL4J. A Beginner’s Tutorial for Restricted Boltzmann Machines - Deeplearning4j: Open-source, Distributed Deep Learning for the JVM [Internet]. [citado el 14 de agosto de 2017]. Disponible en: https:// deeplearning4j.org/restrictedboltzmannmachineeng
dcterms.referencesSalakhutdinov R. Learning deep generative models [Internet]. University of Toronto; 2009 [citado el 14 de agosto de 2017]. Disponible en: http://www.cs.toronto.edu/~rsalakhu/papers/Russ_thesis.pdfeng
dcterms.referencesKullback S, Leibler RA. On Information and Sufficiency. Ann Math Stat. 1951;22(1):79–86.eng
dcterms.referencesHinton GE. Training Products of Experts by Minimizing Contrastive Divergence. Neural Comput. el 1 de agosto de 2002;14(8):1771–800.eng
dcterms.referencesBengio Y, Lamblin P, Popovici D, Larochelle H, others. Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst. 2007;19:153.eng
dcterms.referencesRaina R, Madhavan A, Ng AY. Large-scale Deep Unsupervised Learning Using Graphics Processors. En: Proceedings of the 26th Annual International Conference on Machine Learning [Internet]. New York, NY, USA: ACM; 2009 [citado el 2 de mayo de 2017]. p. 873–880. (ICML ’09). Disponible en: http://doi.acm.org/10.1145/1553374.1553486eng
dcterms.referencesSrivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–1958.eng
dcterms.referencesJarrett K, Kavukcuoglu K, LeCun Y, others. What is the best multistage architecture for object recognition? En: Computer Vision, 2009 IEEE 12th International Conference on [Internet]. IEEE; 2009 [citado el 13 de mayo de 2017]. p.2146–2153. Disponible en: http://ieeexplore. ieee.org/abstract/document/5459469/eng
dcterms.referencesDahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using rectified linear units and dropout. En: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. p. 8609–13.eng
dcterms.referencesNair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. En: Proceedings of the 27th international conference on machine learning (ICML-10) [Internet]. 2010 [citado el 13 de mayo de 2017]. p. 807–814. Disponible en: http://machinelearning.wustl.edu/ mlpapers/paper_files/icml2010_NairH10.pdfeng
dcterms.referencesGlorot X. Apprentissage des réseaux de neurones profonds et applications en traitement automatique de la langue naturelle. 2015 [citado el 13 de mayo de 2017]; Disponible en: https://papyrus.bib.umontreal. ca/xmlui/handle/1866/11989eng
dcterms.referencesKrizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. En: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editores. Advances in Neural Information Processing Systems 25 [Internet]. Curran Associates, Inc.; 2012 [citado el 13 de mayo de 2017]. p. 1097–1105. Disponible en: http://papers. nips.cc/paper/4824-imagenet-classification-with-deep-convolutionalneural- networks.pdfeng
dcterms.referencesChannin D. Deep Learning in Healthcare: Challenges and Opportunities [Internet]. The Mission. 2016 [citado el 14 de mayo de 2017]. Disponible en: https://themission.co/deep-learning-in-healthcare-challenges- and-opportunities-d2eee7e2545eng
dcterms.referencesLeaper DJ, Horrocks JC, Staniland JR, de Dombal FT. Computer-Assisted Diagnosis of Abdominal Pain using “Estimates” Provided by Clinicians. Br Med J. el 11 de noviembre de 1972;4(5836):350–4.eng
dcterms.referencesReaz MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online. diciembre de 2006;8(1):11–35.eng
dcterms.referencesRistevski B, Chen M. Big Data Analytics in Medicine and Healthcare. J Integr Bioinforma [Internet]. el 25 de septiembre de 2018 [citado el 2 de agosto de 2019];15(3). Disponible en: http://www.degruyter.com/ view/j /jib.2018.15.issue-3/jib-2017-0030/jib-2017-0030.xmleng
dcterms.referencesSalazar J, Espinoza C, Mindiola A, Bermudez V. Data Mining and Endocrine Diseases: A New Way to Classify? Arch Med Res. abril de 2018;49(3):213–5.eng
dcterms.referencesGruber K. Is the future of medical diagnosis in computer algorithms? Lancet Digit Health. mayo de 2019;1(1):e15–6.eng
dcterms.referencesMiotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep. el 17 de mayo de 2016;6:26094.eng
dcterms.referencesXiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. el 9 de enero de 2015;347(6218):1254806.eng
dcterms.referencesGawehn E, Hiss JA, Schneider G. Deep Learning in Drug Discovery. Mol Inform. el 1 de enero de 2016;35(1):3–14.eng
dcterms.referencesCao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep Learning and Its Applications in Biomedicine. Genomics Proteomics Bioinformatics. 2018; 16(1): 17–32.eng
dcterms.referencesShen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng. 2017;19:221-248.eng
dcterms.referencesKlann JG, Szolovits P. An intelligent listening framework for capturing encounter notes from a doctor-patient dialog. BMC Med Inform Decis Mak. 2009; 9(Suppl 1): S3.eng
dcterms.referencesPang S, Du A, Orgun MA, Yu Z. A novel fused convolutional neural network for biomedical image classification. Med Biol Eng Comput. 2019;57(1):107-121.eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.8 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones