An automatic technique for left ventricle segmentation from msct cardiac volumes

dc.contributor.authorVera, M.
dc.contributor.authorMedina, R.
dc.contributor.authorDel Mar, A.
dc.contributor.authorArellano, J.
dc.contributor.authorHuerfano, Y.
dc.contributor.authorBravo, A.
dc.date.accessioned2019-03-06T20:03:13Z
dc.date.available2019-03-06T20:03:13Z
dc.date.issued2019
dc.description.abstractIn this research, an automatic technique to segment the left ventricle from the heart information in multislice computed tomography images is proposed. A preprocessing stage is considered as a necessary preliminary task for diminishing the artifacts impact in the image analysis. With this idea, a similarity enhancement that combines a smoothed version of the original volume with a processed volume using mathematical morphology is used. This preprocessing approach is compared with respect to other strategies. After, a volume-of-interest is defined in order to isolate the cavity using two cropping planes detected with least squares support vector machines. Finally, the segmentations are obtained using both a region growing algorithm and a level sets algorithm. The robustness of each enhancement strategy is validated by performing the segmentation of images. This evaluation considered the Dice score, and both volume and surface errors. A clinical dataset from 12 patients is used in the inter- and intra subject evaluation. During intra-subject validation the proposed scheme achieves the best results, while a modified version of this scheme achieved the best performance during inter-subject validation.eng
dc.identifier.issn09767673
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2736
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceJournal of Physicseng
dc.sourceIOP Conf. Series: Journal of Physics: Conf. Series 1160 (2019) 012001eng
dc.source.uridoi:10.1088/1742-6596/1160/1/012001eng
dc.subjectHearteng
dc.subjectCardiovascular systemeng
dc.subjectCardiographyeng
dc.titleAn automatic technique for left ventricle segmentation from msct cardiac volumeseng
dc.typeConferenceeng
dcterms.referencesFaletra F, Pandian N and Ho S 2008 Anatomy of the heart by multislice computed tomography (UK: Wiley)eng
dcterms.referencesKroft L, De Roos A and Geleijns J 2007 Artifacts in ECG–synchronized MDCT coronary angiography Amer. J. Roentgenol. 189 581eng
dcterms.referencesPrimak A, McCollough C, Bruesewitz M, Zhang J and Fletcher J 2006 Relationship between noise, dose, and pitch in cardiac multi–detector row CT Radiograph 26 1785eng
dcterms.referencesUzunbas M, Zhang S, Pohl K, Metaxas D and Axel L 2012 Segmentation of myocardium using deformable regions and graph cuts Proc. IEEE ISBI 254eng
dcterms.referencesZhou Y, Shi W, Chen W, Lin-Chen Y, Li Y, Tan L and Chen D 2015 Active contours driven by localizing region and edge–based intensity fitting energy with application to segmentation of the left ventricle in cardiac CT images Neurocomputing 156 199eng
dcterms.referencesOlveres J, Nava R, Escalante-Ramírez B, Vallejo E and Kybic J 2017 Left ventricle Hermite–based segmentation Comput. Biol. Med. 87 236eng
dcterms.referencesBravo A, Vera M, Garreau M and Medina R 2011 Three–dimensional segmentation of ventricular heart chambers from multi–slice computerized tomography: An hybrid approach Digital Information and Communication Technology and Its Applications (DICTAP 2011), Communications in Computer and Information Science vol 166, ed Cherifi H, Zain J M, El-Qawasmeh E (Berlin: Springer) p 287eng
dcterms.referencesVera M, Bravo A, Garreau M and Medina R 2011 Similarity Enhancement for Automatic Segmentation of Cardiac Structures in Computed Tomography Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Boston: IEEE) p 8094eng
dcterms.referencesVera M et al. 2018 Automatic segmentation of subdural hematomas using a computational technique based on smart operators Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE) (Porto: IEEE)eng
dcterms.referencesYushkevich P, Piven J, Cody H, Ho S, Gee J and Gerig G 2005 User-Guided Level Set Segmentation of Anatomical Structures with ITK-SNAP The Insight Journal MICCAI Open-Source Workshop 1-9eng
dcterms.referencesChaudhury K and Ramakrishnan K 2007 Stability and convergence of the level set method in computer vision Pattern Recog. Let. 28 884eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
604.87 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones