Impacto de la automatización en el crecimiento y optimización de recursos en cultivos hidropónicos de Cannabis

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorVillarreal, Reynaldo
dc.contributor.advisorPaez, Jheifer
dc.contributor.authorZequeira Pérez, José Alberto
dc.date.accessioned2024-08-16T21:36:50Z
dc.date.available2024-08-16T21:36:50Z
dc.date.issued2024
dc.description.abstractEste estudio evaluó el impacto de la automatización en el crecimiento y optimización de recursos en cultivos hidropónicos de cannabis. El proyecto se llevó a cabo en colaboración con la empresa Healthgrowers, ubicada en Santo Tomás, Atlántico, y se centró en comparar un sistema hidropónico automatizado con un sistema hidropónico manual. El estudio se dividió en tres objetivos específicos: 1. Diseñar un protocolo de cultivo hidropónico de cannabis soportado en el monitoreo y control de parámetros nutricionales que maximice el tamaño de la flor de cannabis y optimice la utilización de recursos. 2. Implementar un prototipo de automatización en laboratorio y ambiente relevante, que controle pH y riego, monitoree electroconductividad y temperatura, para mejorar el crecimiento y optimización de recursos en cultivos hidropónicos de cannabis. 3. Realizar un estudio comparativo en un entorno real para evaluar el impacto de la automatización en el crecimiento de las plantas y en la eficiencia del uso de recursos, comparándolo con un sistema no automatizado. Los resultados mostraron que no hubo una diferencia estadísticamente significativa en el crecimiento de las plantas entre el sistema automatizado y el sistema manual. Sin embargo, la automatización mejoró significativamente la eficiencia operativa, reduciendo el tiempo necesario para el mantenimiento diario del cultivo en un 50%. El sistema automatizado también mostró una distribución más uniforme y eficiente del agua, aunque ambos sistemas utilizaron la misma cantidad de agua en términos absolutos. Durante la etapa final del experimento, un brote de Botritis afectó el invernadero, destacando la importancia de controlar no solo las variables de alimentación, sino también las condiciones ambientales. Las plantas en el sistema automatizado fueron menos afectadas, sugiriendo que una mejor alimentación hace a las plantas más resistentes a plagas y hongos.spa
dc.description.abstractThis study evaluated the impact of automation on the growth and resource optimization in hydroponic cannabis cultivation. The project was conducted in collaboration with the company Healthgrowers, located in Santo Tomás, Atlántico, and focused on comparing an automated hydroponic system with a manual hydroponic system. The study was divided into three specific objectives: 1. Design a hydroponic cannabis cultivation protocol supported by the monitoring and control of nutritional parameters to maximize the size of the cannabis flower and optimize resource use. 2. Implement a laboratory and relevant environment prototype of automation that controls pH and irrigation, monitors conductivity and temperature, to improve growth and resource optimization in hydroponic cannabis cultivation. 3. Conduct a comparative study in a real environment to evaluate the impact of automation on plant growth and resource use efficiency, comparing it with a non-automated system. The results showed no statistically significant difference in plant growth between the automated system and the manual system. However, automation significantly improved operational efficiency, reducing the time needed for daily crop maintenance by 50%. The automated system also demonstrated a more uniform and efficient water distribution, although both systems used the same amount of water in absolute terms.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/15240
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ingenieríasspa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.subjectAutomatizaciónspa
dc.subjectHidroponíaspa
dc.subjectOptimización de recursosspa
dc.subjectCannabisspa
dc.subject.keywordsAutomationeng
dc.subject.keywordsHydroponicseng
dc.subject.keywordsResource optimizationeng
dc.titleImpacto de la automatización en el crecimiento y optimización de recursos en cultivos hidropónicos de Cannabisspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.spaTrabajo de grado máster
dcterms.referencesAcosta-Melo, A. R., & Villamizar-Pérez, J. E. (2021). La agroindustria del Cannabis medicinal en Colombia entre los años 2010 y 2020.spa
dcterms.referencesAdesina, I., Bhowmik, A., Sharma, H., & Shahbazi, A. (2020). A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agriculture, 10(4), 129.eng
dcterms.referencesAgrawal, D. C., Kumar, R., & Dhanasekaran, M. (Eds.). (2022). Cannabis/Hemp for Sustainable Agriculture and Materials (p. 325). Singapore:: Springer.eng
dcterms.referencesAlShrouf, A. (2017). Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci, 27(1), 247-255.eng
dcterms.referencesBustamante Matoma, H. A., & Murillo Ortega, V. (2023). Panorama del cannabis medicinal en el contexto rural integral colombiano. Podium, (44), 37-52.spa
dcterms.referencesCastellanos Camargo, L. D., Parra Molano, D. A., Ardila Ríos, A. M., & González Moreno, L. D. (2023). Análisis del potencial de negocio del cannabis medicinal en Colombia (Bachelor's thesis, Especialización en Gerencia de Proyectos-Virtual).spa
dcterms.referencesCervantes, J. (2007). Marihuana: horticultura del cannabis: la biblia del cultivador médico de interior y exterior. Vancouver: Van Patten Publishing.spa
dcterms.referencesChiarakul, P., Pinich, S., & Sreshthaputra, A. (2024). Monitoring Environmental Factors Associated with Indoor Growth Chambers and Greenhouses for Cannabis Cultivation. Journal of Architectural/Planning Research and Studies (JARS), 21(2), 387-404.eng
dcterms.referencesCifuentes‐Torres, L., Mendoza‐Espinosa, L. G., Correa‐Reyes, G., & Daesslé, L. W. (2021). Hydroponics with wastewater: a review of trends and opportunities. Water and Environment Journal, 35(1), 166-180.eng
dcterms.referencesCrini, G., & Lichtfouse, E. (Eds.). (2020). Sustainable Agriculture Reviews 42: Hemp Production and Applications (Vol. 42). Springer Nature.eng
dcterms.referencesCrini, G., Lichtfouse, E., Chanet, G., & Morin-Crini, N. (2020). Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environmental Chemistry Letters, 18(5), 1451-1476.eng
dcterms.referencesDamian-Damian, L. A., Gonzales-Espinoza, M. A., Bravo-Villar, J. F., Damian-Damian, L., Matos-Parado, F. J., & Beraún-Espíritu, M. M. (2023, November). Design of a Nutrient Spray System Using the ESP32 Microcontroller for Cultivation in an Aeroponic System. In 2023 IEEE Engineering Informatics (pp. 1-5). IEEE.eng
dcterms.referencesDanziger, N., & Bernstein, N. (2021). Light matters: Effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Industrial Crops and Products, 164, 113351.eng
dcterms.referencesDissanayake, C. A. K., Jayathilake, W., Wickramasuriya, H. V. A., Dissanayake, U., & Wasala, W. M. C. B. (2022). A Review on Factors Affecting Technology Adoption in Agricultural Sector. Journal of Agricultural Sciences (Sri Lanka), 17(2).eng
dcterms.referencesEl Kasmi, N., Lorhlam, B., Al Fezghari, O., & Salih-Alj, Y. (2022, August). Hydroponic System in a Controlled Atmosphere and Substrate: Case Study in Morocco. In 2022 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 274-279). IEEE.eng
dcterms.referencesElmulthum, N. A., Zeineldin, F. I., Al-Khateeb, S. A., Al-Barrak, K. M., Mohammed, T. A., Sattar, M. N., & Mohmand, A. S. (2023). Water use efficiency and economic evaluation of the hydroponic versus conventional cultivation systems for green fodder production in Saudi Arabia. Sustainability, 15(1), 822.eng
dcterms.referencesFanelli, R. M. (2021). Barriers to adopting new technologies within rural small and medium enterprises (SMEs). Social sciences, 10(11), 430.eng
dcterms.referencesGhani, S., Bakochristou, F., ElBialy, E. M. A. A., Gamaledin, S. M. A., Rashwan, M. M., Abdelhalim, A. M., & Ismail, S. M. (2019). Design challenges of agricultural greenhouses in hot and arid environments A review. Engineering in Agriculture, Environment and Food, 12(1), 48-70.eng
dcterms.referencesGhoulem, M., El Moueddeb, K., Nehdi, E., Boukhanouf, R., & Calautit, J. K. (2019). Greenhouse design and cooling technologies for sustainable food cultivation in hot climates: Review of current practice and future status. Biosystems Engineering, 183, 121-150.eng
dcterms.referencesJin, D., Jin, S., & Chen, J. (2019). Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review. American Journal of Plant Sciences, 10(06), 925.eng
dcterms.referencesLotta Peña, O. J. Características y lineamientos para el desarrollo tecnológico y la innovación de la industria colombiana del cannabis (Doctoral dissertation, Universidad Nacional de Colombia).spa
dcterms.referencesMahajan, P., Gupta, S., & Sachdeva, S. (2022, December). Automation in Hydroponic Systems: A Sustainable Pathway to Modern Farming. In 2022 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI) (pp. 1-7). IEEE.eng
dcterms.referencesMalík, M., Velechovský, J., & Tlustoš, P. (2021). The overview of existing knowledge on medical cannabis plants growing. Plant, Soil and Environment, 67(8), 425-442.spa
dcterms.referencesMills, E. (2022). Contrary to Conventional Methods, Best Practices for Cannabis Cultivation Result in Less Intensive Land and Water Use for Outdoor than for Indoor Farming.spa
dcterms.referencesMohammed, K., Batung, E., Saaka, S. A., Kansanga, M. M., & Luginaah, I. (2023). Determinants of mechanized technology adoption in smallholder agriculture: Implications for agricultural policy. Land Use Policy, 129, 106666.eng
dcterms.referencesMontoya Martinez, C. F. Análisis de la ventaja comparativa y competitiva sobre el cultivo de Cannabis Sativa en territorio colombiano.spa
dcterms.referencesNemati, R., Fortin, J.-P., Craig, J., & Donald, S. (2021). Growing mediums for medical cannabis production in North America. Agronomy, 11(7), 1366. https://doi.org/10.3390/agronomy11071366eng
dcterms.referencesPatnaik, S., Sen, S., & Mahmoud, M. S. (2020). Smart village technology. Modeling and optimization in Science and Technologies, 17, 181-189.eng
dcterms.referencesPomoni, D. I., Koukou, M. K., Vrachopoulos, M. G., & Vasiliadis, L. (2023). A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use. Energies, 16(4), 1690.eng
dcterms.referencesPrada Peña, J. F., Alarcón Padilla, C. E., Gómez Corzo, A., & Molina Peña, A. F. (2024). Análisis comparativo entre los cultivos de cannabis indoor y outdoor en Colombia (Bachelor's thesis, Especialización en Gerencia de Proyectos).spa
dcterms.referencesQabeel, M. A. S., Shibl, A. A. A., Aziz, H. H. A., & Abdelmawgoud, S. M. S. (2021). A comparative economic study of tomato production by hydroponics and conventional agriculture (with soil) in greenhouses: A case study in the Nubaria region. Asian Journal of Agricultural Extension, Economics & Sociology, 39(2), 126-140.eng
dcterms.referencesRaihan, A., & Bijoy, T. R. (2023). A review of the industrial use and global sustainability of Cannabis sativa. Global Sustainability Research, 2(4), 1-29.eng
dcterms.referencesRichardson, K., Kingsley-Richards, S., Jones, P., & Johnson, M. (2022). A survey of modern greenhouse technologies and practices for commercial cannabis cultivation. Journal of Cannabis Science, 5(1), 45-60. https://doi.org/10.3390/jcs5010045eng
dcterms.referencesRiera, E. (2015). Manual de cultivo de la marihuana. RBA Libros.spa
dcterms.referencesRios Rivera, B. F. (2023). Barreras legales para la producción y comercialización de cannabis medicinal en Colombia.spa
dcterms.referencesRivera, N. M. (2019). Los desafíos del cannabis medicinal en Colombia. NM Rivera, Los desafíos del cannabis medicinal en Colombia.spa
dcterms.referencesSaavedra, M., & Ricardo, K. (2021). Requerimientos Agronómicos Para Un Modelo Productivo De Cannabis En La Provincia Del Sumapaz.spa
dcterms.referencesSaha, G. (2021, November). Technological influences on monitoring and automation of the hydroponics system. In 2021 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-8). IEEE.eng
dcterms.referencesSangeetha, T., & Periyathambi, E. (2024). Automatic nutrient estimator: distributing nutrient solution in hydroponic plants based on plant growth. PeerJ Computer Science, 10, e1871.eng
dcterms.referencesSchober, T., Präger, A., Hartung, J., Hensmann, F., & Graeff-Hönninger, S. (2023). Growth dynamics and yield formation of Cannabis (Cannabis sativa) cultivated in differing growing media under semi-controlled greenhouse conditions. Industrial Crops and Products, 203, 117172.eng
dcterms.referencesSharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371.eng
dcterms.referencesSrivani, P., & Manjula, S. H. (2019, December). A controlled environment agriculture with hydroponics: variants, parameters, methodologies and challenges for smart farming. In 2019 Fifteenth International Conference on Information Processing (ICINPRO) (pp. 1-8). IEEE.eng
dcterms.referencesUriaguereca, I. G. (2022). Análisis económico comparativo entre dos sistemas de producción de Cannabis sativa L. de grado medicinal a través de sus costos de producción (Doctoral dissertation, Universidad de Buenos Aires).spa
dcterms.referencesVelasco, M. S. E., Lanot, H. J. A., Robles, J. M., Sacriz, K. M. D., Temporal, M. B., & Basilio, E. R. (2023). Understanding the Perceptions of Small-Scale Farmers Towards Hydroponics: A Thematic Analysis. International Journal of Environment, Engineering and Education, 5(2), 56-62.eng
dcterms.referencesVelazquez-Gonzalez, R. S., Garcia-Garcia, A. L., Ventura-Zapata, E., Barceinas-Sanchez, J. D. O., & Sosa-Savedra, J. C. (2022). A review on hydroponics and the technologies associated for medium-and small-scale operations. Agriculture, 12(5), 646.eng
dcterms.referencesWartenberg, A. C., Holden, P. A., Bodwitch, H., Parker-Shames, P., Novotny, T., Harmon, T. C., ... & Butsic, V. (2021). Cannabis and the environment: what science tells us and what we still need to know. Environmental Science & Technology Letters, 8(2), 98-107.eng
dcterms.referencesWeingarten, M., Mattson, N., & Grab, H. (2024). Evaluating Propagation Techniques for Cannabis sativa L. Cultivation: A Comparative Analysis of Soilless Methods and Aeroponic Parameters. Plants, 13(9), 1256.eng
dcterms.referencesZheng, Z., Fiddes, K., & Yang, L. (2021). A narrative review on environmental impacts of cannabis cultivation. Journal of Cannabis Research, 3, 1-10.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaMaestría en Gestión y Emprendimiento Tecnológicospa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
Resumen.pdf
Tamaño:
238.06 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
954.36 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones