Percepción y uso del Segment Involvement Score por parte del cardiólogo clínico en la prevención cardiovascular basada en el reporte del hemodinamista: un estudio piloto

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorCadena Bonfanti, Alberto
dc.contributor.advisorGonzález-Torres, Henry Joseth
dc.contributor.authorHernández Herrera, Johon Santander
dc.date.accessioned2025-02-04T21:02:55Z
dc.date.available2025-02-04T21:02:55Z
dc.date.issued2025
dc.description.abstractLa arterioesclerosis es una enfermedad prevalente y una de las principales causas de eventos cardiovasculares. Herramientas como el Segment Involvement Score (SIS) ofrecen una alternativa para la evaluación de la carga de placa coronaria y el inicio de prevención cardiovascular, complementando los métodos tradicionales. Objetivo: Evaluar la sensibilidad de los hemodinamistas a reportar lesiones no obstructivas y los médicos a realizar tratamiento y modificación de la conducta terapéutica del cardiólogo de acuerdo con una adaptación del puntaje de participación de segmento (Segment Involvement Score – SIS) para ser aplicado en hemodinamia en pacientes con arterioesclerosis atendidos en Barranquilla (Atl, CO) en el 2023. Métodos: El estudio, de tipo cuali-cuantitativo, evaluó la conducta terapéutica de 57 especialistas en Colombia frente al uso del Segment Involvement Score (SIS). Se recolectaron datos mediante entrevistas, cuestionarios y casos clínicos simulados, organizados en una base de datos. El análisis se enfocó en características profesionales, percepción del SIS y concordancia en decisiones clínicas con y sin SIS. El estudio fue aprobado por el Comité de Ética bajo la normativa colombiana. Resultados: Este estudio evaluó cómo el uso del Segment Involvement Score (SIS) influye en la conducta terapéutica de 57 especialistas en arterioesclerosis. Los cardiólogos mostraron mayor experiencia (>10 años) y mayor uso del Score de Calcio (70%, p=0.04) que los internistas, aunque el conocimiento del SIS fue limitado en ambas especialidades (35% vs 25%, p=0.92). Si bien la utilidad percibida del reporte de Placas No Obstructivas (PLN) fue alta (95%), el traslado a escalas de riesgo cardiovascular fue bajo, especialmente entre hemodinamistas (33%). El SIS no impactó significativamente en las decisiones terapéuticas, subrayando la necesidad de formación y protocolos específicos para su adopción clínica.spa
dc.description.abstractAtherosclerosis is a prevalent disease and one of the leading causes of cardiovascular events. Tools such as the Segment Involvement Score (SIS) provide a more detailed assessment of coronary plaque burden, complementing traditional methods. Objective: To evaluate the modification of cardiologists' therapeutic behavior based on the Segment Involvement Score (SIS) in patients with atherosclerosis treated in Barranquilla (Atl, CO) in 2023. Methods: This observational, analytical, qualitative study assessed the therapeutic behavior of 57 specialists in Colombia regarding the use of the Segment Involvement Score (SIS). Data were collected through interviews, questionnaires, and simulated clinical cases, organized into a digital database, and analyzed statistically. The analysis focused on professional characteristics, perception of the SIS, and concordance in clinical decisions with and without SIS. The study was approved by the Ethics Committee under Colombian regulations. Results: This study evaluated how the use of the Segment Involvement Score (SIS) influences the therapeutic behavior of 57 specialists in atherosclerosis. Cardiologists showed greater experience (>10 years) and higher use of the Calcium Score (70%, p=0.04) compared to internists, although knowledge of the SIS was limited in both specialties (35% vs. 25%, p=0.92). While the perceived usefulness of the Non-Obstructive Plaque (NOP) report was high (95%), the translation into cardiovascular risk scales was low, especially among interventional cardiologists (33%). The SIS did not significantly impact therapeutic decisions, underscoring the need for training and specific protocols for its clinical adoption.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16211
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.subjectArterioesclerosisspa
dc.subjectAngiografía coronariaspa
dc.subjectEvaluación de riesgospa
dc.subjectToma de decisiones clínicasspa
dc.subjectConocimientosspa
dc.subjectActitudesspa
dc.subjectPráctica en saludspa
dc.subject.keywordsAtherosclerosiseng
dc.subject.keywordsCoronary angiographyeng
dc.subject.keywordsRisk assessmenteng
dc.subject.keywordsClinical Decision- Makingeng
dc.subject.keywordsHealth knowledgeeng
dc.subject.keywordsAttitudeseng
dc.subject.keywordsPracticeeng
dc.titlePercepción y uso del Segment Involvement Score por parte del cardiólogo clínico en la prevención cardiovascular basada en el reporte del hemodinamista: un estudio pilotospa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaOtros
dcterms.referencesWHF. World Heart Vision 2030 Driving Policy Change 2. 2021;1–27. Available from: https://world-heart-federation.org/wp-content/uploads/World-Heart- Vision-2030.pdfeng
dcterms.referencesWilliams MC, Dweck MR. Cardiovascular risk factors and aortic valve calcification: what do these associations mean? Heart [Internet]. 2021;107(19):1524–5. Available from: https://heart.bmj.com/lookup/doi/10.1136/heartjnl-2021-319688eng
dcterms.referencesDamen JA, Pajouheshnia R, Heus P, Moons KGM, Reitsma JB, Scholten RJPM, et al. Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: a systematic review and meta-analysis. BMC Med. 2019;17(1):109. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1340-7eng
dcterms.referencesSofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular Risk Prediction Models and Scores in the Era of Personalized Medicine. J Pers Med. 2022;12(7).eng
dcterms.referencesGreenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE. Coronary Calcium Score and Cardiovascular Risk. J Am Coll Cardiol. 2018;72(4):434–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109718349362eng
dcterms.referencesDetrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups. N Engl J Med [Internet]. 2008;358(13):1336–45. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa072100eng
dcterms.referencesChristopher O, Xiong Z, Huang Y, Zhuang X, Zhang S, Liu M, et al. Risk score for coronary heart disease (CHD-RISK) and hemodynamically significant aortic valve stenosis. Nutr Metab Cardiovasc Dis. 2023;33(5):1029–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939475322005129eng
dcterms.referencesParadis JM, Fried J, Nazif T, Kirtane A, Harjai K, Khalique O, et al. Aortic stenosis and coronary artery disease: What do we know? What don’t we know? A comprehensive review of the literature with proposed treatment algorithms. Eur Heart J. 2014;35(31):2069–82. Available from: https://academic.oup.com/eurheartj/article- lookup/doi/10.1093/eurheartj/ehu247eng
dcterms.referencesAyoub C, Erthal F, Abdelsalam MA, Murad MH, Wang Z, Erwin PJ, et al. Prognostic value of segment involvement score compared to other measures of coronary atherosclerosis by computed tomography: A systematic review and meta-analysis. J Cardiovasc Comput Tomogr. 2017;11(4):258–67.eng
dcterms.referencesBittencourt MS, Hulten E, Ghoshhajra B, O’Leary D, Christman MP, Montana P, et al. Prognostic Value of Nonobstructive and Obstructive Coronary Artery Disease Detected by Coronary Computed Tomography Angiography to Identify Cardiovascular Events. Circ Cardiovasc Imaging. 2014;7(2):282–91. Available from: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.113.001047eng
dcterms.referencesW van Lammeren G, L Moll F, Borst GJ De, de Kleijn DP V, P M de Vries JP, Pasterkamp G. Atherosclerotic plaque biomarkers: beyond the horizon of the vulnerable plaque. Curr Cardiol Rev. 2011;7(1):22–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22294971eng
dcterms.referencesDe Kleijn DPV, Moll FL, Hellings WE, Ozsarlak-Sozer G, de Bruin P, Doevendans PA, et al. Local Atherosclerotic Plaques Are a Source of Prognostic Biomarkers for Adverse Cardiovascular Events. Arterioscler Thromb Vasc Biol [Internet]. 2010;30(3):612–9. Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.109.194944eng
dcterms.referencesLofmark H, Muhrbeck JM, Shahgaldi KS, Ostenfeldt EO, Jernberg TJ. Comparison between coronary calcium score and segment involvement score when used in clinical routine. Eur Heart J. 2024;45(Supplement_1). Available from: https://academic.oup.com/eurheartj/article/doi/10.1093/eurheartj/ehae666.19 8/7837551eng
dcterms.referencesRamjattan NA, Lala V, Kousa O, Makaryus AN. Coronary CT Angiography. StatPearls. 2023.eng
dcterms.referencesSecemsky EA, Aronow HD, Kwolek CJ, Meissner M, Muck PE, Parikh SA, et al. Intravascular Ultrasound Use in Peripheral Arterial and Deep Venous Interventions: Multidisciplinary Expert Opinion From SCAI/AVF/AVLS/SIR/SVM/SVS. J Soc Cardiovasc Angiogr Interv. 2024;3(1):101205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/39131984eng
dcterms.referencesAl-Mallah MH. The heartbeat of tomorrow: welcoming the next generation of cardiologists. J Nucl Cardiol [Internet]. 2023;30(5):2255–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1071358124001600eng
dcterms.referencesVoros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, et al. Coronary Atherosclerosis Imaging by Coronary CT Angiography. JACC Cardiovasc Imaging. 2011;4(5):537–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1936878X11001926eng
dcterms.referencesEckert J, Schmidt M, Magedanz A, Voigtländer T, Schmermund A. Coronary CT angiography in managing atherosclerosis. Int J Mol Sci [Internet]. 2015 9;16(2):3740–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25671814eng
dcterms.referencesPahwa R, Jialal I. Atherosclerosis. StatPearls. 2023.eng
dcterms.referencesNational Library of Medicine (US). 2020; 1–5 MedlinePlus [Internet]. Atherosclerosis.eng
dcterms.referencesDavignon J, Ganz P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation. 2004 ;109(23_suppl_1).eng
dcterms.referencesGimbrone MA, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620–36.eng
dcterms.referencesKhera R, Pandey A, Ayers CR, Carnethon MR, Greenland P, Ndumele CE, et al. Performance of the Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Body Mass Index. JAMA Netw open. 2020;3(10):e2023242.eng
dcterms.referencesMora S, Wenger NK, Cook NR, Liu J, Howard B V, Limacher MC, et al. Evaluation of the Pooled Cohort Risk Equations for Cardiovascular Risk Prediction in a Multiethnic Cohort From the Women’s Health Initiative. JAMA Intern Med. 2018;178(9):1231–40.eng
dcterms.referencesColantonio LD, Richman JS, Carson AP, Lloyd‐Jones DM, Howard G, Deng L, et al. Performance of the Atherosclerotic Cardiovascular Disease Pooled Cohort Risk Equations by Social Deprivation Status. J Am Heart Assoc. 2017;6(3). Available from: https://www.ahajournals.org/doi/10.1161/JAHA.117.005676eng
dcterms.referencesPocock SJ, McCormack V, Gueyffier F, Boutitie F, Fagard RH, Boissel JP. A score for predicting risk of death from cardiovascular disease in adults with raised blood pressure, based on individual patient data from randomised controlled trials. BMJ. 2001;323(7304):75–81.eng
dcterms.referencesGraham IM, Di Angelantonio E, Visseren F, De Bacquer D, Ference BA, Timmis A, et al. Systematic Coronary Risk Evaluation (SCORE). J Am Coll Cardiol. 2021;77(24):3046–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109721048233eng
dcterms.referencesShreya D, Zamora DI, Patel GS, Grossmann I, Rodriguez K, Soni M, et al. Coronary Artery Calcium Score - A Reliable Indicator of Coronary Artery Disease? Cureus. 2021;13(12):e20149.eng
dcterms.referencesLi S, Yuan Y, Zhao L, Lv T, She F, Liu F, et al. Coronary stenosis is a risk marker for impaired cardiac function on cardiopulmonary exercise test. BMC Cardiovasc Disord. 2022;22(1):486.eng
dcterms.referencesHancock EW. Aortic stenosis, angina pectoris, and coronary artery disease. Am Heart J. 1977;93(3):382–93.eng
dcterms.referencesOmeh DJ, Shlofmitz E. Angiography. StatPearls. 2023.eng
dcterms.referencesBastarrika Alemañ G, Cano D, Becker CR, Wintersperger BJ, Reiser MF. TC multicorte (TCMC) cardiaca: Aplicaciones clínicas. An Sist Sanit Navar. 2004;27(1):63–72.eng
dcterms.referencesViladés-Medel D, Dégano IR, Subirana I, Descalzo M, Padilla M, Mundet X, et al. Usefulness of Cardiac Computed Tomography in Coronary Risk Prediction: A Five-Year Follow-Up of the SPICA Study (Secure Prevention with Imaging of the Coronary Arteries). J Clin Med. 2022;11(3).eng
dcterms.referencesLin JS, Evans C V, Johnson E, Redmond N, Burda BU, Coppola EL, et al. Nontraditional Risk Factors in Cardiovascular Disease Risk Assessment: A Systematic Evidence Report for the U.S. Preventive Services Task Force [Internet]. Rockville (MD); 2018.eng
dcterms.referencesPaixao ARM, Ayers CR, El Sabbagh A, Sanghavi M, Berry JD, Rohatgi A, et al. Coronary Artery Calcium Improves Risk Classification in Younger Populations. JACC Cardiovasc Imaging. 2015;8(11):1285–93.eng
dcterms.referencesAhmed AI, Han Y, Al Rifai M, Alnabelsi T, Nabi F, Chang SM, et al. Added prognostic value of plaque burden to computed tomography angiography and myocardial perfusion imaging. Atherosclerosis. 2021;334:9–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34450557eng
dcterms.referencesLiu Z, Ding Y, Dou G, Yang X, Wang X, Shan D, et al. Impact of atherosclerotic extent on clinical outcome for diabetic patients with non-obstructive coronary artery disease. Atheroscler Plus [Internet]. 2021;44:10–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2667089521000225eng
dcterms.referencesBouzas-Mosquera A, Viladés-Medel D, Muñiz J. Coronary computed tomography angiography in asymptomatic patients with diabetes. Rev Española Cardiol (English Ed [Internet]. 2023;76(9):675–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1885585723001317eng
dcterms.referencesSzilveszter B, Vattay B, Bossoussou M, Vecsey-Nagy M, Simon J, Merkely B, et al. CAD-RADS may underestimate coronary plaque progression as detected by serial CT angiography. Eur Hear J - Cardiovasc Imaging [Internet]. 2022 Oct 20;23(11):1530–9. Available from: https://academic.oup.com/ehjcimaging/article/23/11/1530/6409415eng
dcterms.referencesGarcía‐Ortiz L, Barreiro‐Perez M, Merchan‐Gómez S, Ignacio Recio‐ Rodriguez J, Sánchez‐Aguadero N, Alonso‐Dominguez R, et al. Prevalence of coronary atherosclerosis and reclassification of cardiovascular risk in Spanish population by coronary computed tomography angiography: EVA study. Eur J Clin Invest. 2020;50(9). Available from: https://onlinelibrary.wiley.com/doi/10.1111/eci.13272eng
dcterms.referencesLim SS, Huang CC, Hsu PF, Lin CC, Wang YJ, Ding YZ, et al. Prolonged sitting time links to subclinical atherosclerosis. J Chinese Med Assoc. 2022 Jan 6;85(1):51–8. Available from: https://journals.lww.com/10.1097/JCMA.0000000000000672eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.programaEspecialización en Cardiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
178.64 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
760.66 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones