Percepción y uso del Segment Involvement Score por parte del cardiólogo clínico en la prevención cardiovascular basada en el reporte del hemodinamista: un estudio piloto
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Cadena Bonfanti, Alberto | |
dc.contributor.advisor | González-Torres, Henry Joseth | |
dc.contributor.author | Hernández Herrera, Johon Santander | |
dc.date.accessioned | 2025-02-04T21:02:55Z | |
dc.date.available | 2025-02-04T21:02:55Z | |
dc.date.issued | 2025 | |
dc.description.abstract | La arterioesclerosis es una enfermedad prevalente y una de las principales causas de eventos cardiovasculares. Herramientas como el Segment Involvement Score (SIS) ofrecen una alternativa para la evaluación de la carga de placa coronaria y el inicio de prevención cardiovascular, complementando los métodos tradicionales. Objetivo: Evaluar la sensibilidad de los hemodinamistas a reportar lesiones no obstructivas y los médicos a realizar tratamiento y modificación de la conducta terapéutica del cardiólogo de acuerdo con una adaptación del puntaje de participación de segmento (Segment Involvement Score – SIS) para ser aplicado en hemodinamia en pacientes con arterioesclerosis atendidos en Barranquilla (Atl, CO) en el 2023. Métodos: El estudio, de tipo cuali-cuantitativo, evaluó la conducta terapéutica de 57 especialistas en Colombia frente al uso del Segment Involvement Score (SIS). Se recolectaron datos mediante entrevistas, cuestionarios y casos clínicos simulados, organizados en una base de datos. El análisis se enfocó en características profesionales, percepción del SIS y concordancia en decisiones clínicas con y sin SIS. El estudio fue aprobado por el Comité de Ética bajo la normativa colombiana. Resultados: Este estudio evaluó cómo el uso del Segment Involvement Score (SIS) influye en la conducta terapéutica de 57 especialistas en arterioesclerosis. Los cardiólogos mostraron mayor experiencia (>10 años) y mayor uso del Score de Calcio (70%, p=0.04) que los internistas, aunque el conocimiento del SIS fue limitado en ambas especialidades (35% vs 25%, p=0.92). Si bien la utilidad percibida del reporte de Placas No Obstructivas (PLN) fue alta (95%), el traslado a escalas de riesgo cardiovascular fue bajo, especialmente entre hemodinamistas (33%). El SIS no impactó significativamente en las decisiones terapéuticas, subrayando la necesidad de formación y protocolos específicos para su adopción clínica. | spa |
dc.description.abstract | Atherosclerosis is a prevalent disease and one of the leading causes of cardiovascular events. Tools such as the Segment Involvement Score (SIS) provide a more detailed assessment of coronary plaque burden, complementing traditional methods. Objective: To evaluate the modification of cardiologists' therapeutic behavior based on the Segment Involvement Score (SIS) in patients with atherosclerosis treated in Barranquilla (Atl, CO) in 2023. Methods: This observational, analytical, qualitative study assessed the therapeutic behavior of 57 specialists in Colombia regarding the use of the Segment Involvement Score (SIS). Data were collected through interviews, questionnaires, and simulated clinical cases, organized into a digital database, and analyzed statistically. The analysis focused on professional characteristics, perception of the SIS, and concordance in clinical decisions with and without SIS. The study was approved by the Ethics Committee under Colombian regulations. Results: This study evaluated how the use of the Segment Involvement Score (SIS) influences the therapeutic behavior of 57 specialists in atherosclerosis. Cardiologists showed greater experience (>10 years) and higher use of the Calcium Score (70%, p=0.04) compared to internists, although knowledge of the SIS was limited in both specialties (35% vs. 25%, p=0.92). While the perceived usefulness of the Non-Obstructive Plaque (NOP) report was high (95%), the translation into cardiovascular risk scales was low, especially among interventional cardiologists (33%). The SIS did not significantly impact therapeutic decisions, underscoring the need for training and specific protocols for its clinical adoption. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16211 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | Arterioesclerosis | spa |
dc.subject | Angiografía coronaria | spa |
dc.subject | Evaluación de riesgo | spa |
dc.subject | Toma de decisiones clínicas | spa |
dc.subject | Conocimientos | spa |
dc.subject | Actitudes | spa |
dc.subject | Práctica en salud | spa |
dc.subject.keywords | Atherosclerosis | eng |
dc.subject.keywords | Coronary angiography | eng |
dc.subject.keywords | Risk assessment | eng |
dc.subject.keywords | Clinical Decision- Making | eng |
dc.subject.keywords | Health knowledge | eng |
dc.subject.keywords | Attitudes | eng |
dc.subject.keywords | Practice | eng |
dc.title | Percepción y uso del Segment Involvement Score por parte del cardiólogo clínico en la prevención cardiovascular basada en el reporte del hemodinamista: un estudio piloto | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | WHF. World Heart Vision 2030 Driving Policy Change 2. 2021;1–27. Available from: https://world-heart-federation.org/wp-content/uploads/World-Heart- Vision-2030.pdf | eng |
dcterms.references | Williams MC, Dweck MR. Cardiovascular risk factors and aortic valve calcification: what do these associations mean? Heart [Internet]. 2021;107(19):1524–5. Available from: https://heart.bmj.com/lookup/doi/10.1136/heartjnl-2021-319688 | eng |
dcterms.references | Damen JA, Pajouheshnia R, Heus P, Moons KGM, Reitsma JB, Scholten RJPM, et al. Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: a systematic review and meta-analysis. BMC Med. 2019;17(1):109. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-019-1340-7 | eng |
dcterms.references | Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular Risk Prediction Models and Scores in the Era of Personalized Medicine. J Pers Med. 2022;12(7). | eng |
dcterms.references | Greenland P, Blaha MJ, Budoff MJ, Erbel R, Watson KE. Coronary Calcium Score and Cardiovascular Risk. J Am Coll Cardiol. 2018;72(4):434–47. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109718349362 | eng |
dcterms.references | Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups. N Engl J Med [Internet]. 2008;358(13):1336–45. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa072100 | eng |
dcterms.references | Christopher O, Xiong Z, Huang Y, Zhuang X, Zhang S, Liu M, et al. Risk score for coronary heart disease (CHD-RISK) and hemodynamically significant aortic valve stenosis. Nutr Metab Cardiovasc Dis. 2023;33(5):1029–36. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939475322005129 | eng |
dcterms.references | Paradis JM, Fried J, Nazif T, Kirtane A, Harjai K, Khalique O, et al. Aortic stenosis and coronary artery disease: What do we know? What don’t we know? A comprehensive review of the literature with proposed treatment algorithms. Eur Heart J. 2014;35(31):2069–82. Available from: https://academic.oup.com/eurheartj/article- lookup/doi/10.1093/eurheartj/ehu247 | eng |
dcterms.references | Ayoub C, Erthal F, Abdelsalam MA, Murad MH, Wang Z, Erwin PJ, et al. Prognostic value of segment involvement score compared to other measures of coronary atherosclerosis by computed tomography: A systematic review and meta-analysis. J Cardiovasc Comput Tomogr. 2017;11(4):258–67. | eng |
dcterms.references | Bittencourt MS, Hulten E, Ghoshhajra B, O’Leary D, Christman MP, Montana P, et al. Prognostic Value of Nonobstructive and Obstructive Coronary Artery Disease Detected by Coronary Computed Tomography Angiography to Identify Cardiovascular Events. Circ Cardiovasc Imaging. 2014;7(2):282–91. Available from: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.113.001047 | eng |
dcterms.references | W van Lammeren G, L Moll F, Borst GJ De, de Kleijn DP V, P M de Vries JP, Pasterkamp G. Atherosclerotic plaque biomarkers: beyond the horizon of the vulnerable plaque. Curr Cardiol Rev. 2011;7(1):22–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22294971 | eng |
dcterms.references | De Kleijn DPV, Moll FL, Hellings WE, Ozsarlak-Sozer G, de Bruin P, Doevendans PA, et al. Local Atherosclerotic Plaques Are a Source of Prognostic Biomarkers for Adverse Cardiovascular Events. Arterioscler Thromb Vasc Biol [Internet]. 2010;30(3):612–9. Available from: https://www.ahajournals.org/doi/10.1161/ATVBAHA.109.194944 | eng |
dcterms.references | Lofmark H, Muhrbeck JM, Shahgaldi KS, Ostenfeldt EO, Jernberg TJ. Comparison between coronary calcium score and segment involvement score when used in clinical routine. Eur Heart J. 2024;45(Supplement_1). Available from: https://academic.oup.com/eurheartj/article/doi/10.1093/eurheartj/ehae666.19 8/7837551 | eng |
dcterms.references | Ramjattan NA, Lala V, Kousa O, Makaryus AN. Coronary CT Angiography. StatPearls. 2023. | eng |
dcterms.references | Secemsky EA, Aronow HD, Kwolek CJ, Meissner M, Muck PE, Parikh SA, et al. Intravascular Ultrasound Use in Peripheral Arterial and Deep Venous Interventions: Multidisciplinary Expert Opinion From SCAI/AVF/AVLS/SIR/SVM/SVS. J Soc Cardiovasc Angiogr Interv. 2024;3(1):101205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/39131984 | eng |
dcterms.references | Al-Mallah MH. The heartbeat of tomorrow: welcoming the next generation of cardiologists. J Nucl Cardiol [Internet]. 2023;30(5):2255–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1071358124001600 | eng |
dcterms.references | Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, et al. Coronary Atherosclerosis Imaging by Coronary CT Angiography. JACC Cardiovasc Imaging. 2011;4(5):537–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1936878X11001926 | eng |
dcterms.references | Eckert J, Schmidt M, Magedanz A, Voigtländer T, Schmermund A. Coronary CT angiography in managing atherosclerosis. Int J Mol Sci [Internet]. 2015 9;16(2):3740–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25671814 | eng |
dcterms.references | Pahwa R, Jialal I. Atherosclerosis. StatPearls. 2023. | eng |
dcterms.references | National Library of Medicine (US). 2020; 1–5 MedlinePlus [Internet]. Atherosclerosis. | eng |
dcterms.references | Davignon J, Ganz P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation. 2004 ;109(23_suppl_1). | eng |
dcterms.references | Gimbrone MA, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620–36. | eng |
dcterms.references | Khera R, Pandey A, Ayers CR, Carnethon MR, Greenland P, Ndumele CE, et al. Performance of the Pooled Cohort Equations to Estimate Atherosclerotic Cardiovascular Disease Risk by Body Mass Index. JAMA Netw open. 2020;3(10):e2023242. | eng |
dcterms.references | Mora S, Wenger NK, Cook NR, Liu J, Howard B V, Limacher MC, et al. Evaluation of the Pooled Cohort Risk Equations for Cardiovascular Risk Prediction in a Multiethnic Cohort From the Women’s Health Initiative. JAMA Intern Med. 2018;178(9):1231–40. | eng |
dcterms.references | Colantonio LD, Richman JS, Carson AP, Lloyd‐Jones DM, Howard G, Deng L, et al. Performance of the Atherosclerotic Cardiovascular Disease Pooled Cohort Risk Equations by Social Deprivation Status. J Am Heart Assoc. 2017;6(3). Available from: https://www.ahajournals.org/doi/10.1161/JAHA.117.005676 | eng |
dcterms.references | Pocock SJ, McCormack V, Gueyffier F, Boutitie F, Fagard RH, Boissel JP. A score for predicting risk of death from cardiovascular disease in adults with raised blood pressure, based on individual patient data from randomised controlled trials. BMJ. 2001;323(7304):75–81. | eng |
dcterms.references | Graham IM, Di Angelantonio E, Visseren F, De Bacquer D, Ference BA, Timmis A, et al. Systematic Coronary Risk Evaluation (SCORE). J Am Coll Cardiol. 2021;77(24):3046–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0735109721048233 | eng |
dcterms.references | Shreya D, Zamora DI, Patel GS, Grossmann I, Rodriguez K, Soni M, et al. Coronary Artery Calcium Score - A Reliable Indicator of Coronary Artery Disease? Cureus. 2021;13(12):e20149. | eng |
dcterms.references | Li S, Yuan Y, Zhao L, Lv T, She F, Liu F, et al. Coronary stenosis is a risk marker for impaired cardiac function on cardiopulmonary exercise test. BMC Cardiovasc Disord. 2022;22(1):486. | eng |
dcterms.references | Hancock EW. Aortic stenosis, angina pectoris, and coronary artery disease. Am Heart J. 1977;93(3):382–93. | eng |
dcterms.references | Omeh DJ, Shlofmitz E. Angiography. StatPearls. 2023. | eng |
dcterms.references | Bastarrika Alemañ G, Cano D, Becker CR, Wintersperger BJ, Reiser MF. TC multicorte (TCMC) cardiaca: Aplicaciones clínicas. An Sist Sanit Navar. 2004;27(1):63–72. | eng |
dcterms.references | Viladés-Medel D, Dégano IR, Subirana I, Descalzo M, Padilla M, Mundet X, et al. Usefulness of Cardiac Computed Tomography in Coronary Risk Prediction: A Five-Year Follow-Up of the SPICA Study (Secure Prevention with Imaging of the Coronary Arteries). J Clin Med. 2022;11(3). | eng |
dcterms.references | Lin JS, Evans C V, Johnson E, Redmond N, Burda BU, Coppola EL, et al. Nontraditional Risk Factors in Cardiovascular Disease Risk Assessment: A Systematic Evidence Report for the U.S. Preventive Services Task Force [Internet]. Rockville (MD); 2018. | eng |
dcterms.references | Paixao ARM, Ayers CR, El Sabbagh A, Sanghavi M, Berry JD, Rohatgi A, et al. Coronary Artery Calcium Improves Risk Classification in Younger Populations. JACC Cardiovasc Imaging. 2015;8(11):1285–93. | eng |
dcterms.references | Ahmed AI, Han Y, Al Rifai M, Alnabelsi T, Nabi F, Chang SM, et al. Added prognostic value of plaque burden to computed tomography angiography and myocardial perfusion imaging. Atherosclerosis. 2021;334:9–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34450557 | eng |
dcterms.references | Liu Z, Ding Y, Dou G, Yang X, Wang X, Shan D, et al. Impact of atherosclerotic extent on clinical outcome for diabetic patients with non-obstructive coronary artery disease. Atheroscler Plus [Internet]. 2021;44:10–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2667089521000225 | eng |
dcterms.references | Bouzas-Mosquera A, Viladés-Medel D, Muñiz J. Coronary computed tomography angiography in asymptomatic patients with diabetes. Rev Española Cardiol (English Ed [Internet]. 2023;76(9):675–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1885585723001317 | eng |
dcterms.references | Szilveszter B, Vattay B, Bossoussou M, Vecsey-Nagy M, Simon J, Merkely B, et al. CAD-RADS may underestimate coronary plaque progression as detected by serial CT angiography. Eur Hear J - Cardiovasc Imaging [Internet]. 2022 Oct 20;23(11):1530–9. Available from: https://academic.oup.com/ehjcimaging/article/23/11/1530/6409415 | eng |
dcterms.references | García‐Ortiz L, Barreiro‐Perez M, Merchan‐Gómez S, Ignacio Recio‐ Rodriguez J, Sánchez‐Aguadero N, Alonso‐Dominguez R, et al. Prevalence of coronary atherosclerosis and reclassification of cardiovascular risk in Spanish population by coronary computed tomography angiography: EVA study. Eur J Clin Invest. 2020;50(9). Available from: https://onlinelibrary.wiley.com/doi/10.1111/eci.13272 | eng |
dcterms.references | Lim SS, Huang CC, Hsu PF, Lin CC, Wang YJ, Ding YZ, et al. Prolonged sitting time links to subclinical atherosclerosis. J Chinese Med Assoc. 2022 Jan 6;85(1):51–8. Available from: https://journals.lww.com/10.1097/JCMA.0000000000000672 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Especialización en Cardiología | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: