Estrategia basada en realce por similaridad local para la segmentación computacional de la vena cava superior en imágenes de tomografía computarizada cardiaca

No hay miniatura disponible

Fecha

2017

Autores

Vera, Miguel
Huérfano, Yoleidy
Contreras-Velásquez, Julio
Bermúdez, Valmore
Del Mar, Atilio
Cuberos, María

Título de la revista

ISSN de la revista

Título del volumen

Editor

Cooperativa servicios y suministros 212518 RS

Resumen

El artículo propone una estrategia para segmentar la vena cava superior (VCS) en 20imágenes tridimensionales (3-D) de tomografía computarizada multicapa, correspondientes al ciclo cardiaco completo de un paciente. Esta estrategia consta de las etapas de pre-procesamiento, segmentación y entonación de parámetros. La etapa de pre-procesamiento se divide en dos fases. En la primera, denominada fase de filtrado, se emplea una técnica denominada realce por similaridad local (LSE) con el propósito de disminuir el impacto de los artefactos y atenuar el ruido en la calidad de las imágenes. Esta técnica, combina un filtro promediador, un filtro detector de bordes (denominado black top hat) y un filtro gaussiano (GF). En la segunda, identificada como fase de definición de una región de interés (ROI), se consideran las imágenes filtradas, máquinas de soporte vectorial de mínimos cuadrados e información a priori para aislar las estructuras anatómicas que circundan la VCS. Por otra parte, durante la etapa de segmentación 3-D se implementa un algoritmo de agrupamiento, denominado crecimiento de regiones (RG), el cual es aplicado a las imágenes pre-procesadas. Durante la entonación de parámetros, de la estrategia propuesta, el coeficiente de Dice (Dc) es utilizado para comparar las segmentaciones, de la vena cava superior, obtenidas automáticamente, con la segmentación de la VCS generada, manualmente, por un cardiólogo. La combinación de parámetros que generó el Dc más elevado considerando el instante de diástole se aplica luego a las 19 imágenes tridimensionales restantes, obteniéndose un Dc promedio superior a 0.88 lo cual indica una buena correlación entre las segmentaciones generadas por el experto cardiólogo y las producidas por la estrategia desarrollada.
The article proposes a strategy to segment the superior vena cava (VCS) into 20-dimen- sion (3-D) images of multi-layer computed tomography, corresponding to the complete cardiac cycle of a patient. This strategy consists of the stages of pre-processing, segmentation and intonation of parameters. The pre-processing stage is divided into two phases. In the first phase, called the filtering phase, a technique called local similarity enhancement (LSE) is used in order to reduce the impact of the artifacts and to attenuate noise in the quality of the images. This technique combines an averaging filter, an edge detector filter (called black top hat) and a Gaussian filter (GF). In the second, identified as a region of interest (ROI) definition phase, we consider filtered images, least squares vector support machines and a priori information to isolate the anatomical structures that surround the VCS. On the other hand, during the 3-D segmentation stage a clustering algorithm, called region growth (RG), is implemented, which is applied to the preprocessed images. During the intonation of parameters, of the proposed strategy, the Dice coefficient (Dc) is used to compare the segmentations of the superior vena cava, obtained automatically, with the segmentation of the VCS generated manually by a cardiologist. The combination of parameters that generated the highest Dc considering the instant of diastole is then applied to the remaining 19 three-dimensional images, obtaining an average Dc higher than 0.88 which indicates a good correlation between the segmentations generated by the expert cardiologist and those produced by the strategy developed.

Descripción

Palabras clave

Tomografía, Vena cava superior, Realce por similaridad local, Segmentación, Tomography, Superior vena cava, Local similarity enhancement, Segmentation

Citación

Enlace DOI

Enlace URL externo

Colecciones