The Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiation

dc.contributor.authorBermeo, Sandra
dc.contributor.authorAl-Saedi, Ahmed
dc.contributor.authorKassem, Moustapha
dc.contributor.authorVidal, Christopher
dc.contributor.authorDuque, Gustavo
dc.date.accessioned2018-03-22T14:22:14Z
dc.date.available2018-03-22T14:22:14Z
dc.date.issued2017-04
dc.description.abstractMutations in MAN1, a protein of the nuclear envelope, cause bone phenotypes characterized by hyperostosis. The mechanism of this proosteogenic phenotype remains unknown. We increased and decreased MAN1 expression in mesenchymal stem cells (MSC) upon which standard osteogenic and adipogenic differentiation were performed. MAN1 knockdown increased osteogenesis and mineralization. In contrast, osteogenesis remained stable upon MAN1 overexpression. Regarding a mechanism, we found that low levels of MAN1 facilitated the nuclear accumulation of regulatory smads and smads-related complexes, with a concurrently high expression of nuclear b-Catenin. In addition, we found adipogenesis to be decreased in both conditions, although predominantly affected by MAN1 overexpression. Finally, lamin A, a protein of the nuclear envelope that regulates MSC differentiation, was unaffected by changes in MAN1. In conclusion, our studies demonstrated that lower levels of MAN1 in differentiating MSC are associated with higher osteogenesis and lower adipogenesis. High levels of MAN1 only affected adipogenesis. These effects could have an important role in the understanding of the role of the proteins of the nuclear envelope in bone formation. J. Cell. Biochem. 118: 4425–4435, 2017.eng
dc.identifier.issn10974644
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1897
dc.language.isoengeng
dc.publisherDeepDyveeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceJournal of Cellular Biochemistryeng
dc.sourceVol. 118 (2017)spa
dc.source.urihttps://findanexpert.unimelb.edu.au/display/publicationS1205982
dc.subjectMesenchymal stem cellseng
dc.subjectOsteoblastogenesiseng
dc.subjectAdipogenesiseng
dc.subjectMan1eng
dc.subjectLamin Aeng
dc.titleThe Role of the Nuclear Envelope Protein MAN1 in Mesenchymal Stem Cell Differentiationeng
dc.typearticleeng
dcterms.referencesAkter R, Rivas D, Geneau G, Drissi H, Duque G. 2009. Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res 24:283–293.eng
dcterms.referencesAndres V, Gonzalez JM. 2009. Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187:945–957.eng
dcterms.referencesBengtsson L. 2007. What MAN1 does to the smads—TGF beta/BMP signaling and the nuclear envelope. FEBS J 274:1374–1382.eng
dcterms.referencesBermeo S, Gunaratnam K, Duque G. 2014. Fat and bone interactions. Curr Osteoporos Rep 12:235–242.eng
dcterms.referencesBermeo S, Vidal C, Zhou H, Duque G. 2015. Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/beta-catenin pathway. J Cell Biochem 116:2344–2353.eng
dcterms.referencesBourgeois B, Gilquin B, Tellier-Lebegue C, Ostlund C, Wu W, Perez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S. 2013. Inhibition of TGF-beta signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Sci Signal 6:ra49.eng
dcterms.referencesBrachner A, Reipert S, Foisner R, Gotzmann J. 2005. LEM2 is a novel MAN1- related inner nuclear membrane protein associated with A-type lamins. J Cell Sci 118:5797–5810.eng
dcterms.referencesBroers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ. 2006. Nuclear lamins: Laminopathies and their role in premature ageing. Physiol Rev 86:967–1008.eng
dcterms.referencesBurger B, Hershkovitz D, Indelman M, Kovac M, Galambos J, Haeusermann P, Sprecher E, Itin PH. 2010. Buschke–Ollendorff syndrome in a threegeneration family: Influence of a novel LEMD3 mutation to tropoelastin expression. Eur J Dermatol 20:693–697.eng
dcterms.referencesCaputo S, Couprie J, Duband-Goulet I, Konde E, Lin F, Braud S, Gondry M, Gilquin B, Worman HJ, Zinn-Justin S. 2006. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J Biol Chem 281:18208–18215.eng
dcterms.referencesChen G, Deng C, Li YP. 2012. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288.eng
dcterms.referencesCohen TV, Kosti O, Stewart CL. 2007. The nuclear envelope protein MAN1 regulates TGFbeta signaling and vasculogenesis in the embryonic yolk sac. Development 134:1385–1395.eng
dcterms.referencesGruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. 2005. The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6:21–31.eng
dcterms.referencesHeessen S, Fornerod M. 2007. The inner nuclear envelope as a transcription factor resting place. EMBO Rep 8:914–919.eng
dcterms.referencesHellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJ, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert JM, Vandesompele J, Speleman F, Verschueren K, Coucke PJ, Mortier GR. 2004. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke–Ollendorff syndrome and melorheostosis. Nat Genet 36:1213–1218.eng
dcterms.referencesIshimura A, Ng JK, Taira M, Young SG, Osada S. 2006. Man1, an inner nuclear membrane protein, regulates vascular remodeling by modulating transforming growth factor beta signaling. Development 133:3919–3928.eng
dcterms.referencesJaved A, Afzal F, Bae JS, Gutierrez S, Zaidi K, Pratap J, van Wijnen AJ, Stein JL, Stein GS, Lian JB. 2009. Specific residues of RUNX2 are obligatory for formation of BMP2-induced RUNX2-SMAD complex to promote osteoblast differentiation. Cells Tissues Organs 189:133–137.eng
dcterms.referencesKamiya N, Ye L, Kobayashi T, Lucas DJ, Mochida Y, Yamauchi M, Kronenberg HM, Feng JQ, Mishina Y. 2008. Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J Bone Miner Res 23:2007–2017.eng
dcterms.referencesKonde E, Bourgeois B, Tellier-Lebegue C, Wu W, Perez J, Caputo S, Attanda W, Gasparini S, Charbonnier JB, Gilquin B, Worman HJ, Zinn-Justin S. 2010. Structural analysis of the Smad2-MAN1 interaction that regulates transforming growth factor-beta signaling at the inner nuclear membrane. Biochemistry 49:8020–8032.eng
dcterms.referencesLee KS, Hong SH, Bae SC. 2002. Both theSmad and p38MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21:7156–7163.eng
dcterms.referencesLepperdinger G. 2011. Inflammation and mesenchymal stem cell aging. Curr Opin Immunol 23:518–524.eng
dcterms.referencesLi W, Yeo LS, Vidal C, McCorquodale T, Herrmann M, Fatkin D, Duque G. 2011. Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS ONE 6:e19313.eng
dcterms.referencesLin F, Morrison JM, Wu W, Worman HJ. 2005. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14:437–445.eng
dcterms.referencesLowery JW, Intini G, Gamer L, Lotinun S, Salazar VS, Ote S, Cox K, Baron R, Rosen V. 2015. Loss of BMPR2 leads to high bone mass due to increased osteoblast activity. J Cell Sci 128:1308–1315.eng
dcterms.referencesMansharamani M, Wilson KL. 2005. Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-toautointegration factor. J Biol Chem 280:13863–13870.eng
dcterms.referencesMumm S, Wenkert D, Zhang X, McAlister WH, Mier RJ, Whyte MP. 2007. Deactivating germline mutations in LEMD3 cause osteopoikilosis and Buschke–Ollendorff syndrome, but not sporadic melorheostosis. J Bone Miner Res 22:243–250.eng
dcterms.referencesPan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K. 2005. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280: 15992–16001.eng
dcterms.referencesParnaik VK. 2008. Role of nuclear lamins in nuclear organization, cellular signaling, and inherited diseases. Int Rev Cell Mol Biol 266:157–206.eng
dcterms.referencesPei L, Tontonoz P. 2004. Fat’s loss is bone’s gain. J Clin Invest 113: 805–806.eng
dcterms.referencesPfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36.eng
dcterms.referencesQiu W, Hu Y, AndQersen TE, Jafari A, Li N, Chen W, Kassem M. 2010. Tumor necrosis factor receptor superfamily member 19 (TNFRSF19) regulates differentiation fate of human mesenchymal (stromal) stem cells through canonical Wnt signaling and C/EBP. J Biol Chem 285: 14438–14449.eng
dcterms.referencesRosen C, Bouxsein M. 2006. Mechanisms of disease: Is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43.eng
dcterms.referencesSabokbar A, Millett PJ, Myer B, Rushton N. 1994. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone Miner 27:57–67.eng
dcterms.referencesSethe S, Scutt A, Stolzing A. 2006. Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116.eng
dcterms.referencesShaklai S, Amariglio N, Rechavi G, Simon AJ. 2007. Gene silencing at the nuclear periphery. FEBS J 274:1383–1392.eng
dcterms.referencesTong J, Li W, Vidal C, Yeo LS, Fatkin D, Duque G. 2011. Lamin A/C deficiency is associated with fat infiltration of muscle and bone. Mech Ageing Dev 132:552–559.eng
dcterms.referencesVidal C, Bermeo S, Fatkin D, Duque G. 2012a. Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis. BoneKEy Rep 1:62.eng
dcterms.referencesVidal C, Bermeo S, Li W, Huang D, Kremer R, Duque G. 2012b. Interferon gamma inhibits adipogenesis in vitro and prevents marrow fat infiltration in oophorectomized mice. Stem Cells 30:1042–1048.eng
dcterms.referencesWan M, Li C, Zhen G, Jiao K, He W, Jia X, Wang W, Shi C, Xing Q, Chen YF, Jan De Beur S, Yu B, Cao X. 2012. Injury-activated transforming growth factor beta controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells 30:2498–2511.eng
dcterms.referencesWang N, Tytell JD, Ingber DE. 2009. Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82.eng
dcterms.referencesWilson KL, Foisner R. 2010. Lamin-binding Proteins. Cold Spring Harb Perspect Biol 2:a000554.eng
dcterms.referencesZhou S. 2011. TGF-beta regulates beta-catenin signaling and osteoblast differentiation in human mesenchymal stem cells. J Cell Biochem 112:1651–1660.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones