Effects of Splitter Blade Length on Disc Pump Performance
dc.contributor.author | Martinez-Diaz, Leonel | |
dc.contributor.author | Hernandez Herrera, Hernan | |
dc.contributor.author | Castellanos-Gonzalez, Luis Marcos | |
dc.contributor.author | Silva Ortega, Jorge Ivan | |
dc.date.accessioned | 2018-03-16T15:54:10Z | |
dc.date.available | 2018-03-16T15:54:10Z | |
dc.date.issued | 2017 | |
dc.description.abstract | The disc pump operates using boundary layer principle and viscous drag with a relatively low efficiency. There are methods to increase head and efficiency, one of them is the placing of blades sector sor splitter blades in disc. This method has been applied only in the low viscosity fluids pumping (v<0.1 stokes). This study describe an experimental rescarch in a hight viscosity fluid (v=2 stokes) with exit angle β2 = 35° and different splitter blades Lengths (Ls) (75, 50, 25%). The prupose is to determinate the splitter blades length that achieves the most effective combination between the blade effect and boundary layer effect in order to increase the energy transmission efficiency from the impeller to the fluid. As result, it can be established that the use of spliter blades is an alternative to increase the performance of the fluid. As result, it can be established that the use of spliter blades is an alternative to increase the performance of the disc pump. The highest efficiency and head were obtained for the gapsize between two disc (b) of 12 mm using a 50% spliter blades length of the man blade length. | eng |
dc.identifier.issn | 1816949x | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/1873 | |
dc.language.iso | eng | spa |
dc.publisher | Scientific Research publishing company | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Journal of Engineering and Applied Sciences | eng |
dc.source | Vol. 12, No. 6 (2017) | eng |
dc.source.uri | http://docsdrive.com/pdfs/medwelljournals/jeasci/2017/1612-1618.pdf | |
dc.subject | Pump | eng |
dc.subject | Disc pump | eng |
dc.subject | Spliter blades | eng |
dc.subject | Boundary layer | eng |
dc.subject | Viscous drag | eng |
dc.subject | Blades lenghts | eng |
dc.title | Effects of Splitter Blade Length on Disc Pump Performance | eng |
dc.type | article | eng |
dcterms.references | Babayigit, O., M. Ozgoren, M.H. Aksoy and O. Kocaaslan, 2012. Numerical modeling and flow analysis of splitter blades effect on a centrifugal pump performance. Master Thesis, Selcuk University Hadim Vocational School, Hadim, Konya, Turkey. | eng |
dcterms.references | Babayigit, O., M. Ozgoren, M.H. Aksoy and O. Kocaaslan, 2012. Numerical modeling and flow analysis of splitter blades effect on a centrifugal pump performance. Proceedings of the IOP Conference on Series: Earth and Environmental Science Vol. 15, August 19-23, 2012, IOP Publishing, Bristol, England, UK., pp: 032026-032029. | eng |
dcterms.references | Cavazzini, G., G. Pavesi, A. Santolin, G. Ardizzon and R. Lorenzi, 2015. Using splitter blades to improve suction performance of centrifugal impeller pumps. Proc. Inst. Mech. Eng. Part A J. Power Energy, 229: 309-323. | eng |
dcterms.references | Cherkasski, V.M., 1986. Bombas, Ventiladores, Compresores. Mir, Moscow, Russia, Pages: 373. | eng |
dcterms.references | Djebedjian, B., 2009. Theoretical model to predict the performance of centrifugal pump equipped with splitter blades. Mansoura Eng. J., 34: 50-70. | eng |
dcterms.references | Dolgushev, S.V. and S.V. Khaidarov, 2001. Simplified description of the flow in a diametral disk friction pump. J. Eng. Phys. Thermophys., 74: 745-749. | eng |
dcterms.references | Gjernes, T., 2014. Optimization of centrifugal slurry pumps through computational fluid dynamics. Master Thesis, School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Burnaby, British Columbia. | eng |
dcterms.references | Golcu, M. and Y. Pancar, 2005. Investigation of performance characteristics in a pump impeller with low blade discharge angle. World Pumps, 2005: 32-40. | eng |
dcterms.references | Golcu, M., Y. Pancar, H.S. Ergur and E.O. Goral, 2010. Prediction of head, efficiency and power characteristics in a semi-open impeller. Math. Comput. Appl., 15: 137-147. | eng |
dcterms.references | Goral, E.O., 2000. Effect of splitter blades on pump performance in semi open impellers. Master Thesis, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Turkey. | eng |
dcterms.references | ISO, 2012. Rotodynamic pumps-hydraulic performance acceptance tests-Grades 1, 2 and 3. International Organization for Standardization, Geneva, Switzerland. https://www.iso.org/standard/41202.html. | spa |
dcterms.references | Jeon, W.H., 2005. A numerical study on the acoustic characteristics of a centrifugal impeller with a splitter. GESTS. Intl. Trans. Comput. Sci. Eng., 20: 17-28. | eng |
dcterms.references | Jianping, Y.S.Z.J.Y. and H.Y.F. Yuedeng, 2007. Effects of splitter blades on the law of inner flow within centrifugal pump impeller. Chin. J. Mech. Eng., 20: 59-63. | eng |
dcterms.references | Jinfeng, Z., Y. Shouqi, F. Yuedeng and Y. Jianping, 2013. Influence of splitter blades on the total flow field of a low-specific centrifugal pump. Master Thesis, Jiangsu University, Zhenjiang, China. | eng |
dcterms.references | Jingchun, W., 2012. Blood pump with splitter impeller blades and splitter stator vanes and methods of manufacturing. WIPO, Geneva, Switzerland. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012054490&recNum=3&docAn=US2011056722&queryString=(DP:%5B01.01.2011%20TO%2001.01.2013%5D%20AND%20(EN_AB:(lvad%20or%20%22heart%20pump%22%20or%20%22catheter%20pump%22)%20o | eng |
dcterms.references | Kergourlay, G., M. Younsi, F. Bakir and R. Rey, 2007. Influence of splitter blades on the flow field of a centrifugal pump: Test-analysis comparison. Int. J. Rotating Mach., 2007: 1-13. | eng |
dcterms.references | Korkmaz, E., M. Golcu and C. Kurbanoglu, 2017. Effects of blade discharge angle, blade number and splitter blade length on deep well pump performance. J. Appl. Fluid Mech., 10: 529-540. | eng |
dcterms.references | Li, W.G., 2011. Blade exit angle effects on performance of a standard industrial centrifugal oil pump. J. Appl. Fluid Mech., 4: 105-119 | eng |
dcterms.references | Martinez- Diaz, L., 2000. Method of increase head and efficiency at disc pump. Ph.D Thesis, University of Cienfuegos, Cienfuegos, Cuba. | eng |
dcterms.references | Misyura, V.I, B.V. Ovsyannikov and V.F. Prisnyakov, 1986. [Disc Pump (In Russian)]. Moscow Publisher, Moscow, Russia, Pages: 112. | eng |
dcterms.references | Miyamoto, H., Y. Nakashima and H. Ohba, 1992. Effects of splitter blades on the flows and characteristics in centrifugal impellers. JSME Int. J., 35: 238-246. | eng |
dcterms.references | Oliveira, M.D. and J.C. Páscoa, 2009. Analytical and experimental modeling of a viscous disc pump for MEMS applications. Proceedings of the 3rd National Conference on Fluid Mechanics, Thermodynamics and Energy (MEFTE-Braganca’09), September 17-18, 2009, Polytechnic Institute of Braganca, Braganca, Portugal, pp: 1-7. | eng |
dcterms.references | PCI., 2001. Disc pumps keep fluids moving. Paint and Coatings Industry, Ontario, Canada. http://www.pcimag.com/articles/86117-disc-pumps-keep-fluids-moving.%20Accessed%2021%20June%202015. | eng |
dcterms.references | Pacello, J. and P. Hanas, 2000. Disc pump-type pump technology for hard-to-pump applications. Proceedings of the International Symposium on Pump Users, March 5-9, 2000, George R. Brown Convention Center, Houston, Texas, pp: 69-80. | eng |
dcterms.references | Pfleiderer, C., 1960. Centrifugal pumps and turbo compressors. World Health Organization, Geneva, Switzerland. | eng |
dcterms.references | Pranit, M.P. and R.G. Todkar, 2013. An overview of effect of splitter blades on centrifugal pump performance. Intl. J. Eng. Res. Technol., 2: 2249-2252. | eng |
dcterms.references | Sensel, D.L. and M. Kowalak, 2012. Vortex pump with splitter blade impeller US 8128360 B2. Patent and Trademark Office, Washington, DC., US. https://www.google.com/patents/US8128360. | eng |
dcterms.references | Vasava, K. and J.P. Mital, 2015. A general review on effect of splitter blade on the performance of centrifugal pump. Proceedings of the 3rd Afro-Asian International Conference on Science, Engineering and Technology (AAICSET’15), March 27-28, 2015, Fields Publication, Boston, Massachusetts, pp: 81-84. | eng |
dcterms.references | Yuan, S., 1997. Advances in hydraulic design of centrifugal pumps. Proceedings of the 1997 ASME Meeting on Fluid Engineering Division Summer, June 22-26, 1997, ASME, Vancouver, British Columbia, Canada, ISBN:9780791812372, pp: 1-15. | eng |
dcterms.references | Yuan, S., J. Zhang, Y. Tang, J. Yuan and Y. Fu, 2009. Research on the design method of the centrifugal pump with splitter blades. Proceedings of the 2009 ASME Meeting on Fluids Engineering Division Summer Vol. 1, August 2-6, 2009, ASME, New York, USA., ISBN:978-0-7918-4372-7, pp: 107-120. | eng |
dcterms.references | Zhang, Y.L., S.Q. Yuan, J.F. Zhang, Y.N. Feng and J.X. Lu, 2014. Numerical investigation of the effects of splitter blades on the cavitation performance of a centrifugal pump. Proceedings of the 27th Symposium on Hydraulic Machinery and Systems (IAHR’14) Vol. 22, September 22-26, 2014, IOP Publishing, Bristol, England, UK., pp: 052003-052011. | eng |
dcterms.references | Zhou, X., Y.X. Zhang, Z.L. Ji and L. Chen, 2012. Hydraulic design and performance analysis of low specific speed centrifugal pump. Proceedings of the IOP Conference on Series: Earth and Environmental Science Vol. 15, August 19-23, 2012, IOP Publishing, Bristol, England, UK., pp: 032023-032031. | eng |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: