Implicaciones clínicas de las disnatremias y su relación con la mortalidad en pacientes adultos críticamente enfermos con covid-19 durante el año 2021
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Aldana Roa, Mauricio | |
dc.contributor.advisor | Viñas Granadiño, Álvaro | |
dc.contributor.author | Echeverri Muñoz, Diana Marcela | |
dc.contributor.author | Rojas Moreno, Heiner José | |
dc.date.accessioned | 2024-07-15T21:34:51Z | |
dc.date.available | 2024-07-15T21:34:51Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Introducción: Los trastornos del sodio son alteraciones electrolíticas frecuentes en los pacientes críticamente enfermos y puede presentarse con hiponatremia e hipernatremia. En pacientes con COVID-19 las disnatremias se asocia con un peor desenlace de morbimortalidad. Objetivos: Dilucidar las implicaciones clínicas de las disnatremias y su relación con la mortalidad durante la estancia hospitalaria en pacientes adultos con COVID-19 críticamente enfermos. Materiales y métodos: Analítico correlacional, retrospectivo. Se incluyeron pacientes adultos positivos para SARS-CoV-2, ingresados a cuidados intensivos en Barranquilla (Colombia) entre enero y diciembre del año 2021. Los pacientes se dividieron según la presencia y el tipo de disnatremia (normonatrémicos, hiponatrémicos e hipernatrémicos). Los datos se evaluaron mediante regresión logística univariada. La mortalidad se determinó a través de cocientes de riesgos instantáneo (HR) con sus intervalos de confianza al 95%. Resultados: Se incluyeron 185 pacientes. La prevalencia de disnatremia fue 24.9%: 17 con hiponatremia (9.2%) y 29 con hipernatremia (15.7%). Los pacientes con disnatremia padecían con mayor frecuencia de enfermedad renal crónica (23.8%), requerimiento de terapia reemplazo renal (25.9%), y niveles elevados de creatinina, ferritina y nitrógeno ureico sérico. La presencia de hipernatremia en la admisión influyó en un riesgo mayor de muerte en comparación con la normonatremia (HR = 1.73: IC 95% [1.12 – 2.68]; p = 0.013). Conclusiones: La presencia de hipernatremia en la admisión influyó en la supervivencia en comparación con la normonatremia. Además, los pacientes disnatrémicos padecían con mayor frecuencia de enfermedad renal crónica, necesidad de terapia de reemplazo renal, y niveles elevados de creatinina, ferritina y nitrógeno ureico. | spa |
dc.description.abstract | Introduction: Sodium disorders are common electrolyte disturbances in critically ill patients and can present with hyponatremia and hypernatremia. In patients with COVID-19, dysnatremia is associated with a worse morbidity and mortality outcome. Objectives: To elucidate the clinical implications of dysnatremia and its relationship with mortality during hospital stay in critically ill adult patients with COVID-19. Materials and Methods: Correlational, retrospective analysis. Adult patients positive for SARS-CoV-2, admitted to intensive care in Barranquilla (Colombia) between January and December 2021, were included. Patients were divided according to the presence and type of dysnatremia (normonatremia, hyponatremic and hypernatremic). Data were evaluated using univariate logistic regression. Mortality was determined through hazard ratios (HR) with 95% confidence intervals. Results: 185 patients were included. The prevalence of dysnatremia was 24.9%: 17 with hyponatremia (9.2%) and 29 with hypernatremia (15.7%). Patients with dysnatremia more frequently suffered from chronic kidney disease (23.8%), requiring renal replacement therapy (25.9%), and elevated levels of creatinine, ferritin, and serum urea nitrogen. The presence of hypernatremia on admission influences a higher risk of death compared to normonatremic (HR = 1.73: 95% CI [1.12 – 2.68]; p = 0.013). Conclusions: The presence of hypernatremia on admission influenced survival compared to normonatremia. Furthermore, dysnatremic patients more frequently suffered from chronic kidney disease, need for renal replacement therapy, and elevated levels of creatinine, ferritin, and urea nitrogen. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14839 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad Ciencias de la Salud | spa |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.subject | COVID-19 | spa |
dc.subject | Críticamente enfermos | spa |
dc.subject | Hiponatremia | spa |
dc.subject | Hipernatremia; | spa |
dc.subject | Mortalidad | spa |
dc.subject.keywords | Critically ill | eng |
dc.subject.keywords | Hyponatremia | eng |
dc.subject.keywords | Hypernatremia | eng |
dc.subject.keywords | Mortality | eng |
dc.title | Implicaciones clínicas de las disnatremias y su relación con la mortalidad en pacientes adultos críticamente enfermos con covid-19 durante el año 2021 | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | Clarke SA, Abbara A, Dhillo WS. Impact of COVID-19 on the Endocrine System: A Mini-review. Endocrinology [Internet]. 2022 Jan 1;163(1). Available from: https://doi.org/10.1210/endocr/bqab203 | eng |
dcterms.references | Sen S, Khosla S, Awan O, Cohen S, Gollie JM. Endothelial dysfunction in autoimmune, pulmonary, and kidney systems, and exercise tolerance following SARS-CoV-2 infection. Front Med [Internet]. 2023 Jul 27;10. Available from: https://doi.org/10.3389/fmed.2023.1197061 | eng |
dcterms.references | Núñez-Martínez FJ, Orozco-Juárez K, Chávez-Lárraga A de J, Velasco- Santos JI. Dysnatremias and their association with morbidity and mortality in patients with COVID- 19. Rev Med Inst Mex Seguro Soc [Internet]. 2022 Aug 31;60(5):548–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36048807 | eng |
dcterms.references | Taci Hoca N, Berktaş BM. Baseline electrolyte disorders predict disease severity and mortality in patients with COVID-19. Medicine (Baltimore) [Internet]. 2022 Dec 23;101(51):e32397. Available from: https://doi.org/10.1097/MD.0000000000032397 | eng |
dcterms.references | Alhasan KA, Shalaby MA, Temsah M-H, Aljamaan F, Shagal R, AlFaadhel T, et al. Factors That Influence Mortality in Critically Ill Patients with SARS-CoV- 2 Infection: A Multicenter Study in the Kingdom of Saudi Arabia. Healthcare [Internet]. 2021 Nov 23;9(12):1608. Available from: https://doi.org/10.3390/healthcare9121608 | eng |
dcterms.references | Liu D, Mowrey W, Fisher M, Basalely A, McCarthy J, Kumar N, et al. Associations of Dysnatremia with COVID-19 Status and Mortality. Kidney360 [Internet]. 2022 Aug 25;3(8):1323–31. Available from: https://doi.org/10.34067/KID.0001062022 | eng |
dcterms.references | Atila C, Sailer CO, Bassetti S, Tschudin-Sutter S, Bingisser R, Siegemund M, et al. Prevalence and outcome of dysnatremia in patients with COVID-19 compared to controls. Eur J Endocrinol [Internet]. 2021 Mar;184(3):409–18. Available from: https://doi.org/10.1530/EJE-20-1374 | eng |
dcterms.references | Tzoulis P, Grossman AB, Baldeweg SE, Bouloux P, Kaltsas G. MANAGEMENT OF ENDOCRINE DISEASE: Dysnatraemia in COVID-19: prevalence, prognostic impact, pathophysiology, and management. Eur J Endocrinol [Internet]. 2021 Oct 1;185(4):R103–11. Available from: https://doi.org/10.1530/EJE-21-0281 | eng |
dcterms.references | Khidir RJY, Ibrahim BAY, Adam MHM, Hassan RME, Fedail ASS, Abdulhamid RO, et al. Prevalence and outcomes of hyponatremia among COVID-19 patients: A systematic review and meta-analysis. Int J Health Sci (Qassim) [Internet]. 2022;16(5):69–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36101848 | eng |
dcterms.references | Tzoulis P, Waung JA, Bagkeris E, Hussein Z, Biddanda A, Cousins J, et al. Dysnatremia is a Predictor for Morbidity and Mortality in Hospitalized Patients with COVID-19. J Clin Endocrinol Metab [Internet]. 2021 May 13;106(6):1637– 48. Available from: https://doi.org/10.1210/clinem/dgab107 | eng |
dcterms.references | Shrestha AB, Sapkota UH, Shrestha S, Aryal M, Chand S, Thapa S, et al. Association of hypernatremia with outcomes of COVID-19 patients: A protocol for systematic review and meta-analysis. Medicine (Baltimore) [Internet]. 2022 Dec 23;101(51):e32535. Available from: https://doi.org/10.1097/MD.0000000000032535 | eng |
dcterms.references | Yen TE, Kim A, Benson ME, Ratnaparkhi S, Woolley AE, Mc Causland FR. Serum Sodium, Patient Symptoms, and Clinical Outcomes in Hospitalized Patients with COVID-19. J Prim Care Community Health [Internet]. 2022 Jan 5;13:215013192110673. Available from: https://doi.org/10.1177/21501319211067349 | eng |
dcterms.references | Królicka A, Letachowicz K, Adamik B, Doroszko A, Kaliszewski K, Kiliś- Pstrusińska K, et al. Dysnatremia in COVID-19 Patients—An Analysis of the COLOS Study. J Clin Med [Internet]. 2023 Apr 10;12(8):2802. Available from: https://doi.org/10.3390/jcm12082802 | eng |
dcterms.references | Nogueira GM, Silva NLOR, Moura AF, Duarte Silveira MA, Moura-Neto JA. Acute kidney injury and electrolyte disorders in COVID-19. World J Virol [Internet]. 2022 Sep 25;11(5):283–92. Available from: https://doi.org/10.5501/wjv.v11.i5.283 | eng |
dcterms.references | Martino M, Falcioni P, Giancola G, Ciarloni A, Salvio G, Silvetti F, et al. Sodium alterations impair the prognosis of hospitalized patients with COVID-19 pneumonia. Endocr Connect [Internet]. 2021 Oct 1;10(10):1344–51. Available from: https://doi.org/10.1530/EC-21-0411 | eng |
dcterms.references | Ma Y, Zhang P, Hou M. Association of hypernatremia with mortality in patients with COVID‐19: A systematic review and meta‐analysis. Immunity, Inflamm Dis [Internet]. 2023 Dec 12;11(12). Available from: https://doi.org/10.1002/iid3.1109 | eng |
dcterms.references | Gul Khan F, Sattar S, Yaqoob MM, Vallani N, Asad M. Frequency of dysnatremia in patients admitted with COVID-19 infection and its prognostic implication. J Int Med Res [Internet]. 2023 Nov 7;51(11). Available from: https://doi.org/10.1177/03000605231202180 | eng |
dcterms.references | Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet [Internet]. 2020 Feb;395(10223):497–506. Available from: https://doi.org/10.1016/S0140- 6736(20)30183-5 | eng |
dcterms.references | Adil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, et al. SARSCoV- 2 and the pandemic of COVID-19. Postgrad Med J [Internet]. 2021 Feb 1;97(1144):110–6. Available from: https://doi.org/10.1136/postgradmedj- 2020-138386 | eng |
dcterms.references | Long B, Carius BM, Chavez S, Liang SY, Brady WJ, Koyfman A, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med [Internet]. 2022 Apr;54:46–57. Available from: https://doi.org/10.1016/j.ajem.2022.01.028 | eng |
dcterms.references | Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Engl J Med [Internet]. 2020 Mar 26;382(13):1199–207. Available from: https://doi.org/10.1056/NEJMoa2001316 | eng |
dcterms.references | Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy. JAMA [Internet]. 2020 Apr 28;323(16):1545. Available from: https://doi.org/10.1001/jama.2020.4031 | eng |
dcterms.references | Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, et al. COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far. Molecules [Internet]. 2020 Dec 23;26(1):39. Available from: https://doi.org/10.3390/molecules26010039 | eng |
dcterms.references | Hua J, Shaw R. Corona Virus (COVID-19) “Infodemic” and Emerging Issues through a Data Lens: The Case of China. Int J Environ Res Public Health [Internet]. 2020 Mar 30;17(7):2309. Available from: https://doi.org/10.3390/ijerph17072309 | eng |
dcterms.references | Velavan TP, Meyer CG. The COVID‐19 epidemic. Trop Med Int Heal [Internet]. 2020 Mar 16;25(3):278–80. Available from: https://doi.org/10.1111/tmi.13383 | eng |
dcterms.references | Shi Y, Wang G, Cai X, Deng J, Zheng L, Zhu H, et al. An overview of COVID- 19. J Zhejiang Univ B [Internet]. 2020 May 8;21(5):343–60. Available from: https://doi.org/10.1631/jzus.B2000083 | eng |
dcterms.references | Lupia T, Scabini S, Mornese Pinna S, Di Perri G, De Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. J Glob Antimicrob Resist [Internet]. 2020 Jun;21:22–7. Available from: https://doi.org/10.1016/j.jgar.2020.02.021 | eng |
dcterms.references | Díaz E, Martín-Loeches I, Vallés J. Neumonía nosocomial. Enferm Infecc Microbiol Clin [Internet]. 2013 Dec;31(10):692–8. Available from: https://doi.org/10.1016/j.eimc.2013.04.014 | eng |
dcterms.references | Namias N, Samiian L, Nino D, Shirazi E, O???Neill K, Kett DH, et al. Incidence and Susceptibility of Pathogenic Bacteria Vary between Intensive Care Units within a Single Hospital: Implications for Empiric Antibiotic Strategies. J Trauma Inj Infect Crit Care [Internet]. 2000 Oct;49(4):638–46. Available from: https://doi.org/10.1097/00005373-200010000-00010 | eng |
dcterms.references | Algarín-Lara H, Guevara-Romero E, Osorio-Rodríguez E, Patiño-Patiño J, Flórez García V, Tuesca R de J, et al. Factores relacionados con la neumonía bacteriana en pacientes con COVID-19 en una unidad de cuidados intensivos de Barranquilla, Colombia. Acta Colomb Cuid Intensivo [Internet]. 2022 Jun;22:S28–35. Available from: https://doi.org/10.1016/j.acci.2021.07.002 | spa |
dcterms.references | Kubiak JZ, Kloc M. Dissecting Physiopathology of COVID-19. Int J Mol Sci [Internet]. 2022 Aug 24;23(17):9602. Available from: https://doi.org/10.3390/ijms23179602 | eng |
dcterms.references | Ciotti M, Angeletti S, Minieri M, Giovannetti M, Benvenuto D, Pascarella S, et al. COVID-19 Outbreak: An Overview. Chemotherapy [Internet]. 2019;64(5– 6):215–23. Available from: https://doi.org/10.1159/000507423 | eng |
dcterms.references | Habas K, Nganwuchu C, Shahzad F, Gopalan R, Haque M, Rahman S, et al. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev Anti Infect Ther [Internet]. 2020 Dec 1;18(12):1201–11. Available from: https://doi.org/10.1080/14787210.2020.1797487 | eng |
dcterms.references | Zhang X-Y, Huang H-J, Zhuang D-L, Nasser MI, Yang M-H, Zhu P, et al. Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infect Dis Poverty [Internet]. 2020 Dec 20;9(1):99. Available from: https://doi.org/10.1186/s40249-020-00691-6 | eng |
dcterms.references | Liya G, Yuguang W, Jian L, Huaiping Y, Xue H, Jianwei H, et al. Studies on viral pneumonia related to novel coronavirus SARS‐CoV‐2, SARS‐CoV, and MERS‐CoV: a literature review. APMIS [Internet]. 2020 Jun 23;128(6):423– 32. Available from: https://doi.org/10.1111/apm.13047 | eng |
dcterms.references | Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, et al. Coronavirus disease 2019 (COVID‐19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol [Internet]. 2021 Apr 3;93(4). Available from: https://doi.org/10.1111/sji.12998 | eng |
dcterms.references | Seyed Hosseini E, Riahi Kashani N, Nikzad H, Azadbakht J, Hassani Bafrani H, Haddad Kashani H. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology [Internet]. 2020 Dec;551:1–9. Available from: https://doi.org/10.1016/j.virol.2020.08.011 | eng |
dcterms.references | Stratton CW, Tang Y, Lu H. Pathogenesis‐directed therapy of 2019 novel coronavirus disease. J Med Virol [Internet]. 2021 Mar 10;93(3):1320–42. Available from: https://doi.org/10.1002/jmv.26610 | eng |
dcterms.references | Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID- 19. Nat Rev Microbiol [Internet]. 2021 Mar 6;19(3):141–54. Available from: https://doi.org/10.1038/s41579-020-00459-7 | eng |
dcterms.references | Tabibzadeh A, Esghaei M, Soltani S, Yousefi P, Taherizadeh M, Safarnezhad Tameshkel F, et al. Evolutionary study of COVID‐19, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) as an emerging coronavirus: Phylogenetic analysis and literature review. Vet Med Sci [Internet]. 2021 Mar 18;7(2):559–71. Available from: https://doi.org/10.1002/vms3.394 | eng |
dcterms.references | Na W, Moon H, Song D. A comprehensive review of SARS-CoV-2 genetic mutations and lessons from animal coronavirus recombination in one health perspective. J Microbiol [Internet]. 2021 Mar 23;59(3):332–40. Available from: https://doi.org/10.1007/s12275-021-0660-4 | eng |
dcterms.references | Goraichuk I V., Arefiev V, Stegniy BT, Gerilovych AP. Zoonotic and Reverse Zoonotic Transmissibility of SARS-CoV-2. Virus Res [Internet]. 2021 Sep;302:198473. Available from: https://doi.org/10.1016/j.virusres.2021.198473 | eng |
dcterms.references | Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science (80- ) [Internet]. 2022 Aug 26;377(6609):960–6. Available from: https://doi.org/10.1126/science.abp8337 | eng |
dcterms.references | Avendaño Castro LP, Blacio Villa CO, Calderón Flores AE, Cueva Moncayo MF. Caracterización clínica y de gravedad de adultos con COVID-19 hospitalizados. Boletín Malariol y Salud Ambient [Internet]. 2022;62(2):218– 26. Available from: https://doi.org/10.52808/bmsa.7e6.622.012 | eng |
dcterms.references | Liamis G, Filippatos TD, Elisaf MS. Electrolyte disorders associated with the use of anticancer drugs. Eur J Pharmacol [Internet]. 2016 Apr;777:78–87. Available from: https://doi.org/10.1016/j.ejphar.2016.02.064 | eng |
dcterms.references | Adrogué HJ, Madias NE. Hypernatremia. N Engl J Med [Internet]. 2000 May 18;342(20):1493–9. Available from: https://doi.org/10.1056/nejm200005183422006 | eng |
dcterms.references | Berl T. Impact of Solute Intake on Urine Flow and Water Excretion. J Am Soc Nephrol [Internet]. 2008 Jun;19(6):1076–8. Available from: https://doi.org/10.1681/asn.2007091042 | eng |
dcterms.references | Decaux G, Musch W. Clinical Laboratory Evaluation of the Syndrome of Inappropriate Secretion of Antidiuretic Hormone. Clin J Am Soc Nephrol [Internet]. 2008 Jul;3(4):1175–84. Available from: https://doi.org/10.2215/cjn.04431007 | eng |
dcterms.references | Liamis G, Mitrogianni Z, Liberopoulos EN, Tsimihodimos V, Elisaf M. Electrolyte Disturbances in Patients with Hyponatremia. Intern Med [Internet]. 2007;46(11):685–90. Available from: https://doi.org/10.2169/internalmedicine.46.6223 | eng |
dcterms.references | Kapoor M, Chan GZ. FLUID AND ELECTROLYTE ABNORMALITIES. Crit Care Clin [Internet]. 2001 Jul;17(3):503–29. Available from: https://doi.org/10.1016/s0749-0704(05)70197-4 | eng |
dcterms.references | Moritz ML, Ayus JC. The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephrol Dial Transplant [Internet]. 2003 Dec 1;18(12):2486–91. Available from: https://doi.org/10.1093/ndt/gfg394 | eng |
dcterms.references | Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, et al. Diagnosis, Evaluation, and Treatment of Hyponatremia: Expert Panel Recommendations. Am J Med [Internet]. 2013 Oct;126(10):S1–42. Available from: https://doi.org/10.1016/j.amjmed.2013.07.006 | eng |
dcterms.references | Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia. J Am Soc Nephrol [Internet]. 1994 Feb;4(8):1522–30. Available from: https://doi.org/10.1681/asn.v481522 | eng |
dcterms.references | Muhsin SA, Mount DB. Diagnosis and treatment of hypernatremia. Best Pract Res Clin Endocrinol Metab [Internet]. 2016 Mar;30(2):189–203. Available from: https://doi.org/10.1016/j.beem.2016.02.014 | eng |
dcterms.references | Janicic N, Verbalis JG. Evaluation and management of hypo-osmolality in hospitalized patients. Endocrinol Metab Clin North Am [Internet]. 2003 Jun;32(2):459–81. Available from: https://doi.org/10.1016/s0889- 8529(03)00004-5 | eng |
dcterms.references | Laczi F. Etiology, diagnostics and therapy of hyponatremias. Orv Hetil [Internet]. 2008 Jul 1;149(29):1347–54. Available from: https://doi.org/10.1556/oh.2008.28409 | eng |
dcterms.references | Verbalis JG. Whole-Body Volume Regulation and Escape from Antidiuresis. Am J Med [Internet]. 2006 Jul;119(7):S21–9. Available from: https://doi.org/10.1016/j.amjmed.2006.05.004 | eng |
dcterms.references | Asensio Martín MJ, Hernández Bernal M, Yus Teruel S, Minvielle A. Infecciones en el paciente crítico. Med - Programa Form Médica Contin Acreditado [Internet]. 2018 Apr;12(52):3085–96. Available from: http://dx.doi.org/10.1016/j.med.2018.03.014 | eng |
dcterms.references | Arampatzis S, Frauchiger B, Fiedler G-M, Leichtle AB, Buhl D, Schwarz C, et al. Characteristics, Symptoms, and Outcome of Severe Dysnatremias Present on Hospital Admission. Am J Med [Internet]. 2012 Nov;125(11):1125.e1- 1125.e7. Available from: https://doi.org/10.1016/j.amjmed.2012.04.041 | eng |
dcterms.references | Danziger J, Zeidel ML. Osmotic Homeostasis. Clin J Am Soc Nephrol [Internet]. 2015 May;10(5):852–62. Available from: https://doi.org/10.2215/cjn.10741013 | eng |
dcterms.references | Sterns RH. Disorders of Plasma Sodium — Causes, Consequences, and Correction. Ingelfinger JR, editor. N Engl J Med [Internet]. 2015 Jan 1;372(1):55–65. Available from: https://doi.org/10.1056/nejmra1404489 | eng |
dcterms.references | Ball SG, Iqbal Z. Diagnosis and treatment of hyponatraemia. Best Pract Res Clin Endocrinol Metab [Internet]. 2016 Mar;30(2):161–73. Available from: https://doi.org/10.1016/j.beem.2015.12.001 | eng |
dcterms.references | Arzhan S, Lew SQ, Ing TS, Tzamaloukas AH, Unruh ML. Dysnatremias in Chronic Kidney Disease: Pathophysiology, Manifestations, and Treatment. Front Med [Internet]. 2021 Dec 6;8. Available from: https://doi.org/10.3389/fmed.2021.769287 | eng |
dcterms.references | Joergensen D, Tazmini K, Jacobsen D. Acute Dysnatremias - a dangerous and overlooked clinical problem. Scand J Trauma Resusc Emerg Med [Internet]. 2019 Dec 28;27(1):58. Available from: https://doi.org/10.1186/s13049-019-0633-3 | eng |
dcterms.references | Kettritz R. Dysnatriämien – Konzepte und klinische Aufarbeitung. DMW - Dtsch Medizinische Wochenschrift [Internet]. 2024 Feb 23;149(3):86–92. Available from: https://doi.org/10.1055/a-2055-3486 | eng |
dcterms.references | Kovesdy CP. Significance of hypo- and hypernatremia in chronic kidney disease. Nephrol Dial Transplant [Internet]. 2012 Mar 1;27(3):891–8. Available from: https://doi.org/10.1093/ndt/gfs038 | eng |
dcterms.references | Patel N, Patel D, Farouk SS, Rein JL. Salt and Water: A Review of Hypernatremia. Adv Kidney Dis Heal [Internet]. 2023 Mar;30(2):102–9. Available from: https://doi.org/10.1053/j.akdh.2022.12.010 | eng |
dcterms.references | Qian Q. Hypernatremia. Clin J Am Soc Nephrol [Internet]. 2019 Mar;14(3):432–4. Available from: https://doi.org/10.2215/cjn.12141018 | eng |
dcterms.references | Morley JE. Dehydration, Hypernatremia, and Hyponatremia. Clin Geriatr Med [Internet]. 2015 Aug;31(3):389–99. Available from: https://doi.org/10.1016/j.cger.2015.04.007 | eng |
dcterms.references | Harrois A, Anstey JR. Diabetes Insipidus and Syndrome of Inappropriate Antidiuretic Hormone in Critically Ill Patients. Crit Care Clin [Internet]. 2019 Apr;35(2):187–200. Available from: https://doi.org/10.1016/j.ccc.2018.11.001 | eng |
dcterms.references | Marks SL, Taboada J. Hypernatremia and Hypertonic Syndromes. Vet Clin North Am Small Anim Pract [Internet]. 1998 May;28(3):533–43. Available from: https://doi.org/10.1016/s0195-5616(98)50054-x | eng |
dcterms.references | Bagshaw SM, Townsend DR, McDermid RC. Disorders of sodium and water balance in hospitalized patients. Can J Anesth Can d’anesthésie [Internet]. 2009 Feb;56(2):151–67. Available from: https://doi.org/10.1007/s12630-008- 9017-2 | eng |
dcterms.references | Pourfridoni M, Abbasnia SM, Shafaei F, Razaviyan J, Heidari-Soureshjani R. Fluid and Electrolyte Disturbances in COVID-19 and Their Complications. Cavalcanti Rolla V, editor. Biomed Res Int [Internet]. 2021 Apr 14;2021:1–5. Available from: https://doi.org/10.1155%2F2021%2F6667047 | eng |
dcterms.references | Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem Int J Lab Med [Internet]. 2020 May 3;57(3):262–5. Available from: https://doi.org/10.1177/0004563220922255 | eng |
dcterms.references | Tzoulis P, Grossman AB, Baldeweg SE, Bouloux P, Kaltsas G. MANAGEMENT OF ENDOCRINE DISEASE: Dysnatraemia in COVID-19: prevalence, prognostic impact, pathophysiology, and management. Eur J Endocrinol [Internet]. 2021 Oct 1;185(4):R103–11. Available from: https://doi.org/10.1530%2FEJE-21-0281 | eng |
dcterms.references | Berni A, Malandrino D, Corona G, Maggi M, Parenti G, Fibbi B, et al. Serum sodium alterations in SARS CoV-2 (COVID-19) infection: impact on patient outcome. Eur J Endocrinol [Internet]. 2021 Jul 1;185(1):137–44. Available from: https://doi.org/10.1530%2FEJE-20-1447 | eng |
dcterms.references | Shirazy M, Omar I, Abduljabbar D, Bousselmi K, Alkhaja M, Chaari A, et al. Prevalence and Prognostic Impact of Hypernatremia in Sepsis and Septic Shock Patients in The Intensive Care Unit: A Single Centre Experience. J Crit Care Med [Internet]. 2020 Jan 31;6(1):52–8. Available from: https://doi.org/10.2478%2Fjccm-2020-0001 | eng |
dcterms.references | Annane D, Bellissant E, Cavaillon J-M. Septic shock. Lancet [Internet]. 2005 Jan;365(9453):63–78. Available from: https://doi.org/10.1016/s0140- 6736(04)17667-8 | eng |
dcterms.references | Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA [Internet]. 2020 May 26;323(20):2052. Available from: https://doi.org/10.1001/jama.2020.6775 | eng |
dcterms.references | Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med [Internet]. 2020 Jun 11;382(24):2372–4. Available from: https://doi.org/10.1056/nejmc2010419 | eng |
dcterms.references | Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol [Internet]. 2020 Jul 1;5(7):819. Available from: https://doi.org/10.1001/jamacardio.2020.1096 | eng |
dcterms.references | Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med [Internet]. 2020 Oct 2;52(7):345–53. Available from: https://doi.org/10.1080/07853890.2020.1790643 | eng |
dcterms.references | Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA, et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. Am J Kidney Dis [Internet]. 2021 Feb;77(2):204–215.e1. Available from: https://doi.org/10.1053/j.ajkd.2020.09.002 | eng |
dcterms.references | Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int [Internet]. 2020 May;97(5):829–38. Available from: https://doi.org/10.1016/j.kint.2020.03.005 | eng |
dcterms.references | Machiraju PK, Alex NM, Safinaaz, Vadamalai V. Hyponatremia in Coronavirus Disease-19 Patients: A Retrospective Analysis. Can J Kidney Heal Dis [Internet]. 2021 Jan 22;8:205435812110670. Available from: https://doi.org/10.1177%2F20543581211067069 | eng |
dcterms.references | Tzoulis P. Prevalence, prognostic value, pathophysiology, and management of hyponatraemia in children and adolescents with COVID-19. Acta Biomed [Internet]. 2021 Nov 3;92(5):e2021474. Available from: https://doi.org/10.23750/abm.v92i5.12330 | eng |
dcterms.references | Habas E, Ali E, Habas A, Rayani A, Ghazouani H, Khan F, et al. Hyponatremia and SARS-CoV-2 infection: A narrative review. Medicine (Baltimore) [Internet]. 2022 Aug 12;101(32):e30061. Available from: https://doi.org/10.1097%2FMD.0000000000030061 | eng |
dcterms.references | Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 — Final Report. N Engl J Med [Internet]. 2020 Nov 5;383(19):1813–26. Available from: https://doi.org/10.1056/nejmoa2007764 | eng |
dcterms.references | RECOVERY CG. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med [Internet]. Massachusetts Medical Society; 2020 Jul 17; Available from: https://doi.org/10.1056/NEJMoa2021436 | eng |
dcterms.references | Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID- 19. JAMA [Internet]. 2020 Oct 6;324(13):1307. Available from: https://doi.org/10.1001/jama.2020.17021 | eng |
dcterms.references | Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int [Internet]. 2020 Jul;98(1):209–18. Available from: https://doi.org/10.1016%2Fj.kint.2020.05.006 | eng |
dcterms.references | Vandergheynst F, Sakr Y, Felleiter P, Hering R, Groeneveld J, Vanhems P, et al. Incidence and prognosis of dysnatraemia in critically ill patients: analysis of a large prevalence study. Eur J Clin Invest [Internet]. 2013 Sep 22;43(9):933– 48. Available from: https://doi.org/10.1111/eci.12123 | eng |
dcterms.references | Müller M, Schefold JC, Guignard V, Exadaktylos AK, Pfortmueller CA. Hyponatraemia is independently associated with in-hospital mortality in patients with pneumonia. Eur J Intern Med [Internet]. 2018 Aug;54:46–52. Available from: https://doi.org/10.1016/j.ejim.2018.04.008 | eng |
dcterms.references | Lindner G, Schwarz C, Haidinger M, Ravioli S. Hyponatremia in the emergency department. Am J Emerg Med [Internet]. 2022 Oct;60:1–8. Available from: https://doi.org/10.1016/j.ajem.2022.07.023 | eng |
dcterms.references | Gheorghe G, Ilie M, Bungau S, Stoian AMP, Bacalbasa N, Diaconu CC. Is There a Relationship between COVID-19 and Hyponatremia? Medicina (B Aires) [Internet]. 2021 Jan 9;57(1):55. Available from: https://doi.org/10.3390/medicina57010055 | eng |
dcterms.references | Reddy P, Mooradian AD. Diagnosis and management of hyponatraemia in hospitalised patients. Int J Clin Pract [Internet]. 2009 Oct;63(10):1494–508. Available from: https://doi.org/10.1111/j.1742-1241.2009.02103.x | eng |
dcterms.references | Buffington MA, Abreo K. Hyponatremia. J Intensive Care Med [Internet]. 2016 May 14;31(4):223–36. Available from: https://doi.org/10.1177/0885066614566794 | eng |
dcterms.references | Burst V. Etiology and Epidemiology of Hyponatremia. In 2019. p. 24–35. Available from: https://doi.org/10.1159/000493234 | eng |
dcterms.references | Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol [Internet]. 2014 Mar;170(3):G1–47. Available from: https://doi.org/10.1530/eje-13-1020 | eng |
dcterms.references | Upadhyay A, Jaber BL, Madias NE. Incidence and Prevalence of Hyponatremia. Am J Med [Internet]. 2006 Jul;119(7):S30–5. Available from: https://doi.org/10.1016/j.amjmed.2006.05.005 | eng |
dcterms.references | Assadi F. Hyponatremia: a problem-solving approach to clinical cases. J Nephrol [Internet]. 2012;25(4):473–80. Available from: https://doi.org/10.5301/jn.5000060 | eng |
dcterms.references | Toklu H, Ganti L, Crimi E, Cintron C, Hagan J, Serrano E. Cerebrospinal fluid findings and hypernatremia in COVID-19 patients with altered mental status. Int J Emerg Med [Internet]. 2020 Dec 9;13(1):63. Available from: https://doi.org/10.1186/s12245-020-00327-4 | eng |
dcterms.references | Zimmer MA, Zink AK, Weißer CW, Vogt U, Michelsen A, Priebe H-J, et al. Hypernatremia—A Manifestation of COVID-19: A Case Series. A&A Pract [Internet]. 2020 Jul 24;14(9):e01295. Available from: https://doi.org/10.1213%2FXAA.0000000000001295 | eng |
dcterms.references | Shrestha AB, Sapkota UH, Shrestha S, Aryal M, Chand S, Thapa S, et al. Association of hypernatremia with outcomes of COVID-19 patients: A systematic review and meta-analysis. Medicine (Baltimore) [Internet]. 2022 Dec 23;101(51):e32535. Available from: https://doi.org/10.1097%2FMD.0000000000032535 | eng |
dcterms.references | Lascarrou JB, Ermel C, Cariou A, Laitio T, Kirkegaard H, Søreide E, et al. Dysnatremia at ICU admission and functional outcome of cardiac arrest: insights from four randomised controlled trials. Crit Care [Internet]. 2023 Dec 1;27(1):472. Available from: https://doi.org/10.1186/s13054-023-04715-z | eng |
dcterms.references | de La Flor JC, Gomez-Berrocal A, Marschall A, Valga F, Linares T, Albarracin C, et al. Impacto de la corrección temprana de la hiponatremia en el pronóstico de la infección del síndrome respiratorio agudo grave del coronavirus 2 (SARS-CoV-2). Med Clin (Barc) [Internet]. 2022 Jul;159(1):12–8. Available from: https://doi.org/10.1016%2Fj.medcli.2021.07.006 | spa |
dcterms.references | Kovacs L, Robertson GL. 7 Disorders of water balance—hyponatraemia and hypernatraemia. Baillieres Clin Endocrinol Metab [Internet]. 1992 Jan;6(1):107–27. Available from: https://doi.org/10.1016/s0950- 351x(05)80334-9 | eng |
dcterms.references | Darmon M, Pichon M, Schwebel C, Ruckly S, Adrie C, Haouache H, et al. Influence of Early Dysnatremia Correction on Survival of Critically Ill Patients. Shock [Internet]. 2014 May;41(5):394–9. Available from: https://doi.org/10.1097/shk.0000000000000135 | eng |
dcterms.references | Stelfox H, Ahmed SB, Khandwala F, Zygun D, Shahpori R, Laupland K. The epidemiology of intensive care unit-acquired hyponatraemia and hypernatraemia in medical-surgical intensive care units. Crit Care [Internet]. 2008;12(6):R162. Available from: https://doi.org/10.1186/cc7162 | eng |
dcterms.references | Overgaard-Steensen C, Ring T. Clinical review: Practical approach to hyponatraemia and hypernatraemia in critically ill patients. Crit Care [Internet]. 2012;17(1):206. Available from: https://doi.org/10.1186/cc11805 | eng |
dcterms.references | Gross P. Panel Recommendations on Hyponatremia. Am J Med [Internet]. 2014 Jul;127(7):e29. Available from: https://doi.org/10.1016/j.amjmed.2013.11.016 | eng |
dcterms.references | Darmon M, Diconne E, Souweine B, Ruckly S, Adrie C, Azoulay E, et al. Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care [Internet]. 2013;17(1):R12. Available from: https://doi.org/10.1186%2Fcc11937 | eng |
dcterms.references | Adrogué HJ, Tucker BM, Madias NE. Diagnosis and Management of Hyponatremia. JAMA [Internet]. 2022 Jul 19;328(3):280. Available from: https://doi.org/10.1001/jama.2022.11176 | eng |
dcterms.references | Corona G, Giuliani C, Parenti G, Norello D, Verbalis JG, Forti G, et al. Moderate Hyponatremia Is Associated with Increased Risk of Mortality: Evidence from a Meta-Analysis. Alisi A, editor. PLoS One [Internet]. 2013 Dec 18;8(12):e80451. Available from: https://doi.org/10.1371/journal.pone.0080451 | eng |
dcterms.references | Nagler E V, Vanmassenhove J, van der Veer SN, Nistor I, Van Biesen W, Webster AC, et al. Diagnosis and treatment of hyponatremia: a systematic review of clinical practice guidelines and consensus statements. BMC Med [Internet]. 2014 Dec 11;12(1):231. Available from: https://doi.org/10.1186/s12916-014-0231-1 | eng |
dcterms.references | Hoorn EJ, Zietse R. Diagnosis and Treatment of Hyponatremia: Compilation of the Guidelines. J Am Soc Nephrol [Internet]. 2017 May;28(5):1340–9. Available from: https://doi.org/10.1681/asn.2016101139 | eng |
dcterms.references | Schrier RW. Body Water Homeostasis. J Am Soc Nephrol [Internet]. 2006 Jul;17(7):1820–32. Available from: https://doi.org/10.1681/asn.2006030240 | eng |
dcterms.references | Sterns RH, Rondon-Berrios H, Adrogué HJ, Berl T, Burst V, Cohen DM, et al. Treatment Guidelines for Hyponatremia. Clin J Am Soc Nephrol [Internet]. 2024 Jan;19(1):129–35. Available from: https://doi.org/10.2215/cjn.0000000000000244 | eng |
dcterms.references | Ayus JC, Moritz ML. Hyponatremia Treatment Guidelines — Have They Gone Too Far? NEJM Evid [Internet]. 2023 Mar 28;2(4). Available from: https://doi.org/10.1056/evide2300014 | eng |
dcterms.references | Sterns RH. Treatment of Severe Hyponatremia. Clin J Am Soc Nephrol [Internet]. 2018 Apr;13(4):641–9. Available from: https://doi.org/10.2215/cjn.10440917 | eng |
dcterms.references | Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrol Dial Transplant [Internet]. 2014 Apr 1;29(suppl_2):i1–39. Available from: https://doi.org/10.1093/ndt/gfu040 | eng |
dcterms.references | Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med [Internet]. 2014 Mar 22;40(3):320–31. Available from: https://doi.org/10.1007/s00134-014-3210-2 | eng |
dcterms.references | Spasovski G, Vanholder R, Allolio B, Annane D, Ball S, Bichet D, et al. Guía de práctica clínica sobre el diagnóstico y tratamiento de la hiponatremia. Nefrología [Internet]. 2017 Jul;37(4):370–80. Available from: https://doi.org/10.1016/j.nefro.2017.03.021 | spa |
dcterms.references | Williams DM, Gallagher M, Handley J, Stephens JW. The clinical management of hyponatraemia. Postgrad Med J [Internet]. 2016 Jul 1;92(1089):407–11. Available from: https://doi.org/10.1136/postgradmedj-2015-133740 | eng |
dcterms.references | Fernandez Martinez A, Barajas Galindo D, Ruiz Sanchez J. Management of hyponatraemia and hypernatraemia during the Covid-19 pandemic: a consensus statement of the Spanish Society for Endocrinology (Acqua Neuroendocrinology Group). Rev Endocr Metab Disord [Internet]. 2021 Jun 5;22(2):317–24. Available from: https://doi.org/10.1007%2Fs11154-021- 09627-3 | eng |
dcterms.references | Hirsch JS, Uppal NN, Sharma P, Khanin Y, Shah HH, Malieckal DA, et al. Prevalence and outcomes of hyponatremia and hypernatremia in patients hospitalized with COVID-19. Nephrol Dial Transplant [Internet]. 2021 May 27;36(6):1135–8. Available from: https://doi.org/10.1093/ndt/gfab067 | eng |
dcterms.references | Atlani M, Kumar A, Pakhare AP, Singhai A, Gadwala R. Potential Association of Hypernatremia With Mortality in Patients With Acute Kidney Injury and COVID-19. Cureus [Internet]. 2022 Jul 31; Available from: https://doi.org/10.7759/cureus.27530 | eng |
dcterms.references | Sjöström A, Rysz S, Sjöström H, Höybye C. Electrolyte and acid-base imbalance in severe COVID-19. Endocr Connect [Internet]. 2021 Jul 1;10(7):805–14. Available from: https://doi.org/10.1530/ec-21-0265 | eng |
dcterms.references | Rettenmaier LA, Abdel-Wahed L, Abdelmotilib H, Conway KS, Narayanan N, Groth CL. COVID-19-associated necrotizing encephalopathy presenting without active respiratory symptoms: a case report with histopathology. J Neurovirol [Internet]. 2022 Feb;28(1):172–6. Available from: https://doi.org/10.1007%2Fs13365-021-01042-3 | eng |
dcterms.references | Gross P. Treatment of Hyponatremia. Intern Med [Internet]. 2008;47(10):885– 91. Available from: https://doi.org/10.2169/internalmedicine.47.0918 | eng |
dcterms.references | Gankam Kengne F, Soupart A, Pochet R, Brion J-P, Decaux G. Re-induction of hyponatremia after rapid overcorrection of hyponatremia reduces mortality in rats. Kidney Int [Internet]. 2009 Sep;76(6):614–21. Available from: https://doi.org/10.1038/ki.2009.254 | eng |
dcterms.references | Doshi SM, Shah P, Lei X, Lahoti A, Salahudeen AK. Hyponatremia in Hospitalized Cancer Patients and Its Impact on Clinical Outcomes. Am J Kidney Dis [Internet]. 2012 Feb;59(2):222–8. Available from: https://doi.org/10.1053/j.ajkd.2011.08.029 | eng |
dcterms.references | Post A, Dullaart RPF, Bakker SJL. Sodium status and kidney involvement during COVID-19 infection. Virus Res [Internet]. 2020 Sep;286:198034. Available from: https://doi.org/10.1016/j.virusres.2020.198034 | eng |
dcterms.references | Hillier TA, Abbott RD, Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med [Internet]. 1999 Apr;106(4):399–403. Available from: https://doi.org/10.1016/S0002-9343(99)00055-8 | eng |
dcterms.references | de Haan L, ten Wolde M, Beudel M, Olde Engberink RHG, Appelman B, Haspels-Hogervorst EK, et al. What is the aetiology of dysnatraemia in COVID-19 and how is this related to outcomes in patients admitted during earlier and later COVID-19 waves? A multicentre, retrospective observational study in 11 Dutch hospitals. BMJ Open [Internet]. 2023 Nov 14;13(11):e075232. Available from: https://doi.org/10.1136/bmjopen-2023- 075232 | eng |
dcterms.references | Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab [Internet]. 2003 Dec;17(4):471–503. Available from: https://doi.org/10.1016/S1521-690X(03)00049-6 | eng |
dcterms.references | Wald R. Impact of Hospital-Associated Hyponatremia on Selected Outcomes. Arch Intern Med [Internet]. 2010 Feb 8;170(3):294. Available from: https://doi.org/10.1001/archinternmed.2009.513 | eng |
dcterms.references | Ruiz-Sánchez JG, Núñez-Gil IJ, Cuesta M, Rubio MA, Maroun-Eid C, Arroyo- Espliguero R, et al. Prognostic Impact of Hyponatremia and Hypernatremia in COVID-19 Pneumonia. A HOPE-COVID-19 (Health Outcome Predictive Evaluation for COVID-19) Registry Analysis. Front Endocrinol (Lausanne) [Internet]. 2020 Nov 30;11. Available from: https://doi.org/10.3389/fendo.2020.599255 | eng |
dcterms.references | Tezcan ME, Dogan Gokce G, Sen N, Zorlutuna Kaymak N, Ozer RS. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect [Internet]. 2020 Sep;37:100753. Available from: https://doi.org/10.1016/j.nmni.2020.100753 | eng |
dcterms.references | Chan GCK, Wong CK, So BYF, Ng JKC, Lui GCY, Szeto CC, et al. Epidemiology and outcomes of hyponatremia in patients with COVID-19—A territory-wide study in Hong Kong. Front Med [Internet]. 2023 Jan 11;9. Available from: https://doi.org/10.3389/fmed.2022.1096165 | eng |
dcterms.references | Erfurt S, Lehmann R, Matyukhin I, Marahrens B, Patschan S, Patschan D. Stratification of Acute Kidney Injury Risk, Disease Severity, and Outcomes by Electrolyte Disturbances. J Clin Med Res [Internet]. 2023 Feb;15(2):59–67. Available from: https://doi.org/10.14740/jocmr4832 | eng |
dcterms.references | Asim M, Alam S, Shakireen N, Saeed R, Rahat Ullah A, Ul Abideen Z. ACUTE KIDNEY INJURY IN HOSPITALIZED COVID-19 PATIENTS: A RETROSPECTIVE OBSERVATIONAL STUDY. J Ayub Med Coll Abbottabad [Internet]. 2022 Jun 24;34(3 (SUPPL 1)). Available from: https://doi.org/10.55519/JAMC-03-S1-9734 | eng |
dcterms.references | Sabaghian T, Honarvar M, Safavi-Naini SAA, Sadeghi Fadaki AS, Pourhoseingholi MA, Hatamabadi H. Effect of Electrolyte Imbalance on Mortality and Late Acute Kidney Injury in Hospitalized COVID-19 Patients. Iran J Kidney Dis [Internet]. 2022 Jul;16(4):228–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35962637 | eng |
dcterms.references | Peres LAB, Wandeur V, Matsuo T. Predictors of acute kidney injury and mortality in an Intensive Care Unit. J Bras Nefrol [Internet]. 2015;37(1). Available from: https://doi.org/10.5935/0101-2800.20150007 | eng |
dcterms.references | Song HJJMD, Chia AZQ, Tan BKJ, Teo CB, Lim V, Chua HR, et al. Electrolyte imbalances as poor prognostic markers in COVID-19: a systemic review and meta-analysis. J Endocrinol Invest [Internet]. 2022 Sep 7;46(2):235–59. Available from: https://doi.org/10.1007/s40618-022-01877-5 | eng |
dcterms.references | Asghar MS, Haider Kazmi SJ, Khan NA, Akram M, Jawed R, Rafaey W, et al. Role of Biochemical Markers in Invasive Ventilation of Coronavirus Disease 2019 Patients: Multinomial Regression and Survival Analysis. Cureus [Internet]. 2020 Aug 26; Available from: https://doi.org/10.7759/cureus.10054 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.programa | Especialización en Medicina Crítica y Cuidados Intensivos | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: