Evaluación del daño oxidativo al ADN mediante ensayo cometa y del perfil metabólico urinario por espectroscopía Raman en pacientes con obesidad de Barranquilla
| datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
| dc.contributor.advisor | León Mejía, Grethel | |
| dc.contributor.advisor | Ruiz Benítez, Martha Lucia | |
| dc.contributor.author | Altamar López, Jessica María | |
| dc.date.accessioned | 2025-11-04T14:09:44Z | |
| dc.date.available | 2025-11-04T14:09:44Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | La obesidad es una enfermedad crónica y multifactorial asociada con alteraciones metabólicas, inflamación y estrés oxidativo, generando daño a macromoléculas como el ADN. Este estudio evaluó el daño oxidativo al ADN mediante el ensayo cometa con enzima FPG y caracterizó el perfil metabólico urinario mediante espectroscopía Raman en pacientes con obesidad tipo I y II en Barranquilla. Se realizó un estudio de casos y controles con 100 participantes (50 obesos, 50 controles), aplicando cuestionarios de estilo de vida y recolectando sangre y orina. El ensayo cometa evidenció aumento significativo de daño al ADN en los obesos, especialmente lesiones oxidativas en purinas. La espectroscopía Raman mostró diferencias en glucógeno, carbohidratos, lípidos, ADN/ARN, triptófano, fenilalanina y porfirinas, reflejando desequilibrios metabólicos asociados a inflamación y disfunción energética. Se observaron correlaciones entre daño genómico y factores del estilo de vida como consumo de alcohol, ultraprocesados, deficiencia de vitaminas, alteraciones del sueño y antecedentes psiquiátricos. La integración de ambos métodos proporciona una visión molecular y metabólica complementaria de la obesidad. Estos hallazgos destacan su utilidad como herramientas no invasivas para detección temprana, monitoreo y prevención de complicaciones. Se abren perspectivas para investigaciones interdisciplinarias y aplicaciones clínicas. | spa |
| dc.description.abstract | Obesity is a chronic and multifactorial disease associated with metabolic alterations, inflammation, and oxidative stress, causing damage to macromolecules such as DNA. This study evaluated oxidative DNA damage using the comet assay with the FPG enzyme and characterized the urinary metabolic profile by Raman spectroscopy in patients with type I and II obesity in Barranquilla. A case-control study was conducted with 100 participants (50 obese, 50 controls), applying lifestyle questionnaires and collecting blood and urine samples. The comet assay showed a significant increase in DNA damage in obese participants, particularly oxidative lesions in purines. Raman spectroscopy revealed differences in glycogen, lipids, DNA/RNA, tryptophan, phenylalanine, and porphyrins, reflecting metabolic imbalances associated with inflammation and energy dysfunction. Correlations were observed between genomic damage and lifestyle factors such as alcohol consumption, ultraprocessed foods, vitamin deficiency, and sleep disturbances. The integration of both methods provides a complementary molecular and metabolic view of obesity. These findings highlight their usefulness as non-invasive tools for early detection, monitoring, and prevention of complications. Perspectives are opened for interdisciplinary research and clinical applications. | eng |
| dc.format.mimetype | ||
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17081 | |
| dc.language.iso | spa | |
| dc.publisher | Ediciones Universidad Simón Bolívar | spa |
| dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
| dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject | Obesidad | spa |
| dc.subject | Daño oxidativo | spa |
| dc.subject | Ensayo cometa | spa |
| dc.subject | Espectroscopia Raman | spa |
| dc.subject | Metabolitos urinarios | spa |
| dc.subject | Estilo de vida | spa |
| dc.subject.keywords | Obesity | eng |
| dc.subject.keywords | Oxidative damage | eng |
| dc.subject.keywords | Comet assay | eng |
| dc.subject.keywords | Raman spectroscopy | eng |
| dc.subject.keywords | Urinary metabolites | eng |
| dc.subject.keywords | Lifestyle | eng |
| dc.title | Evaluación del daño oxidativo al ADN mediante ensayo cometa y del perfil metabólico urinario por espectroscopía Raman en pacientes con obesidad de Barranquilla | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.spa | Trabajo de grado máster | |
| dcterms.references | World Health Organization. Obesity and overweight [Internet]. Geneva: WHO; 2024 [cited 2025 Jul 7]. Available from: https://www.who.int/es/news- room/fact-sheets/detail/obesity-and-overweight | eng |
| dcterms.references | Ministerio de Salud y Protección Social. Indicadores Básicos 2020: Situación de salud en Colombia [Internet]. Bogotá: MinSalud; 2020 [citado 2025 Jul 9]. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/ GCFI/indicadores-basicos-salud-2020.pdf | spa |
| dcterms.references | Estudio en municipios del Atlántico: Vargas Moranth RF, et al. Prevalencia de obesidad según relación cintura/talla en cuatro municipios del Caribe colombiano. Arch Med (Manizales). 2018;18(1). | eng |
| dcterms.references | Čolak E, Pap D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem. 2021;40(1):1–9. doi:10.5937/jomb0-24652 | eng |
| dcterms.references | Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants (Basel). 2020;9(9):864. doi:10.3390/antiox9090864 | eng |
| dcterms.references | Juan CA, de la Lastra JMP, Plou FJ, Pérez‑Lebena E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):4642. | eng |
| dcterms.references | Boubertakh B, Silvestri C, Di Marzo V. Obesity: the fat tissue disease version of cancer. Cells. 2022;11(12):2003. | eng |
| dcterms.references | Qian J, et al. Metabolic and immune crosstalk in cardiovascular disease. Circ Res. 2025;126(2):189–208. | eng |
| dcterms.references | Zhan S, Zhou X, Fu J. Noninvasive urinary biomarkers for obesity‑related metabolic diseases: diagnostic applications and future directions. Biomolecules. 2025;15(5):633. doi:10.3390/biom15050633 | eng |
| dcterms.references | Taysi S, Cetin S, Demircan B, Bozoglu E, Sivas A. DNA damage is increased in lymphocytes of patients with metabolic syndrome: assessment by comet assay. Clin Chim Acta. 2015;446:176–82. | eng |
| dcterms.references | Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–1500. doi:10.1161/CIRCRESAHA.120.316101 | eng |
| dcterms.references | Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest. 2019;129(10):4032–4040. doi:10.1172/JCI129167 | eng |
| dcterms.references | Mayoral LPC, Andrade GM, Mayoral EPC, Huerta TH, Canseco SP, Canales FJR, et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J Med Res. 2020;151(1):11–21. | eng |
| dcterms.references | World Health Organization. Obesity and overweight [Internet]. Geneva: WHO; 2024 [cited 2025 Jul 9]. Available from: https://www.who.int/news- room/fact-sheets/detail/obesity-and-overweight | eng |
| dcterms.references | World Obesity Federation. World Obesity Atlas 2025. London: World Obesity Federation; 2025. Available from: https://www.worldobesity.org | eng |
| dcterms.references | Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci. 2023;24(9):7898. | eng |
| dcterms.references | Włodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci. 2019;20(5):1146. doi:10.3390/ijms20051146 | eng |
| dcterms.references | Ministerio de Salud y Protección Social; Secretaría de Salud del Atlántico. Análisis de situación de salud participativo – ASIS Atlántico 2023 Bogotá: Ministerio de Salud y Protección Social; 2024 Disponible en: https://ceopruebas.sispropreprod.gov.co/DocumentosASIS2024/ASIS%20 Atl%C3%A1ntico%202023%20OK.pdf | spa |
| dcterms.references | Migliore L, et al. DNA damage in circulating leukocytes measured with the comet assay predicts mortality: a long-term study in the hCOMET cohort. Sci Rep. 2021;11:10845. | eng |
| dcterms.references | Ladeira C, Møller P, Giovannelli L, et al. The comet assay as a tool in human biomonitoring studies of environmental and occupational exposure to chemicals—a systematic scoping review. Toxics. 2024;12(4):270. doi:10.3390/toxics12040270 | eng |
| dcterms.references | de Sousa Vieira EE, Silveira L Jr, Carvalho HC, Bispo JAM, Fernandes FB, Fernandes AB. Biochemical analysis of urine samples from diabetic and hypertensive patients without renal dysfunction using spectrophotometry and Raman spectroscopy techniques aiming classification and diagnosis. Bioengineering (Basel). 2022;9(10):500. doi:10.3390/bioengineering9100500 | eng |
| dcterms.references | Ministerio de Salud y Protección Social. Análisis de situación de salud Colombia 2023. Bogotá: MinSalud; 2023. p. 265–268. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/a sis-colombia-2023.pdf | spa |
| dcterms.references | Terry M, Marian M. Obesity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jul 4 [cited 2025 Jul 17]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459357/ | eng |
| dcterms.references | World Health Organization. Body mass index – BMI [Internet]. Geneva: WHO; 2024 [cited 2025 Jul 11]. Available from: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/26 | eng |
| dcterms.references | Biascioli A. Genetic predisposition and environmental influences in obesity – review. Med Hypotheses. 2024;156:111–115. | eng |
| dcterms.references | Balasubramanyam M, Antonysunil A, Mahmood S, Mohan V. Biomarkers of oxidative stress: methods and measures of oxidative DNA damage (comet assay) and telomere shortening. In: Armstrong D, editor. Methods in Molecular Biology. Clifton, NJ: Humana Press; 2010. p. 245–61. (Methods Mol Biol; vol. 610). doi:10.1007/978-1-60327-029-8_15. | eng |
| dcterms.references | Moreno GM. Definición y clasificación de la obesidad. Rev Med Clin Condes. 2012;23(2):124–8. doi:10.1016/S0716-8640(12)70288-2. | eng |
| dcterms.references | Marcelin G, et al. Obesity-induced adipose tissue fibrosis. J Clin Invest. 2019;129(10):4032–40. | eng |
| dcterms.references | Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204–18. | eng |
| dcterms.references | Włodarczyk M, Nowicka G. Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci. 2019;20(5):1146. doi:10.3390/ijms20051146. | eng |
| dcterms.references | Dunn JD, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015;6:472–85. | eng |
| dcterms.references | Srinivas US, Tan BW, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi:10.1016/j.redox.2018.101084. | eng |
| dcterms.references | Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83. doi:10.1038/s41580-020-0230-3. | eng |
| dcterms.references | Włodarczyk M, Nowicka G. DNA damage, obesity and obesity-related health complications: what are new data telling us? Curr Opin Clin Nutr Metab Care. 2024;27(4):325–30. doi:10.1097/MCO.0000000000001038 | eng |
| dcterms.references | Srinivas US, Tan BW, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi:10.1016/j.redox.2018.101084. | eng |
| dcterms.references | Srinivas US, Tan BW, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi:10.1016/j.redox.2018.101084. | eng |
| dcterms.references | Li C, Xue Y, Ba X, Wang R. The role of 8-oxoG repair systems in tumorigenesis and cancer therapy. Cells. 2022;11(23):3798. doi:10.3390/cells11233798. | eng |
| dcterms.references | Milić M, Ožvald I, Matković K, Radašević H, Nikolić M, Božičević D, et al. Combined approach: FFQ, DII, anthropometric, biochemical and DNA damage parameters in obese with BMI ≥ 35 kg/m². Nutrients. 2023;15(4):899. doi:10.3390/nu15040899. | eng |
| dcterms.references | Milić M, Kazensky L, Matovinović M. The impact of the metabolic syndrome severity on the appearance of primary and permanent DNA damage. Medicina. 2025;61(1):21. doi:10.3390/medicina61010021. | eng |
| dcterms.references | Hsu L, Gupta S, Singh NP. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discover Oncologia. 2024;15:779. doi:10.1007/s12672-024-01662-1 | eng |
| dcterms.references | Gutiérrez-Vázquez C, et al. Measuring DNA modifications with the comet assay: a compendium of types of damage and recommended protocols. Nat Protoc. 2022;17(8):TBD. doi:10.1038/s41596-022-00754-y | eng |
| dcterms.references | Visnes T, et al. BER pathway and 8-oxoG detection. DNA Repair (Amst). 2018;71:118–26. | eng |
| dcterms.references | Bankoglu EE, Mukama T, Katzke V, Stipp F, Johnson T, Kühn T, et al. Short‑ and long‑term reproducibility of the COMET assay for measuring DNA damage biomarkers in frozen blood samples of the EPIC‑Heidelberg cohort. Mutat Res Genet Toxicol Environ Mutagen. 2022;874‑875:503442. doi:10.1016/j.mrgentox.2022.503442 | eng |
| dcterms.references | Métral E, Bechetoille N, Demarne F, Damour O, Rachidi W. Keratinocyte stem cells are more resistant to UVA radiation than their direct progeny. PLoS One. 2018;13(1):e0190082. doi:10.1371/journal.pone.0190082. | eng |
| dcterms.references | Orlando A, Franceschini F, Muscas C, Pidkova S, Bartoli M, Rovere M, Tagliaferro A. A comprehensive review on Raman spectroscopy applications. Chemosensors. 2021;9(9):262. doi:10.3390/chemosensors9090262. | eng |
| dcterms.references | de Sousa Vieira EE, Pimentel MF, Sena MM. Urinary Raman spectroscopy and multivariate analysis for detection of diabetes and hypertension. Bioengineering (Basel). 2022;9(10):500. doi:10.3390/bioengineering9100500. | eng |
| dcterms.references | Ma L, Zhang X, Fu L, Zhu Y, Wang Z, Ma W, et al. Raman spectroscopy in metabolic disorders. Front Chem. 2020;8:572977. doi:10.3389/fchem.2020.572977. | eng |
| dcterms.references | de Sousa Vieira EE, Silveira LJ Jr, Carvalho HC, Rodrigues-Vieira ES, de Oliveira PS, Ferreira M, et al. Biochemical analysis of urine samples from diabetic and hypertensive patients without renal dysfunction using spectrophotometry and Raman spectroscopy techniques aiming classification and diagnosis. Bioengineering (Basel). 2022;9(10):500. doi:10.3390/bioengineering9100500. | eng |
| dcterms.references | León-Mejía G, Alvarez Rueda R, Pérez Pérez J, Miranda-Guevara A, Fiorillo Moreno O, Quintana-Sosa M, Trindade C, De Moya YS, Ruiz- Benitez M, Bello Lemus Y, Luna Rodríguez I, Oliveros-Ortiz L, Acosta- Hoyos A, Pacheco-Londoño LC, Muñoz A, Hernández-Rivera SP, Olívero- Verbel J, da Silva J, Pêgas Henriques JA. Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. Environ Sci Pollut Res Int. 2023 Apr;30(18):54095-54105. doi:10.1007/s11356-023-26136-9. | eng |
| dcterms.references | Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91. doi:10.1016/0014-4827(88)90265-0. | eng |
| dcterms.references | León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JAP, et al. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ. 2011;409(4):686–91. doi:10.1016/j.scitotenv.2010.10.038. | eng |
| dcterms.references | Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75. | eng |
| dcterms.references | Contreras-Trigo B, Díaz-García V, Guzmán-Gutierrez E, Sanhueza I, Coelho P, Godoy SE, et al. Slight pH fluctuations in the gold nanoparticle synthesis process influence the performance of the citrate reduction method. Sensors (Basel). 2018 Jul 12;18(7):2211. doi:10.3390/s18072211. | eng |
| dcterms.references | Wise BM, Gallagher NB.PLS_Toolbox 8.1 for use with MATLAB®: User's Manual. Wenatchee (WA): Eigenvector Research, Inc.; 2015. | eng |
| dcterms.references | Ballabio D, Consonni V Classification tools in chemistry. Part 1: Linear models. PLS-DA.Anal Methods. 2013;5(16):3790–8. | eng |
| dcterms.references | Ramírez NM. Principios bioéticos: autonomía, beneficencia, no maleficencia y justicia. Revista Colombiana de Bioética. 2013;8(1):106– 123. | spa |
| dcterms.references | Consejo de Organizaciones Internacionales de las Ciencias Médicas (CIOMS), Organización Mundial de la Salud. Pautas éticas internacionales para la investigación relacionada con la salud con seres humanos. Ginebra: CIOMS; 2017 | spa |
| dcterms.references | Galindo-Prieto B, Eriksson L, Trygg J. Variable influence on projection (VIP) for OPLS models and predictive variable selection. J Chemom. 2014;28(8):623-632. | eng |
| dcterms.references | Talari ACS, Movasaghi Z, Rehman S, ur Rehman I. Raman Spectroscopy of Biological Tissues. Appl Spectrosc Rev. 2015;50(1):46‑111. doi:10.1080/05704928.2014.923902. | eng |
| dcterms.references | Olsen T, Stolt E, Øvrebø B, Elshorbagy A, Tore EC, Lee‑Ødegård S, et al. Dietary sulfur amino acid restriction in humans with overweight and obesity: Evidence of an altered plasma and urine sulfurome, and a novel metabolic signature that correlates with loss of fat mass and adipose tissue gene expression. Redox Biol. 2024 Jul;73:103192. doi:10.1016/j.redox.2024.103192. | eng |
| dcterms.references | Ceperuelo‑Mallafré V, Ejarque M, Serena C, Duran X, Montori‑Grau M, Rodríguez MA, Yanes O, Núñez‑Roa C, Roche K, Puthanveetil P, Garrido‑Sánchez L, Saez E, Tinahones FJ, Garcia‑Roves PM, Gómez‑Foix AM, Saltiel AR, Vendrell J, Fernández‑Veledo S. Adipose tissue glycogen accumulation is associated with obesity‑linked inflammation in humans. Mol Metab. 2016 Jan;5(1):5‑18. doi:10.1016/j.molmet.2015.10.005. PMID: 26844203; PMCID: PMC4703799. | eng |
| dcterms.references | Benabdelkamel H, Masood A, Okla M, Al‑Naami MY, Alfadda AA. A proteomics‑based approach reveals differential regulation of urine proteins between metabolically healthy and unhealthy obese patients. Int J Mol Sci. 2019;20(19):4905. doi:10.3390/ijms20194905. | eng |
| dcterms.references | Elliott P, Posma JM, Chan Q, Garcia‑Perez I, Wijeyesekera A, Bictash M, Ebbels TMD, Ueshima H, Zhao L, van Horn L, Daviglus M, Stamler J, Holmes E, Nicholson JK. Urinary metabolic signatures of human adiposity. Sci Transl Med. 2015;7(285):285ra62. doi:10.1126/scitranslmed.aaa5680. | eng |
| dcterms.references | Wu P, Zhang J, Zhang W, Yang F, Yu Y, Zhang Y, Wang G, Zhang H, Xu Y, Yao X. 2bRAD‑M reveals the characteristics of urinary microbiota in overweight patients with urinary tract stones. Biomedicines. 2025;13(5):1197. doi:10.3390/biomedicines13051197. | eng |
| dcterms.references | Campbell R, Tasevska N, Jackson KG, Sagi‑Kiss V, di Paolo N, Mindell JS, Lister SJ, Khaw KT, Kuhnle GGC. Association between urinary biomarkers of total sugars intake and measures of obesity in a cross‑sectional study. PLoS One. 2017;12(7):e0179508. doi:10.1371/journal.pone.0179508. | eng |
| dcterms.references | Simonson M, Boirie Y, Guillet C. Protein, amino acids and obesity treatment. Nutr Diabetes. 2020;10(1):39. doi:10.1038/s41387-020-00145- | eng |
| dcterms.references | Gurgel AMC, Batista AL, Cavalcanti DMLdP, Magalhães A, Zantut‑Wittmann DE. Sarcosine, trigonelline and phenylalanine as urinary metabolites related to visceral fat in overweight and obesity. Metabolites. 2024;14(9):491. doi:10.3390/metabo14090491. | eng |
| dcterms.references | Cussotto S, Delgado I, Anesi A, Dexpert S, Aubert A, Beau C, Forestier D, Ledaguenel P, Magne E, Mattivi F, Capuron L. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol. 2020;11:557. doi:10.3389/fimmu.2020.00557. | eng |
| dcterms.references | Collins AT, Hu G, Newman H, Reinsvold MH, Goldsmith MR, Twomey- Kozak JN, et al. Obesity alters the collagen organization and mechanical properties of murine cartilage. Sci Rep. 2021;11(1):1626. doi:10.1038/s41598-020-80599-1. | eng |
| dcterms.references | Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y, Zhang D. Excessive intake of sugar: An accomplice of inflammation. Front Immunol. 2022;13:988481. doi:10.3389/fimmu.2022.988481. | eng |
| dcterms.references | Soliman SA, Stanley S, Vanarsa K, Ismail F, Mok CC, Mohan C. Exploring urine:serum fractional excretion ratios as potential biomarkers for lupus nephritis. Front Immunol. 2023;14:1135572. doi:10.3389/fimmu.2023.1135572. | eng |
| dcterms.references | Poli A, Manceau H, Nguyen AL, Moulouel B, Dessendier N, Talbi N, Puy H, Junot C, Gouya L, Schmitt C, Lefebvre T. Quantification of urine and plasma porphyrin precursors using LC-MS in acute hepatic porphyrias: improvement in routine diagnosis and in the monitoring of kidney failure patients. Clin Chem. 2023;69(12):1395‑1406. doi:10.1093/clinchem/hvad117. | eng |
| dcterms.references | Morais JBS, Cruz KJC, de Oliveira ARS, Cardoso BEP, Dias TMS, Melo SRS, Dos Santos LR, Severo JS, de Freitas ST, Henriques GS, da Silva MTB, Oliveira FE, Marreiro DN. Association between parameters of cortisol metabolism, biomarkers of minerals (zinc, selenium, and magnesium), and insulin resistance and oxidative stress in women with obesity. Biol Trace Elem Res. 2023;201(11):5470‑5482. doi:10.1007/s12011‑023‑03810‑2. | eng |
| dcterms.references | Delrue C, Speeckaert MM. The potential applications of Raman spectroscopy in kidney diseases. Diagnostics (Basel). 2022;12(11):2599. doi:10.3390/diagnostics12112599. PMID: 36294783; PMCID: PMC9604710. | eng |
| dcterms.references | Patil BS, Patil JK, Chaudhari HS, Patil BS. Oxidative stress, inflammation and obesity: insights into the mechanism and therapeutic targets. Proceedings. 2025;119(1):6. Available from: https://doi.org/10.3390/proceedings2025119006 | eng |
| dcterms.references | Martínez-Urbistondo D, Perez-Diaz-del-Campo N, Landecho MF, Martínez J. Alcohol Drinking Impacts on Adiposity and Steatotic Liver Disease: Concurrent Effects on Metabolic Pathways and Cardiovascular Risks. Curr Obes Rep. 2024 Mar;13(3):461–474. doi:10.1007/s13679-024-00560-5. | eng |
| dcterms.references | Addissouky TA, El Sayed IET, Ali MMA, Wang Y, El Baz A, Elarabany N, Khalil AA. Oxidative stress and inflammation: elucidating mechanisms of smoking-attributable pathology for therapeutic targeting. Bull Natl Res Cent. 2024;48:16. doi:10.1186/s42269-024-01174-6. | eng |
| dcterms.references | Yang Y, Xu H, Zhang Y, Chen L, Tian C, Huang B, et al. Associations of dietary antioxidant micronutrients with the prevalence of obesity in adults. Front Nutr. 2023;10:1098761. doi:10.3389/fnut.2023.1098761. PMID: 36992905; PMCID: PMC10040542. | eng |
| dcterms.references | Pourmontaseri H, Bazmi S, Sepehrinia M, Mostafavi A, Arefnezhad R, Homayounfar R, et al. Exploring the application of dietary antioxidant index for disease risk assessment: a comprehensive review. Front Nutr. 2025 Jan 15;11:1497364. doi:10.3389/fnut.2024.1497364. | eng |
| dcterms.references | Maldonado-Pereira L, Barnaba C, Medina-Meza IG. Oxidative Status of Ultra-Processed Foods in the Western Diet. Nutrients. 2023 Nov 22;15(23):4873. doi:10.3390/nu15234873. PMID: 38068731; PMCID: PMC10708126. | eng |
| dcterms.references | Jalali M, Bahadoran Z, Mirmiran P, Khalili D, Symonds ME, Azizi F, Faghih S. Higher ultra-processed food intake is associated with an increased incidence risk of cardiovascular disease: the Tehran lipid and glucose study. Nutrition & Metabolism (Lond). 2024;21:14. doi:10.1186/s12986- 024- 00788-x. | eng |
| dcterms.references | Tristán Asensi M, Napoletano A, Sofi F, Dinu M. Mild inflammation and consumption of ultra-processed foods: a review. Nutrients. 2023;15(6):1546. doi:10.3390/nu15061546. | eng |
| dcterms.references | Makris KC, Heibati B, Zienolddiny S. Chrono-modulated effects of external stressors on oxidative stress and damage in humans: a scoping review on night shift work. Environ Int. 2023;178:108048. doi:10.1016/j.envint.2023.108048. | eng |
| dcterms.references | Chaput J-P, McHill AW, Cox RC, et al. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol. 2022;18:448–460. doi:10.1038/s41574-022-00747-7. | eng |
| dcterms.references | Rindler GA, Gries A, Freidl W. Associations between overweight, obesity, and mental health: a retrospective study among European adults aged 50+. Front Public Health. 2023;11:1206283. doi:10.3389/fpubh.2023.1206283 | eng |
| dcterms.references | Trung VN, Hong SL, Kim H. Shared biological mechanisms of depression and obesity. Aging (Albany NY). 2023;15(3):204847. doi:10.18632/aging.204847. | eng |
| dcterms.references | Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY). 2023;15(12):5917–5950. doi:10.18632/aging.204847 | eng |
| dcterms.references | Bankoglu EE, Greussing R, Odert T, et al. Long-term reproducibility of the comet assay for measuring DNA damage: observation of significant increase in Fpg-sensitive sites with increasing BMI. Scientific Reports. 2025 (preprint/accepted). (Cartas recientes con cometa + FPG vs BMI lineal). | eng |
| dcterms.references | Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, et al. Inflammaging and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20(18):4472. doi:10.3390/ijms20184472. | eng |
| dcterms.references | Xieyang X, Pang Y, Fan X. Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances. Signal Transduct Target Ther. 2025;10:190. doi:10.1038/s41392-025-02253-4. | eng |
| dcterms.references | Ibero-Baraibar I, Abete I, Navas-Carretero S, et al. Assessment of DNA damage using the comet assay in middle-aged overweight/obese subjects after following a hypocaloric diet supplemented with cocoa extract. Mutagenesis. 2015;30(1):139-46. doi:10.1093/mutage/geu080. | eng |
| dcterms.references | Setayesh S, impact of weight loss strategies on obesity-induced DNA damage (mouse study). Mol Nutr Food Res. 2019. (Estudio en modelos animales: restricción calórica e HCLP reducen daño genético y aumentan reparación del ADN) | eng |
| dcterms.references | Bonassi S, Norppa H, Ceppi M, et al. DNA damage in circulating leukocytes measured with the comet assay may predict the risk of death. Sci Rep. 2021;11:1730. doi:10.1038/s41598-021-95976-7. | eng |
| dcterms.references | Ožvald I, Božičević D, Duh L, Vinković Vrček I, Domijan AM, Milić M. Changes in anthropometric, biochemical, oxidative and DNA damage parameters after 3 weeks of a 567 kcal very low-calorie diet (VLCD) in hospitalized patients with severe obesity (BMI ≥35 kg/m²). Clin Nutr ESPEN. 2022;49:319-27. doi:10.1016/j.clnesp.2022.03.028. PMID:35623833. | eng |
| dcterms.references | Del Bo’ C, Martini D, Bernardi S, Gigliotti L, Marino M, Gargari G, et al. Association between food intake, clinical and metabolic markers and DNA damage in older subjects. Antioxidants (Basel). 2021;10(5):730. doi:10.3390/antiox10050730. | eng |
| dcterms.references | Fenech MF, Bull CF, Van Klinken BJW. Protective effects of micronutrient supplements, phytochemicals and phytochemical-rich beverages and foods against DNA damage in humans: a systematic review of randomized controlled trials and prospective studies. Adv Nutr. 2023;14(6):1337-58. doi:10.1016/j.advnut.2023.08.004. PMID:37573943; PMCID:PMC10721466. | eng |
| dcterms.references | Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD⁺ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119-41. doi:10.1038/s41580-020-00313-x. | eng |
| dcterms.references | Caruso F, Pedersen JZ, Incerpi S, et al. Interaction between Vitamins C and E When Scavenging the Superoxide Radical Shown by Hydrodynamic Voltammetry and DFT. Biophysica. 2024;4(2):310–26. doi:10.3390/biophysica4020022. | eng |
| dcterms.references | Wimalawansa SJ. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel). 2019;8(2):30. doi:10.3390/biology8020030. | eng |
| dcterms.references | Dragic D, Chang SL, Ennour-Idrissi K, Durocher F, Severi G, Diorio C. Association between alcohol consumption and DNA methylation in blood: a systematic review of observational studies. Epigenomics. 2022;14(12):793- 810. doi:10.2217/epi-2022-0055. PMID:35762294. | eng |
| dcterms.references | Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 2021;22(11):5717. doi:10.3390/ijms22115717. | eng |
| dcterms.references | Silva-Sena GG, Oliveira T, Carvalho R, et al. Impact of ultra-processed foods on human health: a comprehensive review of genomic instability and molecular mechanisms. Nutrition. 2025;137:112800. doi:10.1016/j.nut.2025.112800. | eng |
| dcterms.references | Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A role for advanced glycation end products in molecular ageing. Int J Mol Sci. 2023;24(12):9881. doi:10.3390/ijms24129881. | eng |
| dcterms.references | Hirata Y, Inoue A, Suzuki S, et al. trans-Fatty acids facilitate DNA damage-induced apoptosis through the mitochondrial JNK-Sab-ROS positive feedback loop. Sci Rep. 2020;10:2743. doi:10.1038/s41598-020- 59636-6. | eng |
| dcterms.references | Zou Y, Ma X, Chen Q, et al. Nightshift work can induce oxidative DNA damage: a pilot study. BMC Public Health. 2023;23:891. doi:10.1186/s12889-023-15742-4. PMID:37189122 | eng |
| dcterms.references | Makris KC, Heibati B, Zienolddiny S. Chrono-modulated effects of external stressors on oxidative stress and damage in humans: a scoping review on night shift work.] Environ Int. 2023;178:108048. doi:10.1016/j.envint.2023.108048 | eng |
| dcterms.references | Ye M, Dewi L, Liao YC, Nicholls A, Huang CY, Kuo CH. DNA oxidation after exercise: a systematic review and meta-analysis. Front Physiol. 2023;14:1275867. doi:10.3389/fphys.2023.1275867. PMID:38028771; PMCID:PMC10644354 | eng |
| dcterms.references | Militello R, Luti S, Gamberi T, Pellegrino A, Modesti A, Modesti PA. Physical activity and oxidative stress in aging. Antioxidants (Basel). 2024;13(5):557. doi:10.3390/antiox13050557. | eng |
| dcterms.references | Zhao N, Shi P, Wang Z, Sun Z, Sun K, Ye C, et al. Advances in surface‑enhanced Raman spectroscopy for urinary metabolite analysis: exploiting noble metal nanohybrids. Biosensors. 2024;14(12):564. doi:10.3390/bios14120564 | eng |
| dcterms.references | Clarke ED, Gómez-Martín M, Stanford J, Yilmaz A, Ustun I, Wood L, Green B, Graham SF, Collins CE. Urinary metabolite profiles of participants with overweight and obesity prescribed a weight loss high fruit and vegetable diet: a single arm intervention study. Nutrients. 2024;16(24):4358. doi:10.3390/nu16244358. | eng |
| dcterms.references | Gross-Valle C, Jacobs TC, Dijck-Brouwer JDA, Lubberts J, Bakker BM, Bakker SJ, van der Veen Y, Schreuder AB, Derks TGJ, van der Krogt J, Heiner-Fokkema MR. The relation between dietary polysaccharide intake and urinary excretion of tetraglucoside. Nutrients. 2024;16(3):610. doi:10.3390/nu16030610. PMID: 39460557; PMCID: PMC11668232. | eng |
| dcterms.references | Wang S, Chu Y, Yuan J, Li Y, Liu Z, Chen X, Kang W. Application and prospects of proteomic technology in inflammation: a review. Food Sci Hum Wellness. 2024;13(5):2373–85. doi:10.26599/FSHW.2022.9250248 | eng |
| dcterms.references | Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, et al. Biomarkers of nucleic acid oxidation – A summary state-of-the-art. Redox Biol. 2021;42:101872. doi:10.1016/j.redox.2021.101872. | eng |
| dcterms.references | Wang Y, Zhang Y, Wang W, Zhang Y, Dong X, Liu Y. Diverse physiological roles of kynurenine pathway metabolites: updated implications for health and disease. Metabolites. 2025;15(3):210. doi:10.3390/metabo15030210. | eng |
| dcterms.references | Roman M, Kamińska A, Drożdż A, Platt M, Kuźniewski M, Małecki MT, et al. Raman spectral signatures of urinary extracellular vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers in diabetes. Nanomedicine. 2019;17:137-149. doi:10.1016/j.nano.2019.01.011. | eng |
| dcterms.references | Mena P, Ludwig IA, Tomatis VB, Acharjee A, Calani L, Rosi A, et al. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes. Eur J Nutr. 2019;58(4):1529-1543. doi:10.1007/s00394-018-1683-4. | eng |
| dcterms.references | Singh D, Ham D, et al. Urine metabolomics unravel the effects of short- term dietary interventions on oxidative stress and inflammation: a randomized controlled crossover trial. Sci Rep. 2024;14:15277. | eng |
| dcterms.references | Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, et al. Collagens regulating adipose tissue formation and functions. Biomedicines. 2023;11(5):1412. doi:10.3390/biomedicines11051412. | eng |
| dcterms.references | Krivosheev AB, Kuimov AD, Kondratova MA, Tuguleva TA. Porphyrin metabolism in women with metabolic syndrome. Klin Med (Mosk). 2014 | eng |
| dcterms.references | Morais JBS, Cruz KJC, de Oliveira ARS, Cardoso BEP, Dias TMS, Melo SRS, Dos Santos LR, Severo JS, de Freitas ST, Henriques GS, da Silva MTB, Oliveira FE, Marreiro DN. Association between parameters of cortisol metabolism, biomarkers of minerals (zinc, selenium, and magnesium), and insulin resistance and oxidative stress in women with obesity. Biol Trace Elem Res. 2023 | eng |
| dcterms.references | Cirulli ET, Guo L, Leon Swisher C, Shah N, Huang L, Napier LA, et al. Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab. 2019;29(2):488-500.e2. doi:10.1016/j.cmet.2018.09.022. | eng |
| oaire.version | info:eu-repo/semantics/acceptedVersion | |
| sb.investigacion | Genética toxicológica | spa |
| sb.programa | Maestría en Genética | spa |
| sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

