Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering

datacite.rightshttp://purl.org/coar/access_right/c_f1cfeng
dc.contributor.authorValbuena, Oscar
dc.contributor.authorVera, Miguel Ángel
dc.contributor.authorDel Mar, Atilio
dc.contributor.authorRoa, Felida Andreina
dc.contributor.authorBravo, Antonio José
dc.date.accessioned2021-09-14T21:11:34Z
dc.date.available2021-09-14T21:11:34Z
dc.date.issued2021
dc.description.abstractAbstract: A semiautomatic technique to detect the aortic root in three-dimensional multi-slice computerised tomography images is proposed. Three steps are considered: conditioning, filtering, and detection. The conditioning is based on multi-planar reconstruction and it is required for reformatting the information to orthogonal planes to the aortic root. During the filtering, three nonlinear filters based on similarity enhancement, median and weighted median are considered to reduce noise and enhance the reformatted images. In the detection, the filtered volumes are processed with a clustering technique. Dice score, the point-to-mesh and the Hausdorff distances are used to compare the obtained results with respect to ground truth traced by a cardiologist. A clinical dataset of 90 volumes from 45 patients is used to validate the technique. The maximum Dice score (0.92), the minimum average point-to-mesh distance (0.96 mm) and the minimum average Hausdorff distance (4.80 mm) are obtained during preprocessed volumes segmentation using similarity enhancement.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1504/IJBET.2021.114811
dc.identifier.issn17526426
dc.identifier.urihttps://hdl.handle.net/20.500.12442/8378
dc.language.isoengeng
dc.publisherInderscience Publisherseng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInternational Journal of Biomedical Engineering and Technology (IJBET)eng
dc.sourceVol. 35 N° 4 (2021)
dc.subjectHuman hearteng
dc.subjectAortic rooteng
dc.subjectMulti-slice computerised tomographyeng
dc.subjectMSCTeng
dc.subjectSegmentationeng
dc.subjectSimilarity enhancementeng
dc.subjectWeighted medianeng
dc.subjectUnsupervised clusteringeng
dc.titleSemi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clusteringeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesAggarwal, S.R., Clavel, M.A., Messika-Zeitoun, D., Cueff, C., Malouf, J., Araoz, P.A., Mankad, R., Michelena, H., Vahanian, A. and Enriquez-Sarano, M. (2013) ‘Sex differences in aortic valve calcification measured by multidetector computed tomography in aortic stenosis’, Circulation: Cardiovascular Imaging, Vol. 6, No. 1, pp.40–47.eng
dcterms.referencesAkkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L. and Erickson, B.J. (2017) ‘Deep learning for brain MRI segmentation: state of the art and future directions’, Journal of Digital Imaging, Vol. 30, No. 4, pp.449–459.eng
dcterms.referencesArce, G.R., Bacca, J. and Paredes, J.L. (2009) ‘Nonlinear filtering for image analysis and enhancement’, in Bovik, A. (Ed.): The Essential Guide to Image Processing, 2nd ed., pp.263–291, Academic Press, Bostoneng
dcterms.referencesAshok, V. and Murugesan, G. (2017) ‘Detection of retinal area from scanning laser ophthalmoscope images (SLO) using deep neural network’, Int. J. of Biomedical Engineering and Technology, Vol. 23, Nos. 2–4, pp.303–314.eng
dcterms.referencesBallard, D. (1981) ‘Generalizing the Hough transform to detect arbitrary shapes’, Pattern Recognition, Vol. 13, No. 2, pp.111–122.eng
dcterms.referencesBarrett, J. and Keat, N. (2004) ‘Artifacts in CT: recognition and avoidance1’, Radiographics, Vol. 24, No. 6, pp.1679–1691eng
dcterms.referencesBravo, A. and Medina, R. (2008) ‘An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms’, Computerized Medical Imaging and Graphics, Vol. 32, No. 5, pp.396–408.eng
dcterms.referencesBravo, A., Clemente, J., Vera, M. and Medina, R. (2010) ‘A hybrid boundary-region left ventricle segmentation in computed tomography’, in VISSAPP, Angers, France. pp.107–114.eng
dcterms.referencesBravo, A., Vera, M., Garreau, M. and Medina, R. (2011) ‘Three-dimensional segmentation of ventricular heart chambers from multi-slice computerized tomography: an hybrid approach’, in DICTAP, Springer, Vol. 166 of CCIS, pp.287–301.eng
dcterms.referencesCanny, J. (1986) ‘A computational approach to edge detection’, IEEE Transaction on Pattern Recognition Analysis and Machine Inteligence PAMI, Vol. 8, No. 6, pp.679–698.eng
dcterms.referencesCribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., Derumeaux, G., Anselme, F., Laborde, F. and Leon, M.B. (2002) ‘Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description’, Circulation, Vol. 106, No. 24, pp.3006–3008.eng
dcterms.referencesDice, L. (1945) ‘Measures of the amount of ecologic association between species’, Ecology, Vol. 26, No. 3, pp.297–302.eng
dcterms.referencesElattar, M., Wiegerinck, E., Planken, R., Vanbavel, E., Van Assen, H., Baan, J. and Marquering, H. (2014) ‘Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation’, Medical & Biological Engineering & Computing, Vol. 52, No. 7, pp.611–618.eng
dcterms.referencesFaletra, F., Pandian, N. and Ho, S. (2008) Anatomy of the Heart by Multislice Computed Tomography, Wiley-Blackwell, West Sussex, UK.eng
dcterms.referencesFauci, A.S. (2008) Harrison’s Principles of Internal Medicine, McGraw-Hill, New York.eng
dcterms.referencesFernandez-Perez, N., Gonzalez-Lopez, S., Rodriguez-Rivero, C., Ciobanu, C. and Saint-Pierre, G. (2012) ‘FE analysis applied for validation of a biostable aortic valve replacement device: stent and leaflet material selection’, Int. J. of Biomedical Engineering and Technology, Vol. 9, No. 4, pp.378–394.eng
dcterms.referencesFeuchtner, G.M., Stolzmann, P., Dichtl, W., Schertler, T., Bonatti, J., Scheffel, H., Mueller, S., Plass, A., Mueller, L., Bartel, T., Wolf, F. and Alkadhi, H. (2009) ‘Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings’, Journal of the American College of Cardiology, Vol. 53, pp.436–444.eng
dcterms.referencesFlohr, T.G., Schaller, S., Stierstorfer, K., Bruder, H., Ohnesorge, B.M. and Schoepf, U.J. (2005) Multi-detector row CT systems and image – reconstruction techniques’, Radiology, Vol. 235, No. 5, pp.756–773.eng
dcterms.referencesGhesu, F.C., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J. and Comaniciu, D., (2016) ‘Marginal space deep learning: Efficient architecture for volumetric image parsing’, IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp.1217–1228.eng
dcterms.referencesGinat, D.T. and Gupta, R. (2014) ‘Advances in computed tomography imaging technology’, Annual Review of Biomedical Engineering, Vol. 16, No. 1, pp.431–453.eng
dcterms.referencesGonzalez, R. and Woods, R. (2006) Digital Image Processing, 3rd ed., Prentice-Hall,New Jersey, USA.eng
dcterms.referencesGrbic, S., Ionasec, R., Vitanovski, D., Voigt, I., Wang, Y., Georgescu, B., Navab, N. and Comaniciu, D. (2012) ‘Complete valvular heart apparatus model from 4D cardiac CT’, Medical Image Analysis, Vol. 16, No. 5, pp.1003–1014.eng
dcterms.referencesGrbic, S., Mansi, T., Ionasec, R., Voigt, I., Houle, H., John, M., Schoebinger, M., Navab, N. and Comaniciu, D. (2013) ‘Image-based computational models for TAVI planning: from CT images to implant deployment’, in Mori, K., Sakuma, I., Sato, Y., Barillot, C. and Navab, N. (Eds.): Medical Image Computing and Computer-Assisted Intervention, pp.395–402, Springer Berlin Heidelberg.eng
dcterms.referencesGrube, E., Laborde, J.C., Zickmann, B., Gerckens, U., Felderhoff, T., Sauren, B., Bootsveld, A., Buellesfeld, L. and Iversen, S. (2005) ‘First report on a human percutaneous transluminal implantation of a self-expanding valve prosthesis for interventional treatment of aortic valve stenosis’, Catheterization and Cardiovascular Interventions, Vol. 66, No. 4, pp.465–469.eng
dcterms.referencesGupta, S., Chakarvarti, S. and Zaheeruddin (2016) ‘Medical image registration based on fuzzy c-means clustering segmentation approach using SURF’, Int. J. of Biomedical Engineering and Technology, Vol. 20, No. 1, pp.33–50.eng
dcterms.referencesGuyton, A. and Hall, J. (2006) Textbook of Medical Physiology, Elsevier Saunders, USA.eng
dcterms.referencesHaralick, R. and Shapiro, L. (1992) Computer and Robot Vision, Vol. 1, Addison-Wesley, USA.eng
dcterms.referencesHo, S.Y. (2002) ‘Anatomy of the mitral valve’, Heart, Vol. 88, No. 4, pp.iv5–iv10.eng
dcterms.referencesHo, S.Y. (2009) ‘Structure and anatomy of the aortic root’, European Heart Journal – Cardiovascular Imaging, Vol. 10, No. 1, pp.i3–i10.eng
dcterms.referencesHuttenlocher, D., Klanderman, G. and Rucklidge, W. (1993) ‘Comparing images using the Hausdorff distance’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 9, pp.850–863.eng
dcterms.referencesIbáñez, L., Schroeder, W., Ng, L. and Cates, J. (2003) The ITK Software Guide, Kitware, USA.eng
dcterms.referencesJi, Z.X., Sun, Q.S. and Xia, D.S. (2011) ‘A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image’, Computerized Medical Imaging and Graphics, Vol. 35, No. 5, pp.383–397.eng
dcterms.referencesKirisli, H., Schaap, M., Klein, S., Papadopoulou, S., Bonardi, M., Chen, C., Weustink, A., Mollet, N., Vonken, E.P.A., Van der Geest, R., Van Walsum, T. and Niessen, W. (2010) ‘Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multi-center and multi-vendor study’, Medical Physics, Vol. 37, No. 12, pp.6279–6292.eng
dcterms.referencesLorenz, C. and Von Berg, J. (2006) ‘A comprehensive shape model of the heart’, Medical Image Analysis, Vol. 10, No. 4, pp.657–670.eng
dcterms.referencesManghat, N., Rachapalli, V., Van Lingen, R., Veitch, A., Roobottom, C. and Morgan-Hughes, G. (2008) ‘Imaging the heart valves using ECG-gated 64-detector row cardiac CT’, The British Journal of Radiology, Vol. 81, No. 964, pp.275–290.eng
dcterms.referencesMPPS (2012) Anuario deMortalidad, Technical Report.Ministerio del Poder Popular para la Salud, República Bolivariana de Venezuela, Caracas.eng
dcterms.referencesPauwels, E. and Frederix, G. (1999) ‘Finding salient regions in images: non-parametric clustering for image segmentation and grouping’, Computer Vision and Image Understanding, Vol. 18, Nos. 1–2, pp.73–85.eng
dcterms.referencesPrasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E. and Nielsen, M. (2013) ‘Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network’, in Mori, K., Sakuma, I., Sato, Y., Barillot, C. and Navab, N. (Eds.): Medical Image Computing and Computer-Assisted Intervention, Springer Berlin Heidelberg. pp.246–253.eng
dcterms.referencesPratt, W. (2007) Digital Image Processing, John Wiley Sons, Los Altos.eng
dcterms.referencesPrimak, A., McCollough, C., Bruesewitz, M., Zhang, J. and Fletcher, J. (2006) ‘Relationship between noise, dose, and pitch in cardiac multi-detector row CT’, Radiographics, Vol. 26, No. 6, pp.1785–1794.eng
dcterms.referencesRogers, J.H. and Bolling, S.F. (2009) ‘The tricuspid valve: current perspective and evolving management of tricuspid regurgitation’, Circulation, Vol. 119, No. 20, pp.2718–2725.eng
dcterms.referencesRubin, G.D. (2014) ‘Computed tomography: revolutionizing the practice of medicine for 40 years’, Radiology, Vol. 273, Suppl. 2, pp.S45–S74.eng
dcterms.referencesRyan, R., Abbara, S., Colen, R.R., Arnous, S., Quinn, M., Cury, R.C. and Dodd1, J.D. (2008) ‘Cardiac valve disease: spectrum of findings on cardiac 64-MDCT’, American Journal of Roentgenology, Vol. 190, No. 5, pp.W294–W303.eng
dcterms.referencesSharma, N. and Aggarwal, L. (2010) ‘Automated medical image segmentation techniques’, Journal of Medical Physics, Vol. 35, No. 1, pp.3–14.eng
dcterms.referencesSharma, N., Ray, A., Sharma, S., Shukla, K., Pradhan, S. and Aggarwal, L. (2008) ‘Segmentation and classification of medical images using texture-primitive features: application of BAM-type artificial neural network’, Journal of Medical Physics, Vol. 33, No. 3, pp.119–126.eng
dcterms.referencesStamm, C., Anderson, R.H. and Ho, S.Y. (1998) ‘Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis 1’, Journal of the American College of Cardiology, Vol. 31, No. 6, pp.1420–1425.eng
dcterms.referencesTajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B. and Liang, J. (2016) ‘Convolutional neural networks for medical image analysis: full training or fine tuning?’, IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp.1299–1312.eng
dcterms.referencesWatanabe, Y., Chevalier, B., Hayashida, K., Leong, T., Bouvier, E., Arai, T., Farge, A., Hovasse, T., Garot, P., Cormier, B., Morice, M.C. and Lefèvre, T. (2015) ‘Comparison of multislice computed tomography findings between bicuspid and tricuspid aortic valves before and after transcatheter aortic valve implantation’, Catheterization and Cardiovascular Interventions, Vol. 86, No. 2, pp.323–330.eng
dcterms.referencesWHO (2011) Global Status Report on Non Communicable Diseases, The World Health Report 2010 Geneva, World Health Organization.eng
dcterms.referencesYin, L., Yang, R., Gabbouj, M. and Neuvo, Y. (1996) ‘Weighted median filters: a tutorial’, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 43, No. 3, pp.157–192.eng
dcterms.referencesZheng, Y., John, M., Liao, R., Nöttling, A., Boese, J.M., Kempfert, J., Walther, T., Brockmann, G. and Comaniciu, D. (2012) ‘Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation’, IEEE Transaction on Medical Imaging, Vol. 31, No. 12, pp.2307–2321.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones