Evaluación del efecto genotóxico por exposición ambiental a mercurio y cadmio en poblaciones insulares del Distrito de Cartagena, Bolívar
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Malambo García, Dacia | |
dc.contributor.advisor | Trindade, Cristiano | |
dc.contributor.author | Cano Pérez, Eder Jair | |
dc.date.accessioned | 2021-08-13T19:19:20Z | |
dc.date.available | 2021-08-13T19:19:20Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Los metales pesados son un grupo de elementos que se encuentran naturalmente en la corteza terrestre, sin embargo, las actividades derivadas de la industria y la investigación han provocado un aumento en la concentración de una variedad de estos metales en los diferentes ambientes acuáticos y terrestres (1, 2). Algunos metales pesados como el mercurio (Hg) y el cadmio (Cd) no se les conoce función alguna en el metabolismo humano, de hecho, su acumulación en el cuerpo resulta ser perjudicial para la salud (3). Por tanto, se encuentran entre los metales pesados de más interés en investigación, siendo el efecto genotóxico (daño en el ADN) uno de los principales focos de estudio. Se han utilizado biomarcadores de efectos citogeneticos para evaluar la exposición humana a sustancias genotoxicas, el ensayo de citoma micronúcleo bucal (BMCyt) proporciona un método adecuado y no invasivo para medir el daño del ADN, la inestabilidad cromosómica y la muerte celular en tejido de la mucosa oral, considerándose como uno de los ensayos más utilizado en el biomonitoreo humano (4). La contaminación de la Bahía de Cartagena por metales pesados como Hg y Cd constituye un problema ambiental y de salud pública (5), principalmente en las poblaciones insulares y costeras aledañas al cuerpo de agua, ya que debido a sus actividades pesqueras tradicionales y su permanente interacción con las zonas marinas impactadas, aumentan los riesgos de exposición a estos agentes. El objetivo de este estudio fue evaluar los efectos genotóxicos causado por exposición ambiental a mercurio y cadmio en poblaciones de la zona insular del distrito de Cartagena, Bolívar. | spa |
dc.description.abstract | Heavy metals are a group of elements that are found naturally in the earth's crust, however, activities derived from industry and research have caused an increase in the concentration of a variety of these metals in different aquatic environments and terrestrial (1, 2). Some heavy metals such as mercury (Hg) and cadmium (Cd) have no known function in human metabolism, in fact, their accumulation in the body turns out to be harmful to health (3). Therefore, they are among the heavy metals of most research interest, being the genotoxic effect (DNA damage) one of the main focuses of study. Biomarkers of cytogenetic effects have been used to assess human exposure to genotoxic substances, the buccal micronucleus cytoma assay (BMCyt) provides a suitable and non-invasive method to measure DNA damage, chromosomal instability, and cell death in the tissue of the oral mucosa, being one of the most widely used tests in human biomonitoring (4). The contamination of the Bay of Cartagena by heavy metals such as mercury and cadmium constitutes an environmental and public health problem, mainly in the island and coastal populations bordering the body of water due to their traditional fishing activities and their permanent interaction with the impacted marine areas increase the risks of exposure to these agents. The objective of this study was to evaluate the genotoxic effects caused by environmental exposure to mercury and cadmium in populations of the insular zone of the Cartagena, Bolívar. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/8114 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Cadmio | spa |
dc.subject | Citotoxicidad | spa |
dc.subject | Genotoxicidad | spa |
dc.subject | Mercurio | spa |
dc.subject | Metales pesados | spa |
dc.subject | Micronúcleos | spa |
dc.subject | Mucosa bucal | spa |
dc.subject | Cadmium | eng |
dc.subject | Cytotoxicity | eng |
dc.subject | Mercury genotoxicity | eng |
dc.subject | Heavy metals | eng |
dc.subject | Micronucleus | eng |
dc.subject | Buccal mucosa | eng |
dc.title | Evaluación del efecto genotóxico por exposición ambiental a mercurio y cadmio en poblaciones insulares del Distrito de Cartagena, Bolívar | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Men C, Liu R, Wang Q, Guo L, Shen Z. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Science of The Total Environment. 2018;637-638:844-54. | eng |
dcterms.references | Semenov DO, Fatjejev AI, Smirnova KB, Shemet AM, Lykova OA, Tyutyunnyk NV, et al. Geochemical and anthropogenic factors of variability of heavy metals content in the soils and crops of Ukraine at the example of copper. Environmental Monitoring and Assessment. 2019;191(8):527. | eng |
dcterms.references | Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry. 2018;119(1):157-84. | eng |
dcterms.references | Rocha-Román L, Olivero-Verbel J, Caballero-Gallardo KR. Impacto de la minería del oro asociado con la contaminación por mercurio en suelo superficial de San Martín de Loba, sur de Bolívar (Colombia). Revista Internacional de Contaminacion Ambiental 2018;34(1):10. | spa |
dcterms.references | Olivero J, Mendonza C, Mestre J. Mercurio en cabello de diferentes grupos ocupacionales en una zona de minería aurifera en el Norte de Colombia. Revista de Saúde Pública. 1995;29:376-9. | spa |
dcterms.references | Doria Herrera G, Castillo M, Polo F, Investigaciones C, Monteria C. Evaluación ambiental de los niveles de níquel, cadmio y mercurio en la cuenca del río San Jorge en el departamento de Córdoba. Universidad de Córdoba. 2005. | spa |
dcterms.references | Calao CR, Marrugo JL. Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013. Biomédica. 2015;35(Sup2):139-51. | spa |
dcterms.references | Tosic M, Restrepo JD, Lonin S, Izquierdo A, Martins F. Water and sediment quality in Cartagena Bay, Colombia: Seasonal variability and potential impacts of pollution. Estuarine, Coastal and Shelf Science. 2019;216:187-203. | eng |
dcterms.references | Tosic M. La Bahía de Cartagena: Un destino final de la contaminacion en Colombia. In: Agenda del Mar, editor. Arrastarando la montaña hacia el mar. Colombia2017. | spa |
dcterms.references | Manjarrez Paba G, Castro Angulo I, Utria Padilla L. Bioacumulación de cadmio en ostras de la bahía de Cartagena: Bio-accumulation cadmium in oysters of Cartagena bay. Revista Ingenierías Universidad de Medellín. 2008;7:11-20. | eng |
dcterms.references | Olivero-Verbel J, Caballero-Gallardo K, Torres-Fuentes N. Assessment of mercury in muscle of fish from Cartagena Bay, a tropical estuary at the north of Colombia. International Journal of Environmental Health Research. 2009;19(5):343-55. | eng |
dcterms.references | Alonso D, Pineda P, Olivero J, González H, Campos N. Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environmental Pollution. 2000;109(1):157-63. | eng |
dcterms.references | Olivero-Verbel J, Johnson-Restrepo B, Baldiris-Avila R, Güette-Fernández J, Magallanes-Carreazo E, Vanegas-Ramírez L, et al. Human and crab exposure to mercury in the Caribbean coastal shoreline of Colombia: Impact from an abandoned chlor-alkali plant. Environment International. 2008;34(4):476-82. | eng |
dcterms.references | Guerrero E, Restrepo M, Podleskyl E. Contaminacion por mercurio en la Bahia de Cartagena. Biomédica. 1995;15:144-54. | spa |
dcterms.references | Olivero-Verbel J, Agudelo-Frias D, Caballero-Gallardo K. Morphometric parameters and total mercury in eggs of snowy egret (Egretta thula) from Cartagena Bay and Totumo Marsh, north of Colombia. Marine Pollution Bulletin. 2013;69(1):105-9. | eng |
dcterms.references | Manjarres-Suarez A, Olivero-Verbel J. Hematological parameters and hair mercury levels in adolescents from the Colombian Caribbean. Environmental Science and Pollution Research. 2020;27(12):14216-27. | eng |
dcterms.references | Pizarro, D. Estudio Socioeconomico de la población de Santa Ana, Barú. 2008. | spa |
dcterms.references | Espitia-Almeida F, Ospina-Mateus L, Mora G, Gómez-Camargo D, Malambo-García D. Anomalías congenitas en familias de Ararca (Isla de Barú). Bolivar-Colombia. Revista de ciencias biomédicas. 2015;6:251-8. | spa |
dcterms.references | Ruiz-Díaz MS, Mora-García GJ, Salguedo-Madrid GI, Alario Á, Gómez- Camargo DE. Analysis of Health Indicators in Two Rural Communities on the Colombian Caribbean Coast: Poor Water Supply and Education Level Are Associated with Water-Related Diseases. The American journal of tropical medicine and hygiene. 2017;97(5):1378-92. | eng |
dcterms.references | Cartagena cómovamos. Informe de calidad de vida 2018. Available at http://www.cartagenacomovamos.org/nuevo/wp- content/uploads/2019/09/Informe_de_Calidad_de_Vida- 2018_Cartagena_C%C3%B3mo_Vamos.pdf. | spa |
dcterms.references | Escobar J, Granados E, Podlesky E, Valle V. Estudio de la contaminación con mercurio en la Bahı́a de Cartagena, Colombia. Instituto Nacional de Los Recursos Naturales Renovables y del Ambiente-Instituto Nacional de Salud, Bogotá, Colombia. 1977. | spa |
dcterms.references | Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology. 2014;7(2):60-72. | eng |
dcterms.references | Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research. 2016;23(9):8244-59. | eng |
dcterms.references | World Health Organization (WHO). UNEP United Nations Environment Programme, IOMC Inter-Organization Programme for the Sound Management of Chemicals. Guidance for identifying populations at risk from mercury exposure, 2008. | eng |
dcterms.references | Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure -- a review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health. 1998(1):1-51. | eng |
dcterms.references | Orlowski C, Piotrowski JK. Biological levels of cadmium and zinc in the small intestine of non-occupationally exposed human subjects. Human & Experimental Toxicology. 2003;22(2):57-63. | eng |
dcterms.references | Fernández MA, Sanz P, Palomar M, Serra J, Gadea E. Fatal Chemical Pneumonitis due to Cadmium Fumes. Occupational Medicine. 1996;46(5):372-4. | eng |
dcterms.references | Bonithon-Kopp C, Huel G, Grasmick C, Sarmini H, Moreau T. Effects of pregnancy on the inter-individual variations in blood levels of lead, cadmium and mercury. Biological research in pregnancy and perinatology. 1986;7(1):37-42. | eng |
dcterms.references | Prozialeck WC, Edwards JR. Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. Journal of Pharmacology and Experimental Therapeutics. 2012;343(1):2-12. | eng |
dcterms.references | Centers for disease control and prevention (CDC). Laboratory procedure manual: cadmium, lead, manganese, mercury, and selenium. 2014. Available at https://www.cdc.gov/Nchs/Data/Nhanes/Nhanes_13_14/PbCd_H_MET.pdf. | eng |
dcterms.references | Crespo-López ME, Macêdo GL, Pereira SID, Arrifano GPF, Picanço-Diniz DLW, Nascimento JLMd, et al. Mercury and human genotoxicity: Critical considerations and possible molecular mechanisms. Pharmacological Research. 2009;60(4):212-20. | eng |
dcterms.references | Schurz F, Sabater-Vilar M, Fink-Gremmels J. Mutagenicity of mercury chloride and mechanisms of cellular defence: the role of metal-binding proteins. Mutagenesis. 2000;15(6):525-30. | eng |
dcterms.references | Halliwell B. Oxidative stress and cancer: have we moved forward? Biochemical Journal. 2007;401(1):1-11. | eng |
dcterms.references | Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current topics in medicinal chemistry. 2001;1(6):529-39. | eng |
dcterms.references | Stoiber T, Bonacker D, Böhm KJ, Bolt HM, Thier R, Degen GH, et al. Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury (II). Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2004;563(2):97-106. | eng |
dcterms.references | Cebulska-Wasilewska A, Panek A, Żabiński Z, Moszczyński P, Au W. Occupational exposure to mercury vapour on genotoxicity and DNA repair. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2005;586(2):102-14. | eng |
dcterms.references | Asmuß M, Mullenders LH, Hartwig A. Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicology letters. 2000;112:227-31. | eng |
dcterms.references | Li Y, Jiang Y, Yan X-P. Probing mercury species− DNA interactions by capillary electrophoresis with on-line electrothermal atomic absorption spectrometric detection. Analytical chemistry. 2006;78(17):6115-20. | eng |
dcterms.references | IARC, Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry, Monographs on the Evaluation of Carcinogenic Risk to Humans, International Agency on Research on Cancer, Lyon, France, 1993, pp. 119–238. | eng |
dcterms.references | Rapisarda V, Miozzi E, Loreto C, Matera S, Fenga C, Avola R, et al. Cadmium exposure and prostate cancer: insights, mechanisms and perspectives. Front Biosci (Landmark Ed). 2018;23:1687-700. | eng |
dcterms.references | Mezynska M, Brzóska MM. Environmental exposure to cadmium—a risk for health of the general population in industrialized countries and preventive strategies. Environmental Science and Pollution Research. 2018;25(4):3211-32. | eng |
dcterms.references | Il'yasova D, Schwartz GG. Cadmium and renal cancer. Toxicology and Applied Pharmacology. 2005;207(2):179-86. | eng |
dcterms.references | Luckett BG, Su LJ, Rood JC, Fontham ETH. Cadmium exposure and pancreatic cancer in south Louisiana. J Environ Public Health. 2012;2012:180186-. | eng |
dcterms.references | Filipič M. Mechanisms of cadmium induced genomic instability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2012;733(1):69-77. | eng |
dcterms.references | Waalkes MP, Poirier LA. In vitro cadmium-DNA interactions: cooperativity of cadmium binding and competitive antagonism by calcium, magnesium, and zinc. Toxicology and applied pharmacology. 1984;75(3):539-46. | eng |
dcterms.references | Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Archives of toxicology. 2008;82(8):493. | eng |
dcterms.references | Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and applied pharmacology. 2009;238(3):209-14. | eng |
dcterms.references | Casalino E, Sblano C, Landriscina C. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Archives of biochemistry and biophysics. 1997;346(2):171-9. | eng |
dcterms.references | Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Götte W, et al. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis. 2003;24(1):63-73. | eng |
dcterms.references | Nersesyan A, Kundi M, Waldherr M, Setayesh T, Mišík M, Wultsch G, et al. Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. Mutation Research/Reviews in Mutation Research. 2016;770:119-39. | eng |
dcterms.references | Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, et al. Buccal micronucleus cytome assay. Nature protocols. 2009;4(6):825. | eng |
dcterms.references | Stick HF, Rosin MP. Quantitating the synergistic effect of smoking and alcohol consumption with the micronucleus test on human buccal mucosa cells. International Journal of Cancer. 1983;31(3):305-8. | eng |
dcterms.references | León-Mejía G, Luna-Rodríguez I, Trindade C, Oliveros-Ortíz L, Anaya- Romero M, Luna-Carrascal J, et al. Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. Ecotoxicology and Environmental Safety. 2019;171:264-73. | eng |
dcterms.references | Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutation Research/Reviews in Mutation Research. 2008;659(1):93-108. | eng |
dcterms.references | Thomas P, Harvey S, Gruner T, Fenech M. The buccal cytome and micronucleus frequency is substantially altered in Down's syndrome and normal ageing compared to young healthy controls. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2008;638(1):37-47. | eng |
dcterms.references | Rosin MP. The use of the micronucleus test on exfoliated cells to identify anti-clastogenic action in humans: a biological marker for the efficacy of chemopreventive agents. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1992;267(2):265-76. | eng |
dcterms.references | Fenech M, Crott JW. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes—evidence for breakage–fusion- bridge cycles in the cytokinesis-block micronucleus assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2002;504(1):131-6. | eng |
dcterms.references | Shi Q, King RW. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature. 2005;437(7061):1038-42. | eng |
dcterms.references | Tolbert PE, Shy CM, Allen JW. Micronuclei and Other Nuclear Anomalies in Buccal Smears: A Field Test in Snuff Users. American Journal of Epidemiology. 1991;134(8):840-50. | eng |
dcterms.references | Fernández P. Determinación del tamaño muestral. Cuadernos de Atención Primaria. 1996;3:138-14. | spa |
dcterms.references | Calao-Ramos C, Bravo AG, Paternina-Uribe R, Marrugo-Negrete J, Díez S. Occupational human exposure to mercury in artisanal small-scale gold mining communities of Colombia. Environment International. 2021;146:106-216. | eng |
dcterms.references | Instituto Nacional de Salud. Protocolo de Vigilancia en Salud Pública Intoxicaciones por Sustancias Químicas. MSPS; Bogotá, Colombia: 2016. p. 56. versión 2. | spa |
dcterms.references | Cruz-Esquivel Á, Marrugo-Negrete J, Calao-Ramos C. Genetic damage in human populations at mining sites in the upper basin of the San Jorge River, Colombia. Environmental Science and Pollution Research. 2019;26(11):10961-71. | eng |
dcterms.references | Madrid GL. Genotoxicidad de metales pesados (Hg, Zn, Cu, Pb y Cd) asociado a explotaciones mineras en pobladores de la cuenca del río San Jorge del departamento de Córdoba, Colombia. Revista de la Asociación Colombiana de Ciencias Biológicas. 2011;1(23). | spa |
dcterms.references | Alcala-Orozco M, Caballero-Gallardo K, Olivero-Verbel J. Biomonitoring of Mercury, Cadmium and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the Colombian Amazon. Archives of Environmental Contamination and Toxicology. 2020;79(3):354-70. | eng |
dcterms.references | Díaz SM, Muñoz-Guerrero MN, Palma-Parra M, Becerra-Arias C, Fernández-Niño JA. Exposure to Mercury in Workers and the Population Surrounding Gold Mining Areas in the Mojana Region, Colombia. Int J Environ Res Public Health. 2018;15(11):2337. | eng |
dcterms.references | Salazar-Camacho C, Salas-Moreno M, Marrugo-Madrid S, Marrugo-Negrete J, Díez S. Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia. Environment International. 2017;107:47-54. | eng |
dcterms.references | Yasutake A, Matsumoto M, Yamaguchi M, Hachiya N. Current Hair Mercury Levels in Japanese: Survey in Five Districts. The Tohoku Journal of Experimental Medicine. 2003;199(3):161-9. | eng |
dcterms.references | Holmes P, James KAF, Levy LS. Is low-level environmental mercury exposure of concern to human health? Science of The Total Environment. 2009;408(2):171-82. | eng |
dcterms.references | Wattigney WA, Irvin-Barnwell E, Li Z, Ragin-Wilson A. Biomonitoring of mercury and persistent organic pollutants in Michigan urban anglers and association with fish consumption. International Journal of Hygiene and Environmental Health. 2019;222(6):936-44. | eng |
dcterms.references | Kimáková T, Kuzmová L, Nevolná Z, Bencko V. Fish and fish products as risk factors of mercury exposure. Ann Agric Environ Med. 2018;25(3):488-93. | eng |
dcterms.references | Valdelamar-Villegas J, Olivero-Verbel J. High Mercury Levels in the Indigenous Population of the Yaigojé Apaporis National Natural Park, Colombian Amazon. Biological Trace Element Research. 2020;194(1):3-12. | eng |
dcterms.references | Marrugo-Negrete JL, Ruiz-Guzmán JA, Díez S. Relationship Between Mercury Levels in Hair and Fish Consumption in a Population Living Near a Hydroelectric Tropical Dam. Biological Trace Element Research. 2013;151(2):187- 94. | eng |
dcterms.references | Galeano-Páez C, Espitia-Pérez P, Jimenez-Vidal L, Pastor-Sierra K, Salcedo-Arteaga S, Hoyos-Giraldo LS, et al. Dietary exposure to mercury and its relation to cytogenetic instability in populations from “La Mojana” region, northern Colombia. Chemosphere. 2021;265:129066. | eng |
dcterms.references | World Health Organization (WHO). Environmental Health Criteria 134: Cadmium. 1992. | eng |
dcterms.references | Richter P, Faroon O, Pappas RS. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities. Int J Environ Res Public Health. 2017;14(10):1154. | eng |
dcterms.references | Dharma-wardana MWC. Fertilizer usage and cadmium in soils, crops and food. Environmental Geochemistry and Health. 2018;40(6):2739-59. | eng |
dcterms.references | Ramírez A. Toxicología del cadmio. Conceptos actuales para evaluar exposición ambiental u ocupacional con indicadores biológicos. Anales de la Facultad de Medicina. 2002;63(1):51-64. | spa |
dcterms.references | Bosch AC, O'Neill B, Sigge GO, Kerwath SE, Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. Journal of the Science of Food and Agriculture. 2016;96(1):32-48. | eng |
dcterms.references | Carvalho LVB, Hacon SS, Vega CM, Vieira JA, Larentis AL, Mattos RCOC, et al. Oxidative Stress Levels Induced by Mercury Exposure in Amazon Juvenile Populations in Brazil. Int J Environ Res Public Health. 2019;16(15). | eng |
dcterms.references | Grotto D, Valentini J, Fillion M, Passos CJS, Garcia SC, Mergler D, et al. Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Science of The Total Environment. 2010;408(4):806-11. | eng |
dcterms.references | Bonacker D, Stoiber T, Wang M, Böhm KJ, Prots I, Unger E, et al. Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Archives of Toxicology. 2004;78(10):575-83. | eng |
dcterms.references | Stoiber T, Bonacker D, Böhm KJ, Bolt HM, Thier R, Degen GH, et al. Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2004;563(2):97-106. | eng |
dcterms.references | Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine. 1995;18(2):321-36. | eng |
dcterms.references | Márquez MH, Negrete JLM, editors. Genotoxicidad de metales presentes en el agua de bebida en la Región de la Mojana, departamento de Sucre, Colombia. 2014; 2016. | spa |
dcterms.references | Franchi E, Loprieno G, Ballardin M, Petrozzi L, Migliore L. Cytogenetic monitoring of fishermen with environmental mercury exposure. Mutation Research/Genetic Toxicology. 1994;320(1):23-9. | eng |
dcterms.references | Queiroz M, Bincoletto C, Quadros M, Capitani ED. Presence of Micronuclei in Lymphocytes of Mercury Exposed Workers. Immunopharmacology and Immunotoxicology. 1999;21(1):141-50. | eng |
dcterms.references | Gómez-Meda BC, Zúñiga-González GM, Sánchez-Orozco LV, Zamora- Perez AL, Rojas-Ramírez JP, Rocha-Muñoz AD, et al. Buccal micronucleus cytome assay of populations under chronic heavy metal and other metal exposure along the Santiago River, Mexico. Environmental Monitoring and Assessment. 2017;189(10):522. | eng |
dcterms.references | Letaj K, Elezaj I, Selimi Q, Kurteshi K. The Effects of Environmental Pollution with Heavy Metals in Frequency of Micronuclei in Epithelial Buccal Cells of Human Population in Mitrovica. Journal of Chemical Health Risks. 2012;2(3). | eng |
dcterms.references | Ceppi M, Biasotti B, Fenech M, Bonassi S. Human population studies with the exfoliated buccal micronucleus assay: Statistical and epidemiological issues. Mutation Research/Reviews in Mutation Research. 2010;705(1):11-9. | eng |
dcterms.references | León-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, et al. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicology and Environmental Safety. 2014;107:133-9. | eng |
dcterms.references | Zhou Z-h, Lei Y-x, Wang C-x. Analysis of Aberrant Methylation in DNA Repair Genes During Malignant Transformation of Human Bronchial Epithelial Cells Induced by Cadmium. Toxicological Sciences. 2012;125(2):412-7. | eng |
dcterms.references | Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan AT, Nilsson R. Genotoxic effects of occupational exposure to lead and cadmium. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2003;540(1):19-28. | eng |
dcterms.references | Fu J, Huang X, Zhu X. Study on peripheral blood lymphocytes chromosome abnormality of people exposed to cadmium in environment. Biomedical and environmental sciences: BES. 1999;12(1):15-9. | eng |
dcterms.references | Forni A. Comparison of chromosome aberrations and micronuclei in testing genotoxicity in humans. Toxicology Letters. 1994;72(1):185-90. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |