Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness

dc.contributor.authorAcosta-Humánez, Primitivo
dc.contributor.authorGiraldo, Hernán
dc.contributor.authorPiedrahita, Carlos
dc.date.accessioned2018-03-21T22:41:49Z
dc.date.available2018-03-21T22:41:49Z
dc.date.issued2017
dc.description.abstractThe trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point of view of the theory of differential algebra. In particular, by Morales-Ramis theory, it is possible to analyze integrable Hamiltonian systems through the abelian structure of their variational equations. In this paper, we obtain the abelian differential Galois groups and the representation of the quiver, that allow us to obtain such abelian differential Galois groups, for some seismic models with constant Hessian of square of slowness, proposed in [20], which are equivalent to linear Hamiltonian systems with three uncoupled harmonic oscillators.eng
dc.identifier.issn09720871
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1896
dc.language.isoengeng
dc.publisherPushpa Publishing Houseeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceFar East Journal of Mathematical Sciences (FJMS)eng
dc.sourceVol. 102, No. 3 (2017)eng
dc.source.urihttp://www.pphmj.com/index.php?act=show_login&msg=Please%20first%20login!eng
dc.subjectDifferential Galois theoryeng
dc.subjectEikonal equationeng
dc.subjectHamilton equationeng
dc.subjectHelmholtz equationeng
dc.subjectHigh frequency approximationeng
dc.subjectMorales-Ramis theoryeng
dc.subjectRay theoryeng
dc.subjectRepresentations of quiverseng
dc.titleDifferential galois groups and representation of quivers for seismic models with constant hessian of square of slownesseng
dc.typearticleeng
dcterms.referencesP. Acosta-Humánez, M. Álvarez-Ramírez, D. Blázquez-Sanz and J. Delgado, Non-integrability criterium for normal variational equations around an integrable subsystem and an example: the Wilberforce spring-pendulum, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 33(1) (2013), 965-986.eng
dcterms.referencesP. Acosta-Humánez, M. Álvarez-Ramírez and J. Delgado, Non-integrability of some few body problems in two degrees of freedom, Qual. Theory Dyn. Syst. 8(2) (2009), 209-239.eng
dcterms.referencesP. Acosta-Humánez and D. Blázquez-Sanz, Hamiltonian systems and variational equations with polynomial coefficients, Dynam. Systems Appl. 5(1) (2008), 6-10.eng
dcterms.referencesP. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some hamiltonians with rational potentials, Discrete Contin. Dyn. Syst. Series B 10(2&3) (2008), 265-293.eng
dcterms.referencesP. Acosta-Humánez, D. Blázquez-Sanz and C. Vargas-Contreras, On hamiltonian potentials with quartic polynomial normal variational equations, Nonlinear Studies. The International Journal 16 (2009), 299-313.eng
dcterms.referencesP. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67(3) (2011), 305-374.eng
dcterms.referencesP. Acosta-Humánez and Ch. Pantazi, Darboux integrals for Schrödinger planar vector fields via Darboux transformations, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 8(043) (2012), 1-26.eng
dcterms.referencesP. Acosta- Humánez and E. Suazo, Liouvillian propagators, Riccati equation and differential Galois theory, J. Phys. A: Math. Theor. 46(45) (2013), 455203, 17 pp.eng
dcterms.referencesP. Acosta-Humánez and E. Suazo, Liouvillian propagators and degenerate parametric amplification with time-dependent pump amplitude and phase, Analysis, Modelling, Optimization, and Numerical Techniques, Springer Proceedings in Mathematics & Statistics 121(1) (2015), 295-307.eng
dcterms.referencesP. B. Acosta-Humánez, Galoisian approach to supersymmetric quantum mechanics. Ph.D. Thesis, Universitat Politècnica de Catalunya. Available in ArXiv: 0906.3532, 2009.eng
dcterms.referencesP. B. Acosta-Humánez. Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case x = f (x, t), SIAM J. Appl. Dyn. Syst. 8(1) (2009), 279-297.eng
dcterms.referencesP. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory, VDM Verlag, Dr Muller, Berlin, 2010.eng
dcterms.referencesP. B. Acosta-Humánez, S. I. Kryuchkov, E. Suazo and S. K. Suslov, Degenerate parametric amplification of squeezed photons: explicit solutions, statistics, means and variances, J. Nonlinear Optic. Phys. Mat. 24(2) (2015), 1550021, 27 pp.eng
dcterms.referencesP. B. Acosta-Humánez, J. T. Lázaro, J. Morales-Ruiz and Ch. Pantazi, On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 35(5) (2015), 1767-1800.eng
dcterms.referencesV. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Vol. 60, 2nd ed., Springer Verlag, New York, USA, 1989.eng
dcterms.referencesI. Assem, D. D. Simson and A. Skowroński, Elements of the representation theory of associative algebras, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2006.eng
dcterms.referencesM. Auslander, I. Reiten and S. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, Vol. 36, Cambridge University Press, 1995.eng
dcterms.referencesN. Bleistein, Mathematical Methods for Wave Phenomena, Academic Press, 1986.eng
dcterms.referencesN. Bleistein and R. Handelsman, Asymptotic Expansion of Integrals, 2nd ed., Dover, New York, USA, 1984.eng
dcterms.referencesV. Cerveny, Seismic Ray Theory, Cambridge University Press, Cambridge, UK, 2001.eng
dcterms.referencesJ. de la Peña, Tame Algebras and Derived Categories, 1st ed., XV Escola de Álgebra. UFRGS, Brasil, Canela-RS, 1998.eng
dcterms.referencesL. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol. 19, 2nd ed., American Mathematical Society, Providence, Rhode Island, USA, 2010.eng
dcterms.referencesJ. Fritz, Partial differential equations, Applied Mathematical Sciences, Vol. 1, 4th ed., Springer Verlag, New York, USA, 1982.eng
dcterms.referencesP. Gabriel, Unzerlegbare dartellungen I, Manuscripta Math. 6 (1972), 71-103.eng
dcterms.referencesP. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II (Ottawa, Canada 1979), Lecture Notes in Math. 831, Springer-Verlag, 1980, pp. 1-71.eng
dcterms.referencesW. H. Gustafson, The history of algebras and their representations, Proc. ICRA III (Puebla, Mexico 1980), Lecture Notes in Math. 944, Springer-Verlag, 1982, pp. 1-28.eng
dcterms.referencesM. Herzberger, Modern Geometrical Optics, John Wiley and Sons (Interscience), New York, 1958.eng
dcterms.referencesI. Kaplansky, An Introduction to Differential Algebra, Hermann, 1957.eng
dcterms.referencesT. Kimura, On Riemann’s equations which are solvable by quadratures, Funkcialaj Ekvacioj 12(1) (1969), 269-281.eng
dcterms.referencesJ. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Computation 2(1) (1986), 3-43.eng
dcterms.referencesA. Magid, Lectures on differential Galois theory, University Lecture Series, American Mathematical Society, Providence, RI, 1994.eng
dcterms.referencesJ. Martinet and J. P. Ramis, Theorie de Galois differentielle et resommation, Computer Algebra and Differential Equations 193(1) (1989), 117-214.eng
dcterms.referencesJ. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems, Progress in Mathematics, Birkhäuser, Basel, 1999.eng
dcterms.referencesJ. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of hamiltonian systems I, Methods Appl. Anal. 8(1) (2001), 33-96.eng
dcterms.referencesJ. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of hamiltonian systems II, Methods Appl. Anal. 8(1) (2001), 97-112.eng
dcterms.referencesJ. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: a practical guide, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc. 509(1) (2010), 143-220.eng
dcterms.referencesJ. Rauch, Hyperbolic partial differential in geometrical optics, Graduate Studies in Mathematics, Vol. 133, 1st ed., American Mathematical Society, Providence, Rhode Island, USA, 2012.eng
dcterms.referencesI. Reiten, An introduction to the representation of Artin algebras, Bull London Math. Soc. 17 (1985), 209-223.eng
dcterms.referencesC. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, Vol. 1099, Springer-Verlag, 1984.eng
dcterms.referencesJ. Schleicher, M. Tygel and P. Hubral, Seismic true-amplitude imaging, SEG Geophysical Developments, Vol. 12, 1st ed., Society of Exploration Geophysics, Tulsa, OK, USA, 2007.eng
dcterms.referencesM. F. Singer, An outline of differential Galois theory, Computer Algebra and Differential Equations 121(1) (1989), 3-58.eng
dcterms.referencesM. van der Put and M. Singer, Galois theory in linear differential equations, Graduate Text in Mathematics, Springer Verlag, New York, 2003.eng
dcterms.referencesM. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, Vol. 138, 1st ed., American Mathematical Society, Providence, Rhode Island, USA, 2012.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones