A mho type phase comparator relay guideline using phase comparison technique for a power system

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorGonzález-Cueto Cruz, José Antonio
dc.contributor.authorGarcía Sánchez, Zaid
dc.contributor.authorCrespo Sánchez, Gustavo
dc.contributor.authorHernández Herrera, Hernán
dc.contributor.authorSilva-Ortega, Jorge Iván
dc.contributor.authorMartínez Díaz, Vicente Leonel
dc.date.accessioned2020-12-08T12:52:26Z
dc.date.available2020-12-08T12:52:26Z
dc.date.issued2021
dc.description.abstractThis paper presents a mho distance relay simulation based on the phase comparison technique using a typical electrical power systems analysis software for two cases: when the operation state is close to the static voltage limit and during a dynamic perturbation in the system. The paper evaluates the impedance variations caused by complex voltage values, the mho polarization, and the comparator operating region into the complex plane. In addition, the paper found the information for the dynamic perturbations from the outputs considering a mid-term stability program. The simulation of the mho-phase comparator in the static voltage proximity limit detects unit distance elements with impedance measured close to reach the threshold in the steady-state. Dynamic mho simulations in the complex plane are successfully tested by plotting time phase difference curves on the comparator input signals. Relay programmers can use these curves to analyze other phase comparators applications and the corresponding models in the complex plane.eng
dc.format.mimetypepdfspa
dc.identifier.doi10.11591/ijece.v11i2.pp929-944
dc.identifier.issn27222578
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6851
dc.identifier.urlhttp://ijece.iaescore.com/index.php/IJECE/article/view/21406/14616
dc.language.isoengspa
dc.publisherInstitute of Advanced Engineering and Science (IAES)spa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInternational Journal of Electrical and Computer Engineering (IJECE)eng
dc.sourceVol. 11 N° 2, (2021)
dc.subjectDistance relayseng
dc.subjectElectric power network analysiseng
dc.subjectMid-term stabilityeng
dc.subjectMho phase comparatoreng
dc.titleA mho type phase comparator relay guideline using phase comparison technique for a power systemeng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesC. Da Costa, et al., “A Methodology for Distance Relay Modeling,” IEEE Latin America Transactions, vol. 16, no. 5, pp. 1388-1394, 2018.eng
dcterms.referencesM. R. Barzegar, and A. Foroud, “Performance evaluation of distance relay in the presence of hybrid SFCL," IET Science Measurement and Technology, vol. 12, no. 5, pp. 581-593, 2018.eng
dcterms.referencesW. D. Humpage and S. P. Sabberwal, “Developments in-phase-comparison techniques for distance protection,” Proceedings of the Institution of Electrical Engineers, vol. 112, no. 7, 1965, pp. 1383-1394.eng
dcterms.referencesG. W. Stagg and A. H. El-Abiad, “Computer Methods in Power System Analysis,” New York: McGraw-Hill Book Company, 1968.eng
dcterms.referencesL. Jackson, et al., “Distance protection: optimum dynamic design of static relay comparators,” Proceedings of the Institution of Electrical Engineers, vol. 115, no. 2, 1968, pp. 280-287.eng
dcterms.referencesA. Manori, et al., “Advance compensated mho relay algorithm for a transmission system with shunt flexible AC transmission system device,” Electric Power Components and Systems, vol. 42, no. 16, pp. 1802-1810, 2014.eng
dcterms.referencesG. T. Vuong and G. Paris, "Rule-based relay modeling for transient-stability studies," IEEE Transactions on Power Systems, vol. 3, no. 3, pp. 1306-1309, 1988eng
dcterms.referencesL. P. Cavero, "Computer-aided evaluation and application of distance relays," 1993 Fifth International Conference on Developments in Power System Protection, York, UK, 1993, pp. 199-202.eng
dcterms.referencesS. J. Zubić, et al., “Probabilistic assessment of new time-domain distance relay algorithms,” Electric Power Systems Research, vol. 119, pp. 218-227, 2015.eng
dcterms.referencesDo, Dinh-Thuan, and Minh-Sang V. Nguyen, "Enabling relay selection in non-orthogonal multiple access networks: direct and relaying mode," TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 18, no. 2, pp. 587-594, 2020.eng
dcterms.referencesV. Cook, "Generalised method of assessing polarising signals for the polarised mho relay," Proceedings of the Institution of Electrical Engineers, vol. 122, no. 5, 1975, pp. 497-500.eng
dcterms.referencesA. B. Shah, et al., “Mho Relay for Protection of Series Compensated Line,” 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, 2009, pp. 648-651.eng
dcterms.referencesAbd Almuhsen, Tahseen Ali, and Ahmed Jasim Sultan, "Coordination of directional overcurrent and distance relays based on nonlinear multivariable optimization," Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 17, no. 3, pp. 1194-1205, 2020.eng
dcterms.referencesS. J. Zubić, and M. B. Djurić, “A distance relay algorithm based on the phase comparison principle,” Electric Power Systems Research, vol. 92, pp. 20-28, 2012.eng
dcterms.referencesH. J. Altuve, et al., "Simulación digital de relevadores analógicos de distancia a nivel de esquema de comparación,” Parte I X Reunión de Verano de Potencia del IEEE Sección México (RVP-97), Acapulco, Gro., México, 1997.spa
dcterms.referencesH. J. Altuve, et al., "Simulación digital de relevadores analógicos de distancia a nivel de esquema de comparación,” Parte II: Programa Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, México, 1997.spa
dcterms.referencesR. C. Dos Santos, and E. C. Senger, "Transmission lines distance protection using artificial neural networks," International Journal of Electrical Power and Energy Systems, vol. 33, no. 3, pp. 721-730, 2011.eng
dcterms.referencesM. D. Zadeh, et al., “FPAA-based mho distance relay considering CVT transient supervision,” IET generation, transmission and distribution, vol. 3, no. 7, pp. 616-627, 2009.eng
dcterms.referencesS. Raman, et al., “An adaptive fuzzy mho relay for phase backup protection with in feed from STATCOM,” IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 120-128, 2013.eng
dcterms.referencesA. Ghorbani, et al., “Operation of synchronous generator LOE protection in the presence of shunt-FACTS,” Electric Power Systems Research, vol. 119, pp. 178-186, 2015.eng
dcterms.referencesA. Manori, et al., "SVM based zonal setting of Mho relay for shunt compensated transmission line,” International Journal of Electrical Power and Energy Systems, vol. 78, pp. 422-428, 2016.eng
dcterms.referencesL. T. Guajardo, and A. C. Enríquez, "Enhanced performance for distance relays due to series capacitors in transmission lines," Electric Power Systems Research, vol. 109, pp. 20-31, 2014.eng
dcterms.referencesGuajardo, et al., "Error compensation in distance relays caused by wind power plants in the power grid," Electric Power Systems Research, vol. 106, pp. 109-119, 2014.eng
dcterms.referencesH. J. Altuve, and E. O. Schweitzer, "Modern solutions for protection, control, and monitoring of electric power systems," Schweitzer Engineering Laboratories, 2010.eng
dcterms.referencesS. Zamora, "Flujo de carga N-R acoplado rápido con técnicas para orientar el análisis en caso de divergencia," Tesis de Master en Ciencias, UCLV, Santa Clara, 1999.spa
dcterms.referencesJ. Arrillaga, and N. R. Whatson, "Computer modelling of Electrical Power Systems," New York: John Wiley and Sons Ltd., Second Edition, 2001.eng
dcterms.referencesP. Kundur, "Power System Stability and Control," New York: Mc Graw Hill, Inc., 1993.eng
dcterms.referencesV. Ajjarapu, and C. Christy, “The continuation power flow: A tool for steady state voltage stability analysis,” IEEE Transactions on Power Systems, vol. 7, no. 1, pp. 416-423, 1992.eng
dcterms.referencesZ. García Sánchez, "Metodología para estudios estáticos de la estabilidad de tension," Tesis de Doctorado en Ciencias Técnicas, UCLV, Santa Clara, Cuba, 2011.spa
dcterms.referencesZ. Garcia, et al., “Voltage collapse point evaluation considering the load dependence in a power system stability problem,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 61-71, 2020.eng
dcterms.referencesC. Cañizares, "Voltage stability assessment, procedures and guides," IEEE/PES Power System Stability Subcommittee, Special Publication, 2001.eng
dcterms.referencesE. G. Gate, et al., “Time frame notion and time response of the methods in transient, mid-term and long-term stability programs,” IEEE Transactions on Power Apparatus and Systems, vol. 103, no. 1, pp. 143-151, 1984.eng
dcterms.referencesL. Wang, and E. Price, “New High-speed Microprocessor Distance Relaying for Transmission Lines,” POWERCON '98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151), Beijing, China, vol. 2, 1998, pp. 1143-1147.eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Amhotypephasecomparatorelayguidelineusingphase.pdf
Tamaño:
1.02 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones