Validación y verificación de un protocolo in house con nanopartículas magnéticas para la extracción de ácidos nucleicos de SARS-CoV-2
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Acosta Hoyos, Antonio José | |
dc.contributor.advisor | Pachecho Londoño, Leonardo | |
dc.contributor.author | Flórez Rojas, Jullieth Katherinne | |
dc.date.accessioned | 2025-02-06T22:09:28Z | |
dc.date.available | 2025-02-06T22:09:28Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La pandemia generada por COVID-19 causó crisis sanitaria a nivel mundial, en parte por el desabastecimiento de insumos médicos, entre ellos las pruebas diagnósticas de SARS-CoV-2 donde el problema se agudizó en países como Colombia y otros en América Latina. Los países en desarrollo donde la financiación en los sistemas de atención médica es limitada generó consecuencias que provocaron el aumento en la mortalidad y limitó la detección temprana del virus. En la búsqueda de herramientas importantes que permitieran abordar la problemática, favorecer la investigación biomédica básica y el diagnóstico clínico, se diseñó y optimizo un método de extracción de ácidos nucleicos in house el cual permita mejorar la accesibilidad y contribuir a la independencia biotecnológica en el contexto local. En el presente estudio se tuvo como objetivo presentar un método de síntesis por coprecipitación de nanopartículas magnéticas de hierro sin recubrimiento, basado en la síntesis de BOMB (1), diseñadas específicamente para la recuperación de material genético, garantizando tanto su eficiencia como su calidad. Para asegurar la viabilidad de este enfoque, se evaluó la robustez del método de síntesis y se estandarizó el proceso de creación de nanopartículas magnéticas; así mismo se evalúo la efectividad de las soluciones de lisis que hacen parte del kit de extracción de ácidos nucleicos. Además, se realizó una estimación de costos del kit in house con el fin de evaluar su viabilidad, resultando el kit in house un 93.7 % más económico en comparación con el precio del kit comercial | spa |
dc.description.abstract | The pandemic generated by COVID-19 caused a worldwide health crisis, mainly due to the shortage of medical supplies, including diagnostic tests for SARS-CoV-2, and the problem worsened in countries such as Colombia and others in Latin America. In developing countries, funding in health care systems is limited, which has had consequences that have led to increased mortality and limited early detection of the virus. In the search for important tools to address the problem, promote basic biomedical research and clinical diagnosis, an in house nucleic acid extraction method was designed and optimized to improve accessibility and contribute to biotechnological independence in the local context. The present study aimed to present a method for the co-precipitation synthesis of uncoated magnetic iron nanoparticles based on BOMB synthesis (Oberacker et al., 2019), specifically designed for the recovery of genetic material, ensuring both efficiency and quality. To ensure the feasibility of this approach, the robustness of the synthesis method was evaluated and the process of creating magnetic nanoparticles was standardized, as well as the effectiveness of the lysis solutions that are part of the nucleic acid extraction kit was evaluated. In addition, a cost estimation of the in-house kit was made in order to evaluate its viability, obtaining that the in house kit was 93.7 % cheaper, compared to the price of the commercial kit, in addition the in house kit showed better performance in relation to allowing a greater number of tests to be performed | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16230 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.subject | Nanopartículas magnéticas | spa |
dc.subject | Extracción de ácidos nucleicos | spa |
dc.subject | Validación | spa |
dc.subject.keywords | Magnetic nanoparticles | eng |
dc.subject.keywords | Nucleic acid extraction | eng |
dc.subject.keywords | Validation | eng |
dc.title | Validación y verificación de un protocolo in house con nanopartículas magnéticas para la extracción de ácidos nucleicos de SARS-CoV-2 | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.spa | Trabajo de grado máster | |
dcterms.references | Oberacker P, Stepper P, Bond DM, Höhn S, Focken J, Meyer V, et al. Bio-On Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol. 2019;17(1). | eng |
dcterms.references | Guzman C, Máttar S, Alvis-Guzman N, De la Hoz F. The high price that Colombia has paid for its lack of biotechnological sovereignty. Vol. 24, Vaccines. The Lancet Regional Health Am; 2023. | eng |
dcterms.references | Chacón-Torres JC, Reinoso C, Navas-León DG, Briceño S, González G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries’ needs in the detection and control of SARS-CoV-2. Sci Rep. 2020 Dec 1;10(1). | eng |
dcterms.references | Shang W, Wang Y, Yuan J, Guo Z, Liu J, Liu M. Global Excess Mortality during COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Vol. 10, Vaccines. MDPI; 2022. | eng |
dcterms.references | Ramírez-Soto MC, Ortega-Cáceres G. Analysis of Excess All-Cause Mortality and COVID-19 Mortality in Peru: Observational Study. Trop Med Infect Dis. 2022 Mar 1;7(3). | eng |
dcterms.references | Alianza de Organizaciones por los Derechos Humanos. Intervención humanitaria de la ONU para atender la gravedad de la crisis en Guayaquil por el COVID-19. 2020 Apr 7; | spa |
dcterms.references | Hueda-Zavaleta M, Copaja-Corzo C, Benites-Zapata VA, Cardenas-Rueda P, Maguiña JL, Rodríguez-Morales AJ. Diagnostic performance of RT-PCR-based sample pooling strategy for the detection of SARS-CoV-2. Ann Clin Microbiol Antimicrob. 2022;21(1). | eng |
dcterms.references | Cui H, Song W, Ru X, Fu W, Ji L, Zhou W, et al. A simplified viral RNA extraction method based on magnetic nanoparticles for fast and high-throughput detection of SARS-CoV-2. Talanta. 2023 Jun 1;258. | eng |
dcterms.references | Ali N, Rampazzo RDCP, Costa ADiT, Krieger MA. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. Vol. 2017, BioMed Research International. Hindawi Limited; 2017. | eng |
dcterms.references | Rodríguez A, Aramendis R, Deana A, García R, Pittaluga L. El aporte de la biotecnología médica frente a la pandemia del COVID-19 y lecciones para su desarrollo mediante las estrategias nacionales de bioeconomía: estudios de caso de Colombia, Costa Rica y el Uruguay [Internet]. Santiago; 2020 Dec [cited 2024 Mar 25]. Available from: https://repositorio.cepal.org/server/api/core/bitstreams/9110df67-7a7d-4b5a-99fa 6826424d6de5/content | spa |
dcterms.references | Camargo M, Muñoz M, Patiño LH, Ramírez JD. Strengthening molecular testing capacity in Colombia: Challenges and opportunities. Diagn Microbiol Infect Dis [Internet]. 2025 Mar;111(3):116716. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0732889325000392 | eng |
dcterms.references | Antiochia R. Nanobiosensors as new diagnostic tools for SARS, MERS and COVID 19: from past to perspectives. Vol. 187, Microchimica Acta. 2020. | eng |
dcterms.references | Possebon FS, Ullmann LS, Malossi CD, Miodutzki GT, da Silva EC, Machado EF, et al. A fast and cheap in-house magnetic bead RNA extraction method for COVID-19 diagnosis. J Virol Methods. 2022;300. | eng |
dcterms.references | Majidi S, Sehrig FZ, Farkhani SM, Goloujeh MS, Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Vol. 44, Artificial Cells, Nanomedicine and Biotechnology. 2016. | eng |
dcterms.references | Ramos-Mandujano G, Salunke R, Mfarrej S, Rachmadi AT, Hala S, Xu J, et al. A Robust, Safe, and Scalable Magnetic Nanoparticle Workflow for RNA Extraction of Pathogens from Clinical and Wastewater Samples. Global Challenges. 2021;5(4). | eng |
dcterms.references | Gambhir RP, Parthasarathy AK, Sharma S, Kale S, Magdum VV, Tiwari AP. pH responsive glycine functionalized magnetic iron oxide nanoparticles for SARS-CoV 2 RNA extraction from clinical sample. J Mater Sci. 2022 Jul 1;57(28):1362 | eng |
dcterms.references | Zhao Z, Cui H, Song W, Ru X, Zhou W, Yu X. A simple magnetic nanoparticles based viral RNA extraction method for efficient detection of SARS-CoV-2. 2020; Available from: https://doi.org/10.1101/2020.02.22.961268 | eng |
dcterms.references | Yu L, Adamson P, Lay Yap P, Tung T, Makar S, Turra M, et al. From Biowaste to Lab-Bench: Low-Cost Magnetic Iron Oxide Nanoparticles for RNA Extraction and SARS-CoV-2 Diagnostics. Biosensors (Basel). 2023;13(2). | eng |
dcterms.references | Zhang X, Yu Y, Du K, Han W, Xue J, Li S, et al. The co-assembly of spike silica nanoparticles with high affinity to nucleic acid for airborne virus detection. Chemical Engineering Journal. 2024 Sep 15;496. | eng |
dcterms.references | Tüzmen S, Baskin Y, Nursal AF, Eraslan S, Esemen Y, Çalibas G, et al. Techniques for nucleic acid engineering: The foundation of gene manipulation. In: Omics Technologies and Bio-engineering: Towards Improving Quality of Life. Elsevier Inc.; 2018. p. 247–315. | eng |
dcterms.references | Tan SC, Yiap BC. DNA, RNA, and protein extraction: The past and the present. Vol. 2009, Journal of Biomedicine and Biotechnology. 2009. | eng |
dcterms.references | Gupta N. DNA extraction and polymerase chain reaction. In: Journal of Cytology. 2019. | eng |
dcterms.references | Ayoib A, Hashim U, Gopinath SCB, Md Arshad MK. DNA extraction on bio-chip: history and preeminence over conventional and solid-phase extraction methods. Vol. 101, Applied Microbiology and Biotechnology. 2017. | eng |
dcterms.references | Thatcher SA. DNA/RNA preparation for molecular detection. Vol. 61, Clinical Chemistry. 2015. | eng |
dcterms.references | Gaj T, Sirk SJ, Shui SL, Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb Perspect Biol. 2016;8(12). | eng |
dcterms.references | J Shetty P. The Evolution of DNA Extraction Methods. Am J Biomed Sci Res. 2020;8(1). | eng |
dcterms.references | Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: Replication, evolution, and next-generation therapeutics. Vol. 18, BMC Biology. 2020. | eng |
dcterms.references | Rodwell Victor W. Nucleótidos. In: Rodwell VW, editor. Harper Bioquímica ilustrada. 31st ed. Ciudad de México: McGraw Hill ; | eng |
dcterms.references | Travers A, Muskhelishvili G. DNA structure and function. Vol. 282, FEBS Journal. 2015. | eng |
dcterms.references | Beas Carlos, Ortuño D, Armendariz J. Biología Molecular fundamentos y aplicaciones. 2009. | spa |
dcterms.references | Lawson CL, Berman HM, Chen L, Vallat B, Zirbel CL. The Nucleic Acid Knowledgebase: a new portal for 3D structural information about nucleic acids. Nucleic Acids Res. 2024;52(D1). | eng |
dcterms.references | Sambrook J, Rusell DW. Extraction, Purification, and Analysis of mRNA from Eukariotic Cells. In: Sambrook J, Rusell DW, editors. Molecular Cloning a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001. p. 7.1-7.88. | eng |
dcterms.references | Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, et al. Computational modeling of RNA 3D structure based on experimental data. Vol. 39, Bioscience Reports. 2019. | eng |
dcterms.references | Rivas E. Evolutionary conservation of RNA sequence and structure. Vol. 12, Wiley Interdisciplinary Reviews: RNA. 2021. | eng |
dcterms.references | Fedor MJ, Williamson JR. The catalytic diversity of RNAs. Vol. 6, Nature Reviews Molecular Cell Biology. 2005. | eng |
dcterms.references | Gong B, Chen JH, Yajima R, Chen Y, Chase E, Chadalavada DM, et al. Raman crystallography of RNA. Methods. 2009;49(2). | eng |
dcterms.references | Zhang J, Fei Y, Sun L, Zhang QC. Advances and opportunities in RNA structure experimental determination and computational modeling. Vol. 19, Nature Methods. 2022. | eng |
dcterms.references | Thaplyal P, Bevilacqua PC. Experimental approaches for measuring pKa’s in RNA and DNA. In: Methods in Enzymology. 2014. | eng |
dcterms.references | Falese JP, Donlic A, Hargrove AE. Targeting RNA with small molecules: From fundamental principles towards the clinic. Vol. 50, Chemical Society Reviews. 2021. | eng |
dcterms.references | El-Ashram S, Al Nasr I, Suo X. Nucleic acid protocols: Extraction and optimization. Biotechnology Reports. 2016;12. | eng |
dcterms.references | Wegl G, Grabner N, Köstelbauer A, Klose V, Ghanbari M. Toward Best Practice in Livestock Microbiota Research: A Comprehensive Comparison of Sample Storage and DNA Extraction Strategies. Front Microbiol. 2021;12. | eng |
dcterms.references | Sirkov IN. Nucleic Acid Isolation and Downstream Applications. In: Nucleic Acids - From Basic Aspects to Laboratory Tools. InTech; 2016. | eng |
dcterms.references | Burden D. Guide to the Disruption of Biological Samples. 2012. | eng |
dcterms.references | Emaus MN, Varona M, Eitzmann DR, Hsieh SA, Zeger VR, Anderson JL. Nucleic acid extraction: Fundamentals of sample preparation methodologies, current advancements, and future endeavors. Vol. 130, TrAC - Trends in Analytical Chemistry. Elsevier B.V.; 2020. | eng |
dcterms.references | Kim J, Johnson M, Hill P, Gale BK. Microfluidic sample preparation: Cell lysis and nucleic acid purification. Vol. 1, Integrative Biology. 2009. | eng |
dcterms.references | Liu D, Zeng XA, Sun DW, Han Z. Disruption and protein release by ultrasonication of yeast cells. Innovative Food Science and Emerging Technologies. 2013;18. | eng |
dcterms.references | Greenly JM, Tester JW. Ultrasonic cavitation for disruption of microalgae. Bioresour Technol. 2015;184. | eng |
dcterms.references | Hwan Shin Jeong. Nucleic Acid Extraction and Enrichment. Advanced Techniques in Diagnostic Microbiology: Volume 1: Techniques, Third Edition. 2018; | eng |
dcterms.references | Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966;17(1):117– 30. | eng |
dcterms.references | Palmiter RD. Magnesium Precipitation of Ribonucleoprotein Complexes. Expedient Techniques for the Isolation of Undegraded Polysomes and Messenger Ribonucleic Acid. Biochemistry. 1974;13(17). | eng |
dcterms.references | Dowhan DH. Purification and Concentration of Nucleic Acids. 2008 Oct 15; | eng |
dcterms.references | J. Marmur. A procedure for the isolation of deoxyribonucleic acid from micro organisms. J Mol Biol. 1961 Apr;3(2):208– | eng |
dcterms.references | Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat Protoc. 2006 Jul;1(2):581–5. | eng |
dcterms.references | Price CW, Leslie DC, Landers JP. Nucleic acid extraction techniques and application to the microchip. Vol. 9, Lab on a Chip. 2009. | eng |
dcterms.references | T. A. Brown. Gene Cloning and DNA Analysis an Introduction. | eng |
dcterms.references | Hawkins T. DNA purification and isolation using magnetic particles. US Patent 5,989,071. 1999. | eng |
dcterms.references | Tong R, Zhang L, Hu C, Chen X, Song Q, Lou K, et al. An automated and miniaturized rotating-disk device for rapid nucleic acid extraction. Micromachines (Basel). 2019;10(3). | eng |
dcterms.references | Peeling RW, Mcnerney R. Emerging technologies in point-of-care molecular diagnostics for resource-limited settings. Expert Rev Mol Diagn. 2014;14(5):525–34. | eng |
dcterms.references | Huang X, Fu R, Qiao S, Zhang J, Xianyu Y. Nanotechnology-based diagnostic methods for coronavirus: From nucleic acid extraction to amplification. Vol. 13, Biosensors and Bioelectronics: X. 2023. | eng |
dcterms.references | Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Vol. 4, Nano Today. 2009. | eng |
dcterms.references | Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Vol. 12, Arabian Journal of Chemistry. 2019. | eng |
dcterms.references | Sanchez F, Sobolev K. Nanotechnology in concrete - A review. Vol. 24, Construction and Building Materials. 2010. | eng |
dcterms.references | Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Vol. 14, Frontiers in Microbiology. 2023. | eng |
dcterms.references | Soto Alvaredo J. Desarrollo de métodos basados en espectrometría de masas con fuente de plasma de acoplamiento inductivo para la determinación de nanopartículas metálicas y nanopartículas de óxidos metálicos. [Oviedo]: Universidad de Oviedo; 2016. | spa |
dcterms.references | Fornaguera C, García-Celma MJ. Personalized nanomedicine: A revolution at the nanoscale. Vol. 7, Journal of Personalized Medicine. 2017. | eng |
dcterms.references | Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, et al. Nanomedicine for the SARS-CoV-2: State-of-theart and future prospects. Vol. 16, International Journal of Nanomedicine. 2021. | eng |
dcterms.references | B MS, Biradar DP, Aladakatti YR. Nanotechnology and its applications in agriculture: A review. Journal of Farm Sciences [Internet]. 2016 Mar 30;29(1):1–13. Available from: https://www.researchgate.net/publication/303665019 | eng |
dcterms.references | Roduner E. Size matters: Why nanomaterials are different. Chem Soc Rev. 2006 Jun 22;35(7):583–92. | eng |
dcterms.references | Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007 Dec 1;2(4):MR17–71. | eng |
dcterms.references | Torres Rodríguez J. Extracción de ácidos nucleicos usando nanopartículas magnéticas núcleo-coraza. [ Ensenada, Baja California, México ]: Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. CICESE.; 2017. | spa |
dcterms.references | Saylan Y, Yavuz H, Ülger C, Denizli A, Sağlam N. Introduction to Nanoscience, Nanomaterials, Nanocomposite, Nanopolymer, and Engineering Smart Materials. In: Nanotechnology in the Life Sciences. Springer Science and Business Media B.V.; 2019. p. 1–12. | eng |
dcterms.references | Hasan S. A Review on Nanoparticles : Their Synthesis and Types. Research Journal of Recent Sciences Res J Recent Sci Uttar Pradesh ( Lucknow Campus ). 2014;4(February). | eng |
dcterms.references | Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. 2017. | eng |
dcterms.references | Jaithliya T. A Review on Nanotechnology: Nanopartcles. Journal of Pharmaceutical and Pharmacological Sciences. 2017 Apr 5;2(2). | eng |
dcterms.references | Singh A, Maniraj M, Jain S. Classification and Synthesis of Nanoparticles: A Review. In: Advances in Clean Energy Technologies. Singapur: Springer; 2021. p. 1113–25. | eng |
dcterms.references | Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, et al. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules [Internet]. 2024 Jul 25;29(15):3482. Available from: https://www.mdpi.com/1420- 3049/29/15/3482 | eng |
dcterms.references | Xu Y, Wang T, Chen Z, Jin L, Wu Z, Yan J, et al. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chinese Chemical Letters. 2021;32(12). | eng |
dcterms.references | Adams NM, Bordelon H, Wang KKA, Albert LE, Wright DW, Haselton FR. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. ACS Appl Mater Interfaces. 2015;7(11). | eng |
dcterms.references | Fang Y, Wang Y, Zhu L, Liu H, Su X, Liu Y, et al. A novel cartridge for nucleic acid extraction, amplification and detection of infectious disease pathogens with the help of magnetic nanoparticles. Chinese Chemical Letters. 2023;34(8). | eng |
dcterms.references | Salata O V. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2. | eng |
dcterms.references | Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1). | eng |
dcterms.references | Bhardwaj LK, Rath P, Choudhury M. A Comprehensive Review on the Classification, Uses, Sources of Nanoparticles (NPs) and Their Toxicity on Health. Aerosol Science and Engineering. 2023;7(1). | eng |
dcterms.references | Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4). | eng |
dcterms.references | Toshima N, Yonezawa T. Bimetallic nanoparticles - Novel materials for chemical and physical applications. New Journal of Chemistry. 1998;22(11). | eng |
dcterms.references | Arora N, Thangavelu K, Karanikolos GN. Bimetallic Nanoparticles for Antimicrobial Applications. Vol. 8, Frontiers in Chemistry. 2020. | eng |
dcterms.references | Srinoi P, Chen YT, Vittur V, Marquez MD, Lee TR. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Vol. 8, Applied Sciences (Switzerland). 2018. | eng |
dcterms.references | Wani SUD, Ali M, Masoodi MH, Khan NA, Zargar MI, Hassan R, et al. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vib Spectrosc. 2022;121. | eng |
dcterms.references | Thomas S, Harshita BSP, Mishra P, Talegaonkar S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr Pharm Des. 2015;21(42). | eng |
dcterms.references | Williams HM. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Bioscience Horizons: The International Journal of Student Research. 2017;10. | eng |
dcterms.references | Vatta LL, Sanderson RD, Koch KR. Magnetic nanoparticles: Properties and potential applications. Pure and Applied Chemistry. 2006;78(9). | eng |
dcterms.references | Mohammed L, Gomaa HG, Ragab D, Zhu J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology. 2017;30. | eng |
dcterms.references | Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology. 2019;30(50). | eng |
dcterms.references | Catalano E, Geisler J, Kristensen VN, Enrico C. Superparamagnetic iron oxide nanoparticles conjugated with doxorubicin for targeting breast cancer. 2019 Nov 13 [cited 2025 Jan 22]; Available from: https://arxiv.org/abs/1911.05378?utm_source=chatgpt.com | eng |
dcterms.references | Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, et al. Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications. 2013 Apr 11; | eng |
dcterms.references | Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, et al. Application of magnetic nanoparticles in nucleic acid detection. Vol. 18, Journal of Nanobiotechnology. 2020 | eng |
dcterms.references | Thiruppathi R, Mishra S, Ganapathy M, Padmanabhan P, Gulyás B. Nanoparticle functionalization and its potentials for molecular imaging. Advanced Science. 2017;4(3). | eng |
dcterms.references | Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, et al. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Vol. 12, Nanomaterials. 2022. | eng |
dcterms.references | Nguyen DT, Kim KS. Functionalization of magnetic nanoparticles for biomedical applications. Vol. 31, Korean Journal of Chemical Engineering. 2014. | eng |
dcterms.references | Herranz F, Pellico J, Ruiz-Cabello J. Covalent functionalization of magnetic nanoparticles for biomedical imaging. SPIE Newsroom. 2012; | eng |
dcterms.references | Sun SN, Wei C, Zhu ZZ, Hou YL, Venkatraman SS, Xu ZC. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Vol. 23, Chinese Physics B. 2014. | eng |
dcterms.references | Matijaković Mlinarić N, Wawrzaszek B, Kowalska K, Selmani A, Učakar A, Vidmar J, et al. Poly(Allylamine Hydrochloride) and ZnO Nanohybrid Coating for the Development of Hydrophobic, Antibacterial, and Biocompatible Textiles. Nanomaterials. 2024 Apr 1;14(7). | eng |
dcterms.references | Lü T, Qi D, Zhang D, Lin S, Mao Y, Zhao H. Facile synthesis of N-(aminoethyl)- aminopropyl functionalized core-shell magnetic nanoparticles for emulsified oil-water separation. J Alloys Compd. 2018;769 | eng |
dcterms.references | Čampelj S, Makovec D, Drofenik M. Functionalization of magnetic nanoparticles with 3-aminopropyl silane. J Magn Magn Mater. 2009;321(10). | eng |
dcterms.references | Bednarikova Z, Kubovcikova M, Antal I, Antosova A, Gancar M, Kovac J, et al. Silica-magnetite nanoparticles: Synthesis, characterization and nucleic acid separation potential. Surfaces and Interfaces. 2023 Jul 1;39. | eng |
dcterms.references | Esser KH, Marx WH, Lisowsky T. maxXbond: First regeneration system for DNA binding silica matrices. Vol. 3, Nature Methods. 2006. | eng |
dcterms.references | Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798). | eng |
dcterms.references | Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV 2 drug design. Vol. 23, Nature Reviews Molecular Cell Biology. 2022. | eng |
dcterms.references | Antezana Llaveta G, Arandia-Guzmán J. SARS-CoV-2: estructura, replicación y mecanismos fisiopatológicos relacionados con COVID-19. Gaceta Medica Boliviana. 2020;43(2). | spa |
dcterms.references | Huang Y, Yang C, Xu X feng, Xu W, Liu S wen. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Vol. 41, Acta Pharmacologica Sinica. 2020. | eng |
dcterms.references | Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, et al. What do we know about the function of SARS-CoV-2 proteins? Vol. 14, Frontiers in Immunology. 2 | eng |
dcterms.references | Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Vol. 7, Signal Transduction and Targeted Therapy. 2022. | eng |
dcterms.references | Lu X, Pan J, Tao J, Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011;42(1). | eng |
dcterms.references | Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2). | eng |
dcterms.references | Hillen HS. Structure and function of SARS-CoV-2 polymerase. Vol. 48, Current Opinion in Virology. 2021. | eng |
dcterms.references | V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Vol. 19, Nature Reviews Microbiology. 2021. | eng |
dcterms.references | Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Vol. 11, Cell and Bioscience. 2021. | eng |
dcterms.references | Hillen HS. Structure and function of SARS-CoV-2 polymerase. Vol. 48, Current Opinion in Virology. 2021. | eng |
dcterms.references | Lee S, Song J, Kim S. A simple and innovative sample preparation method for on-site SARS-CoV-2 molecular diagnostics. Analyst. 2021;146(22) | eng |
dcterms.references | Farkas K, Hillary LS, Thorpe J, Walker DI, Lowther JA, McDonald JE, et al. Correction: Farkas et al. concentration and quantification of sars-cov-2 rna in wastewater using polyethylene glycol-based concentration and qrt-pcr. methods protoc. 2021, 4, 17. Vol. 4, Methods and Protocols. 2021. | eng |
dcterms.references | da Silva RC, de Lima SC, Reis WPM dos S, de Magalhães JJF, de Oliveira Magalhães RN, Rathi B, et al. Comparison of DNA extraction methods for COVID-19 host genetics studies. PLoS One. 2023;18(10 October). | eng |
dcterms.references | Comisión Internacional de Armonización (ICH). Analytical Test Method Validation Report Template. | eng |
dcterms.references | Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3). | eng |
dcterms.references | Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3). | eng |
dcterms.references | Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials [Internet]. 2020 Oct 18 [cited 2023 Nov 10];13(20):4644. Available from: https://www.mdpi.com/1996-1944/13/20/4644 | eng |
dcterms.references | Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm. 2022;626. | eng |
dcterms.references | Bashir S, Liu J. Overviews of Synthesis of Nanomaterials. Advanced Nanomaterials and Their Applications in Renewable Energy. 2015 Jan 1;51–115. | eng |
dcterms.references | Mandyal P, Sharma R, Sambyal S, Fang B, Sillanpää M, Kumar V, et al. A new generation of magnetic nanoferrite-based nanocomposites for environmental applications. Magnetic Nanoferrites and their Composites: Environmental and Biomedical Applications. 2023 Jan 1;257–93. | eng |
dcterms.references | Prakash J, Himanshi, Kumari N, Suman, Sharma P, Godara SK, et al. Potential applications of transition and rare-earth metal substituted magnesium nanoferrites. Magnetic Nanoferrites and their Composites: Environmental and Biomedical Applications. 2023 Jan 1;141–64. | eng |
dcterms.references | Szymczyk A, Drozd M, Kamińska A, Matczuk M, Trzaskowski M, Mazurkiewicz Pawlicka M, et al. Comparative Evaluation of Different Surface Coatings of Fe3O4- Based Magnetic Nano Sorbent for Applications in the Nucleic Acids Extraction. Int J Mol Sci [Internet]. 2022 Aug 9 [cited 2024 Sep 1];23(16):8860. Available from: https://www.mdpi.com/1422-0067/23/16/886 | eng |
dcterms.references | Ali TH, Mandal AM, Heidelberg T, Hussen RSD. Sugar based cationic magnetic core shell silica nanoparticles for nucleic acid extraction. RSC Adv | eng |
dcterms.references | Ali Z, Wang J, Mou X, Tang Y, Li T, Liang W, et al. Integration of nucleic acid extraction protocol with automated extractor for multiplex viral detection. J Nanosci Nanotechnol. 2017;17(2). | eng |
dcterms.references | Ravlo E, Sousa MML de, Andersen LL, Holberg-Petersen M, Klundby I, Aas PA, et al. A fast, low-cost, robust and high-throughput method for viral nucleic acid isolation based on NAxtra magnetic nanoparticles. Sci Rep. 2023;13(1). | eng |
dcterms.references | Tavallaie R, McCarroll J, Le Grand M, Ariotti N, Schuhmann W, Bakker E, et al. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood. Nat Nanotechnol. 2018;13(11). | eng |
dcterms.references | Rodriguez Calviño J. Uso de nanopartículas magnéticas y biología molecular para la mejora del diagnóstico microbiológico. [Santiago de Compostela]: Universidad Santiago de Compostela; 2015. | spa |
dcterms.references | Torres-Rodríguez J, Soto G, López Medina J, Portillo-López A, Hernández-López EL, Vargas Viveros E, et al. Cobalt–zinc ferrite and magnetite SiO2 nanocomposite powder for magnetic extraction of DNA. J Solgel Sci Technol. 2019;91(1). | eng |
dcterms.references | Li B, Mou X, Chen Z, Chen H, Deng Y, Li S, et al. The development of a rapid high quality universal nucleic acid extraction kit based on magnetic separation. Sci China Chem. 2017;60(12). | eng |
dcterms.references | Andrade ÂL, Fabris JD, Ardisson JD, Valente MA, Ferreira JMF. Effect of Tetramethylammonium Hydroxide on Nucleation, Surface Modification and Growth of Magnetic Nanoparticles. J Nanomater. 2012;2012. | eng |
dcterms.references | Mérida F, Chiu-Lam A, Bohórquez AC, Maldonado-Camargo L, Pérez ME, Pericchi L, et al. Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates HHS Public Access. J Magn Magn Mater. 2015;394:361–71. | eng |
dcterms.references | Zandieh M, Liu J. Spherical Nucleic Acid Mediated Functionalization of Polydopamine-Coated Nanoparticles for Selective DNA Extraction and Detection. Bioconjug Chem. 2021 Apr 21;32(4):801–9. | eng |
dcterms.references | Sudhakar K, Kono T, El-Melegy T, Badr H, Laxmeesha PM, Montazeri K, et al. One pot, scalable synthesis of hydroxide derived ferrite magnetic nanoparticles. J Magn Magn Mater. 2023;582. | eng |
dcterms.references | Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol Sci Appl. 2015;8. | eng |
dcterms.references | Dutta S, Sharma RK. Sustainable Magnetically Retrievable Nanoadsorbents for Selective Removal of Heavy Metal Ions From Different Charged Wastewaters. Separation Science and Technology (New York). 2019 Jan 1;11:371–416. | eng |
dcterms.references | Qiao SZ, Liu J, Max Lu QG. Synthetic Chemistry of Nanomaterials. Modern Inorganic Synthetic Chemistry. 2011 Jan 1;479–506. | eng |
dcterms.references | Scallan MF, Dempsey C, Macsharry J, O’callaghan I, O’connor PM, Horgan CP, et al. Validation of a Lysis Buffer Containing 4 M Guanidinium Thiocyanate (GITC)/ Triton X-100 for Extraction of SARS-CoV-2 RNA for COVID-19 Testing: Comparison of Formulated Lysis Buffers Containing 4 to 6 M GITC, Roche External Lysis Buffer and Qiagen RTL Lysis Buffer. 2020; Available from: https://doi.org/10.1101/2020.04.05.026435 | eng |
dcterms.references | Thang LTH, Han W, Shin J, Shin JH. Disposable, pressure-driven, and self-contained cartridge with pre-stored reagents for automated nucleic acid extraction. Sens Actuators B Chem. 2023;375. | eng |
dcterms.references | Qiu Y, Yu J, Pabbaraju K, Lee BE, Gao T, Ashbolt NJ, et al. Validating and optimizing the method for molecular detection and quantification of SARS-CoV-2 in wastewater. Science of the Total Environment. 2022;812. | eng |
dcterms.references | Klein S, Müller TG, Khalid D, Sonntag-Buck V, Heuser AM, Glass B, et al. SARS CoV-2 RNA extraction using magnetic beads for rapid large-scale testing by RT qPCR and RT-LAMP. Viruses. 2020;12 | eng |
dcterms.references | Lázaro-Perona F, Rodriguez-Antolín C, Alguacil-Guillén M, Gutiérrez-Arroyo A, Mingorance J, García-Rodriguez J. Evaluation of two automated low-cost RNA extraction protocols for SARS-CoV-2 detection. PLoS One. 2021;16(2 February). | eng |
dcterms.references | Ministerio de Ciencia T e I. POLÍTICAS DE INVESTIGACIÓN E INNOVACIÓN ORIENTADAS POR MISIONES-PIIOM: MISIÓN SOBERANÍA SANITARIA Y BIENESTAR SOCIAL. Bogotá D.C.; 2023 Dec. | spa |
dcterms.references | Gómez-Arias RD. Soberanía sanitaria: una política prioritaria para las democracias. Univ Salud. 2021;24(1). | spa |
dcterms.references | OPS - Organización Panamericana de la Salud, OMN - Organización Mundial de la Salud. Developing Covid-19 Vaccines at Pandemic Speed. Massachusetts Medical Society; 2020 Apr. | spa |
dcterms.references | Capriotti N, Amorós Morales LC, de Sousa E, Juncal L, Pidre ML, Traverso L, et al. Silica-coated magnetic particles for efficient RNA extraction for SARS-CoV-2 detection. Heliyon. 2024;10(3). | eng |
dcterms.references | Silva LM, Riani LR, Silvério MS, Pereira-Júnior ODS, Pittella F. Comparison of Rapid Nucleic Acid Extraction Methods for SARS-CoV-2 Detection by RT-qPCR. Diagnostics. 2022;12(3). | eng |
dcterms.references | Ramírez-Córdova C, Morales-Jadán D, Alarcón-Salem S, Sarmiento-Alvarado A, Proaño MB, Camposano I, et al. Fast, cheap and sensitive: Homogenizer-based RNA extraction free method for SARS-CoV-2 detection by RT-qPCR. Front Cell Infect Microbiol. 2023;13. | eng |
dcterms.references | Dueñas Argumendo Y. Validación analítica de un kit de extracción in house para la amplificación de ácido ribonucleico de SARS-CoV-2. [Monteria]; 2023. | spa |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.investigacion | Nuevos mMétodos diagnósticos | |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: