Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
dc.contributor.author | Kalempa Demeu, Lara Maria | |
dc.contributor.author | Jahn Soares, Rodrigo | |
dc.contributor.author | Severo Miranda, Juliana | |
dc.contributor.author | Pacheco-Lugo, Lisandro A. | |
dc.contributor.author | Gonçalves Oliveira, Kelin | |
dc.contributor.author | Cortez Plaza, Cristian Andrés | |
dc.contributor.author | Billiald, Philippe | |
dc.contributor.author | Ferreira de Moura, Juliana | |
dc.contributor.author | Yoshida, Nobuko | |
dc.contributor.author | Magalhães Alvarenga, Larissa | |
dc.contributor.author | Duarte DaRocha, Wanderson | |
dc.date.accessioned | 2019-10-17T14:51:31Z | |
dc.date.available | 2019-10-17T14:51:31Z | |
dc.date.issued | 2019-10 | |
dc.description.abstract | Trypanosoma cruzi is a flagellate protozoan pathogen that causes Chagas disease. Currently there is no preventive treatment and the efficiency of the two drugs available is limited to the acute phase. Therefore, there is an unmet need for innovative tools to block transmission in endemic areas. In this study, we engineered a novel recombinant molecule able to adhere to the T. cruzi surface, termed scFv-10D8, that consists of a single-chain variable fragment (scFv) derived from mAb-10D8 that targets gp35/50. The synthetic gene encoding scFv-10D8 was cloned and fused to a 6×His tag and expressed in a prokaryotic expression system. Total periplasmic or 6xHis tag affinity-purified fractions of scFv-10D8 retained the capacity to bind to gp35/50, as shown by Western blot analyses. Pre-incubation of metacyclic trypomastigotes with scFv-10D8 showed a remarkable reduction in cell invasion capacity. Our results suggest that scFv-10D8 can be used in a paratransgenic approach to target parasites in insect vectors, avoiding dissemination of infective forms. Such advances in the development of this functional molecule will surely prompt the improvement of alternative strategies to control Chagas disease by targeting mammalian host stages. | eng |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4168 | |
dc.language.iso | eng | eng |
dc.publisher | Javier Marcelo Di Noia, Institut de recherches cliniques de Montreal, CANADA | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | PLoS ONE | eng |
dc.source | 14(10), (2019) | spa |
dc.source.bibliographicCitation | Tibayrenc M, Barnabe´ C, Telleria J. Reticulate Evolution in: Medical and Epidemiological Implications In: Telleria J, Tibayrenc M, editors. American trypanosomiasis: Chagas disease One hundred years of research. Burlington: Elsevier; 2010. 475–488. | eng |
dc.source.bibliographicCitation | World Health Organization Health Topics, Chagas disease, 2017. www.who.int/topics/chagas_disease/ en/. Accessed 04 Oct 2017 | eng |
dc.source.bibliographicCitation | Silveira AC, Dias JCP. O controle da transmissão vetorial. Rev Soc Bras Med Trop 44 Supplement. 2011; 2:52–63. https://doi.org/10.1590/S0037-86822011000800009 | por |
dc.source.bibliographicCitation | Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions: a comprehensive review. Mem Inst Oswaldo Cruz. 2015; 110:277–282. https://doi.org/10.1590/ 0074-0276140362 PMID: 25466622 | eng |
dc.source.bibliographicCitation | Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, et al. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data. 2017; 4:170050. https://doi.org/10.1038/sdata.2017.50 PMID: 28398292 | eng |
dc.source.bibliographicCitation | World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec Feb 90:33–43 | eng |
dc.source.bibliographicCitation | Gurgel-Gonc¸alves R, Galvão C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in brazil based on ecological niche modeling. J Trop Med. 2012;:Article ID 705326. https://doi.org/ 10.1155/2012/705326 PMID: 22523500 | eng |
dc.source.bibliographicCitation | Vinhaes MC, de Oliveira SV, Reis PO, de Lacerda Sousa AC, Silva RA, Obara MT,et al. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multicriteria decision analysis. Acta Trop. 2014; 137:105–110. https://doi.org/10.1016/j.actatropica.2014.05. 007 PMID: 24857942 | eng |
dc.source.bibliographicCitation | Ministério da Saúde (BR) Secretaria de vigilância em saúde. Guía de vigilância em saúde. Ministério da Saúde, Brasília, 2007 | por |
dc.source.bibliographicCitation | (2016) Brazilian consensus on Chagas disease. Epidemiol Serv Saúde, Brasília 25(nu´m. esp.):7–86 | eng |
dc.source.bibliographicCitation | Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 2015; 149:70–85. https://doi.org/10.1016/j.actatropica.2015.05. 014 PMID: 26003952 | eng |
dc.source.bibliographicCitation | Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003; 19:495–501. https://doi.org/10.1016/j.pt.2003.09.001 PMID: 14580960 | eng |
dc.source.bibliographicCitation | Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987; 81:755–759. https://doi.org/10.1016/ 0035-9203(87)90020-4 PMID: 3130683 | eng |
dc.source.bibliographicCitation | Teston AP, Monteiro WM, Reis D, Bossolani GD, Gomes ML, De Araújo SM, et al. In vivo susceptibility to Benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013; 18:85–95. https://doi.org/10.1111/tmi.12014 PMID: 23130989 | eng |
dc.source.bibliographicCitation | Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2016; 12:580–584. https://doi.org/10.1038/nm1395 PMID: 16604085 | eng |
dc.source.bibliographicCitation | Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release. 2014; 197 10:190–198. https://doi.org/10.1016/j.jconrel.2014.11.002 PMID: 25445702 | eng |
dc.source.bibliographicCitation | Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, et al. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015; 25:e1004942(6). https://doi.org/10.1371/journal.ppat.1004942 PMID: 26110623 | eng |
dc.source.bibliographicCitation | Stijlemans B, Caljon G, Natesan SK, Saerens D, Conrath K, Pérez-Morga D, et al. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog. 2011; 7:e1002072. https://doi.org/10.1371/journal.ppat.1002072 PMID: 21698216 | eng |
dc.source.bibliographicCitation | Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016; 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9 PMID: 26659224 | eng |
dc.source.bibliographicCitation | Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011; 7:1334–1344. https://doi.org/10.7150/ijbs.7.1334 PMID: 22110385 | eng |
dc.source.bibliographicCitation | Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, et al. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2018; 119:94–98. https://doi.org/10.1016/j.exppara.2007.12.020 PMID: 18331732 | eng |
dc.source.bibliographicCitation | Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasites Vectors. 2011; 4:77. https://doi.org/10.1186/1756-3305-4- 77 PMID: 21569540 | eng |
dc.source.bibliographicCitation | De Vooght CG, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Factories. 2014; 13:156. https://doi.org/10.1186/s12934-014-0156-6 PMID: 25376234 | eng |
dc.source.bibliographicCitation | Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun. 1989; 57:1663–1667 PMID: 2656520 | eng |
dc.source.bibliographicCitation | Mortara RA, Da Silva S, Araguth MF, Blanco SA, Yoshida N. Polymorphism of the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun. 1992; 60:4673–4678 PMID: 1328061 | eng |
dc.source.bibliographicCitation | Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, et l. Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J. 2011; 438:303–313. https://doi.org/10. 1042/BJ20110683 PMID: 21651499 | eng |
dc.source.bibliographicCitation | Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc. 2006; 78:87–111. https://doi.org//S0001-37652006000100010 PMID: 16532210 | eng |
dc.source.bibliographicCitation | Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonc¸a-Previato L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl- containing oligosaccharides. Biochemistry. 2004/ 43(37):11889–97. https://doi.org/10.1021/ bi048942u PMID: 15362875 | eng |
dc.source.bibliographicCitation | Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991; 51:6363–71 PMID: 1933899 | eng |
dc.source.bibliographicCitation | Kuan CT, Srivastava N, Mclendon RE, Marasco WA, Zalutsky MR, Bigner DD. Recombinant singlechain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010; 127:598–611. https://doi.org/10.1002/ijc. 25062 PMID: 19937796 | eng |
dc.source.bibliographicCitation | Crivianu-Gaita V, ThompsonM (2016) Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016; 85:32–45. https://doi.org/10.1016/j.bios.2016.04.091 PMID: 27155114 | eng |
dc.source.bibliographicCitation | Fields C, O’Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc. 2013; 8:1125–1148. https://doi.org/10.1038/nprot.2013.057 PMID: 23680984 | eng |
dc.source.bibliographicCitation | Lyskov S, Chou FC, Conchúir SO´ , Der BS, Drew K, Kuroda D, et al. Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One. 2013 8: e63906. https://doi.org/10.1371/journal.pone.0063906 PMID: 23717507 | eng |
dc.source.bibliographicCitation | Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Protein docking using case-based reasoning. Proteins. 2013; 81:2150–2158. https://doi.org/10.1002/prot.24433 PMID: 24123156 | eng |
dc.source.bibliographicCitation | Mcguffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB. IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res. 2015; 43:W169– W173. https://doi.org/10.1093/nar/gkv236 PMID: 25820431 | eng |
dc.source.bibliographicCitation | Karim-Silva S, Moura Jd, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, et al. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett. 2016; 176:90–6. https://doi.org/10.1016/j.imlet.2016.05.019 PMID: 27288291 | eng |
dc.source.bibliographicCitation | Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Typanosoma cruzi intraespecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104:1051–1054. https://doi.org/10.1590/s0074-02762009000700021 PMID: 20027478 | eng |
dc.source.bibliographicCitation | Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles N, et al. Biological aspect of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 1988; 83:123–133. https://doi.org/10.1590/s0074-02761988000100016 PMID: 3074237 | eng |
dc.source.bibliographicCitation | Teixeira MMG, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol. 1986; 18:271–282. https://doi. org/10.1016/0166-6851(86)90085-x PMID: 3515178 | eng |
dc.source.bibliographicCitation | Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995; 270:27244–27253. https://doi.org/10.1074/jbc.270.45.27244 PMID: 7592983 | eng |
dc.source.bibliographicCitation | Mcgwire BS, Olson CL, Tack BF, Engman DM. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis. 2003; 188:146–152. https://doi.org/10.1086/375747 PMID: 12825184 | eng |
dc.source.bibliographicCitation | Smulski C, Labovsky V, Levy G, Hontebeyrie M, Hoebeke J, Levin MJ. Structural basis of the crossreaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor. FASEB J. 2006; 20:1396–1406. https://doi.org/10.1096/fj.05-5699com PMID: 16816115 | eng |
dc.source.bibliographicCitation | Ayub MJ, Nyambega B, Simonetti L, Duffy T, Longhi SA, Gómez KA, et al. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein. PLOS ONE. 2012: 7:e36233. https://doi.org/10.1371/journal.pone.0036233 PMID: 22570698 | eng |
dc.source.bibliographicCitation | Mendonc¸a-Previato L, Penha L, Garcez TC, Jones C, Previato JO. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. 2013; 30:659–666. https://doi.org/10.1007/s10719-013-9469-7 PMID: 23430107 | eng |
dc.source.bibliographicCitation | Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, et al. A New expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I+J phagemid libraries. Immunol Lett. 2015; 167:95–102. https://doi.org/10.1016/j.imlet.2015.07.005 PMID: 26219832 | eng |
dc.source.bibliographicCitation | Lim KP, Li H, Nathan S. Expression and purification of a recombinant scFv towards the exotoxin of the pathogen, Burkholderia pseudomallei. J Microbiol. 2004; 42:126–132 PMID: 15357306 | eng |
dc.source.bibliographicCitation | Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S. Different expression systems resulted in varied binding properties of anti–paclitaxel single–chain variable fragment antibody clone 1C2. J Nat Med. 2018; 72:310–316. https://doi.org/10.1007/s11418-017-1136-z PMID: 29027080 | eng |
dc.source.bibliographicCitation | Yoshida N, Dorta ML, Ferreira AT, Oshiro ME, Mortara RA, Acosta-Serrano A, et l. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Mol Biochem Parasitol. 1997; 84:57–67. https://doi.org/10.1016/s0166- 6851(96)02783-1 PMID: 9041521 | eng |
dc.source.bibliographicCitation | Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. N Biotechnol. 2018; 44:31–40. https://doi.org/10.1016/j.nbt. 2018.04.006 PMID: 29689305 | eng |
dc.source.bibliographicCitation | Cámara MLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, et al. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis. 2019; 13(5):e0007418. https://doi.org/10.1371/journal.pntd.0007418 PMID: 31107901 | eng |
dc.source.uri | https://doi.org/10.1371/journal. pone.0223773 | eng |
dc.subject | Trypanosoma cruzi | eng |
dc.subject | Parasitic diseases | eng |
dc.subject | Periplasm | eng |
dc.subject | Chagas disease | eng |
dc.subject | Protein extraction | eng |
dc.subject | Protozoan infections | eng |
dc.subject | Sequence databases | eng |
dc.subject | Trypomastigotes | eng |
dc.title | Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion | eng |
dc.type | article | eng |