Detección, discriminación y cuantificación de pequeñas secuencias de nucleótidos por Espectroscopía Infrarroja por Transformada de Fourier (FTIR) en la identificación molecular del Virus Del Papiloma Humano
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.author | Guerra Simanca, Martha Isabel | |
dc.date.accessioned | 2021-02-19T19:21:50Z | |
dc.date.available | 2021-02-19T19:21:50Z | |
dc.date.issued | 2021 | |
dc.description.abstract | En este trabajo investigativo se evaluó el uso de la técnica de espectroscopía infrarroja con transformada Fourier por reflexión total atenuada (ATR-FTIR) en la detección, discriminación y cuantificación de pequeñas secuencias de nucleótidos aplicado en la identificación molecular de genotipos de virus de papiloma humano (VPH). En una primera parte se demostró la viabilidad de la técnica ATR-FTIR en la diferenciación de pequeñas secuencias de ADN de una sola cadena, para esto se generó un modelo de regresión para la cuantificación del porcentaje de nucleótido (%N, para cada nucleótido %A, %C, %T y %G) por el método multivariado de mínimos cuadrados parciales (PLS) y se analizaron las señales espectrales por ATR-FTIR de estas secuencias. El error de los modelos para la cuantificación del %N estuvo entre 0.9-1.2%. En una segunda parte se implementó la técnica ATR-FTIR en la identificación de VPH. Para esto se generaron modelos multivariados por el método de análisis discriminante PLS (PLS-DA) para la predicción de los genotipos de VPH 16, 31, 35, 51 y 66. Esto se realizó a partir de espectros de los productos de amplificados de ADN por la técnica de reacción en cadena de la polimerasa en tiempo real (real-time PCR), los modelos fueron diseñados usando los espectros ATR-FTIR de los controles positivos y negativos de los productos de real-time PCR. Estos modelos fueron usados para predecir muestras clínicas de seis mujeres y los resultados fueron contrastados con la técnica convencional real-time PCR. Todas las muestras fueron predichas con el mismo genotipo de VPH validado por real-time PCR. | spa |
dc.description.abstract | In this research, the Fourier transform infrared spectroscopy by attenuated total reflection (ATR-FTIR) technique is used to detect, discriminate, and quantify small nucleotide sequences. This was applied in the molecular identification of genotypes of human papillomavirus (HPV). Initially, I demonstrated the viability of the ATR-FTIR technique in the differentiation of small single-stranded DNA sequences, for this, a model was generated to quantify the nucleotide percentage (% N, for each nucleotide % A, % C,% T, and % G) by the multivariate method of partial least squares (PLS) and the spectral signals of these sequences were analyzed by ATR-FTIR. The error of the models for the quantification of % N was between 0.9-1.2%. Finally, to identify HPV, I implemented the ATR-FTIR technique. For this, multivariate models were generated by the PLS discriminant analysis method (PLS-DA) in the prediction of HPV genotypes 16, 31, 35, 51 and 66. This was performed from spectra of DNA amplification products using the realtime polymerase chain reaction (real-time PCR) technique; the models were designed using the ATR-FTIR spectra of the positive and negative controls of the real-time PCR products. These models were used to predict clinical samples from six women, and the results were contrasted with the conventional real-time PCR technique. All samples were predicted with the same HPV serotype found by real-time PCR. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/7095 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | ATR-FTIR | spa |
dc.subject | VPH | spa |
dc.subject | ADN | spa |
dc.subject | Nucleótidos | spa |
dc.subject | Cáncer cervicouterino | spa |
dc.subject | PLS | spa |
dc.subject | PLS-DA | spa |
dc.subject | real-time PCR | eng |
dc.subject | HPV | eng |
dc.subject | DNA | eng |
dc.subject | Nucleotides | eng |
dc.subject | Cervical cancer | eng |
dc.title | Detección, discriminación y cuantificación de pequeñas secuencias de nucleótidos por Espectroscopía Infrarroja por Transformada de Fourier (FTIR) en la identificación molecular del Virus Del Papiloma Humano | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G. medicina Key Molecular Events in Cervical Cancer Development. 2019 [cited 2020 Aug 23]; Available from: www.mdpi.com/journal/medicina | eng |
dcterms.references | Subramanya D, Grivas PD. HPV and cervical cancer: Updates on an established relationship. Postgrad Med. 2008;120(4):7–13. DOI: 10.3810/pgm.2008.11.1928 | eng |
dcterms.references | Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet [Internet]. 2019;393(10167):169–82. Available from: http://dx.doi.org/10.1016/S0140- 6736(18)32470-X | eng |
dcterms.references | Genética. Un enfoque conceptual | Acceso a Material Complementario del Estudiante [Internet]. [cited 2020 Aug 23]. Available from: https://www.medicapanamericana.com/materialesComplementarios/PierceEst/Pierce.a spx | spa |
dcterms.references | Olusola P, Banerjee HN, Philley J V., Dasgupta S. Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells [Internet]. 2019 Jun 21 [cited 2020 Aug 23];8(6):622. Available from: /pmc/articles/PMC6628030/?report=abstract | eng |
dcterms.references | Mateos-Lindemann ML, Pérez-Castro S, Rodríguez-Iglesias M, Pérez-Gracia MT. Microbiological diagnosis of human papilloma virus infection. Enferm Infecc Microbiol Clin [Internet]. 2017;35(9):593–602. Available from: http://dx.doi.org/10.1016/j.eimc.2016.05.008 | eng |
dcterms.references | Li W, Padilla C, Gutierrez E, Hijar G. Detección molecular y genotipificación de virus del papiloma humano como tamizaje de cáncer de cuello uterino: Posibilidades en el contexto peruano. Bol del Inst Nac Salud [Internet]. 2016;22(5):22–8. Available from: http://repositorio.ins.gob.pe/handle/INS/907 | spa |
dcterms.references | Cruz L. IMPLEMENTACIÓN DE UN SENSOR ÓPTICO EN LA IDENTIFICACIÓN BACTERIANA. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA; 2019. Available from: https://hdl.handle.net/20.500.12371/4633 | spa |
dcterms.references | Vargas V. La asociación de la microbiota, virus del papiloma humano y cáncer cervicouterino. Rev Hosp Jua Mex [Internet]. 2018;85(1):6–8. Available from: www.medigraphic.com/pdfs/juarez/ju-2018/ju181b.pdf | spa |
dcterms.references | Ramirez-Pineda AT, González MI, Castañeda-Vanegas KM, Agudelo-Fernández MC, López-Urán C, Sánchez-Vásquez GI. Filogenia y oncogénesis del virus del papiloma humano: una aproximación translacional al descubrimiento de biomarcadores para la detección de lesiones precancerosas de cérvix. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat. 2019;43(168):351–65. Available from: http://dx.doi.org/10.18257/raccefyn.792. | spa |
dcterms.references | Rymsza T, Ribeiro EA, de Carvalho LF das CES, Bhattacharjee T, de Azevedo Canevari R. Human papillomavirus detection using PCR and ATR-FTIR for cervical cancer screening. Spectrochim Acta A Mol Biomol Spectrosc [Internet]. 2018 May 5 [cited 2020 Aug 4];196:238–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29454252 | eng |
dcterms.references | Piñeros M, Parkin DM, Ward K, Chokunonga E, Ervik M, Farrugia H, et al. Essential TNM: a registry tool to reduce gaps in cancer staging information. Lancet Oncol [Internet]. 2019;20(2):e103–11. Available from: http://dx.doi.org/10.1016/S1470- 2045(18)30897-0 | eng |
dcterms.references | Vega MQ, Gómez JFC, Bastidas M, Márquez L, Pons JP. Detección y tipificación de virus del papiloma humano (VPH) mediante PCR- RFLP. Rev Obstet Ginecol Venez. 2008;68(1):25–31. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0048-77322008000100006 | spa |
dcterms.references | Achig N. CORRELACION DIAGNOSTICA ENTRE LOS RESULTADOS CITOLOGICOS POR PAPTEST Y LOS RESULTADOS DE PCR EN TIEMPO REAL DEL VIRUS DEL HPV DE ALTO RIESGO REALIZADOS A MUJERES DE ENTRE 30 A 60 AÑOS QUE ACUDEN AL HOSPITAL CARLOS ANDRADE MARIN EN EL PERIODO ENEROMARZO . Proy Univ Cent DEL ECUADOR Fac CIENCIAS MÉDICAS CARRERA [Internet]. 2016;23(45):5–24. Available from: http://www.dspace.uce.edu.ec/handle/25000/8092 | spa |
dcterms.references | Martínez N, Martín MC, Herrero A, Fernández M, Alvarez MA, Ladero V. QPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends Food Sci Technol. 2011;22(7):367–76. Available from: DOI: 10.1016/j.tifs.2011.04.004 | eng |
dcterms.references | Wittwer CT, Makrigiorgos GM. Nucleic Acid Techniques [Internet]. Principles and Applications of Molecular Diagnostics. Elsevier Inc.; 2018. 47–86 p. Available from: http://dx.doi.org/10.1016/B978-0-12-816061-9.00004-7 | eng |
dcterms.references | Mata-Miranda MM, Guerrero-Robles CI, Rojas-López M, Delgado-Macuil RJ, GonzálezDíaz CA, Sánchez-Monroy V, et al. Principal components by FTIR spectroscopy as innovative characterization technique during differentiation of pluripotent stem cells to pancreatic cells. Rev Mex Ing Biomed. 2017;38(1):225–34. https://doi.org/10.17488/rmib.38.1.17. | eng |
dcterms.references | Barraza G, Martinez-martinez A. Transformada De Fourier ( Ftirm ) En El Estudio De. 2012;(October 2014). Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0370- 59432013000300001 | spa |
dcterms.references | Rodrigues RPCB, Aguiar EMG, Cardoso-sousa L, Caixeta DC, Guedes CCF V, Siqueira WL, et al. Differential Molecular Signature of Human Saliva Using ATR-FTIR Spectroscopy for Chronic Kidney Disease Diagnosis. Braz Dent J [Internet]. 2019;30:437–45. Available from: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-64402019000500437 | eng |
dcterms.references | Kowalczuk D, Pitucha M. Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials. Materials (Basel). 2019;12(18). Doi: 10.3390/ma12182972 | eng |
dcterms.references | J Bowden S, Kyrgiou M. Human papillomavirus. Obstet Gynaecol Reprod Med [Internet]. 2020;30(4):109–18. Available from: https://doi.org/10.1016/j.ogrm.2020.02.003 | eng |
dcterms.references | Feemster K. OMS | Virus del papiloma humano. In: Robert M. Kliegman, MD, Joseph St. Geme, MD, Nathan Blum, Samir S. Shah and Robert C. Tasker, MA, MD M, editor. Nelson Tratado de pediatría [Internet]. 21.a Edici. Elsevier España, S.L.U.; 2020 [cited 2020 Aug 14]. p. 1747–52. Available from: https://www.who.int/biologicals/areas/human_papillomavirus/en/ | eng |
dcterms.references | María-ortiz JS, Álvarez-silvares E, Bermúdez-gonzález M, Lavandeira SG, Mosquera MP, Cambeiro BC. Importancia de los márgenes quirúrgicos afectados en la conización uterina cervical Importance of surgical margins affected in cervical uterine conization . 2020;88(9):586–97. Available from: https://www.medigraphic.com/pdfs/ginobsmex/gom2020/gom209d.pdf | spa |
dcterms.references | Medina Magües LG. Genotipificación del Virus del Papiloma Humano mediante secuenciamiento y PCR cuantitativa en tiempo real y detección de variantes intratípicas por análisis filogenético. Esc Super Politécnica del Litoral [Internet]. 2015;131. Available from: https://www.dspace.espol.edu.ec/bitstream/123456789/29767/1/TESIS-ESPOLLex Medina.pdf | spa |
dcterms.references | Vitriago-Rendón AM, Aguilar-Mejía MS, Michelli-Gago PJ, Celaya Linaza J, Gutiérrez C. Evaluación de la expresión de ARNm de genes virales E2, E6 y E7 como marcadores predictivos de progresión en lesiones producidas por VPH 16. Invest Clin. 2018;59(4):302–17. DOI: 10.22209/IC.v59n4a02. | spa |
dcterms.references | Wendland EM, Villa LL, Unger ER, Domingues CM, Benzaken AS, Maranhão AGK, et al. Prevalence of HPV infection among sexually active adolescents and young adults in Brazil: The POP-Brazil Study. Sci Rep. 2020;10(1):1–10. DOI: 10.1038/s41598-020- 61582-2. | eng |
dcterms.references | Ginsburg OM. Breast and cervical cancer control in low and middle-income countries: Human rights meet sound health policy. J Cancer Policy [Internet]. 2013;1:35–41. Available from: http://dx.doi.org/10.1016/j.jcpo.2013.07.002 | eng |
dcterms.references | Arroyo Andújar JD. Detección e Identificación de los virus del papiloma humano. Caracterización de dos nuevas variantes [Internet]. Universitat autonoma de Barcelona; 2015. Available from: https://www.tdx.cat/handle/10803/310595 | spa |
dcterms.references | Paho. Incorporación de LA PRUEBA DEL VIRUS DEL PAPILOMA HUMANO en PROGRAMAS DE PREVENCIÓN DE CÁNCER CERVICOUTERINO [Internet]. Manual de VPH. 2016. 9–17 p. Available from: http://www2.paho.org/hq/index.php?option=com_docman&task=doc_view&Itemid=270 &gid=36310&lang=es | spa |
dcterms.references | Isaza-ruget MA, Perez G, Morales-reyes OL, Deantonio-suárez R, Alvarado-heine C, Trujillo LM. EXACTITUD DEL TEST ADN-HPV PARA LA DETECCIÓN DE LA ENFERMEDAD CERVICAL DE ALTO GRADO ( NIC 2 + ) EN MUJERES CON ANORMALIDADES CITOLÓGICAS ( ASC-US Y LSIL ), AFILIADAS A LA SEGURIDAD SOCIAL EN BOGOTÁ ( COLOMBIA ) The accuracy of the HPV-DNA test for detect. 2009;60(3):213–22. DOI: https://doi.org/10.18597/rcog.326. | spa |
dcterms.references | Rojas Mendoza G, Córdova Uscanga C, Sánchez López J. Evaluación del estudio de Papanicolaou y la colposcopia en el diagnóstico de neoplasia intraepitelial cervical en la Unidad Especial Centro de Apoyo Diagnóstico San Rafael. Rev Espec MédicoQuirúrgicas [Internet]. 2012;17(2):76–80. Available from: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=35132 | spa |
dcterms.references | Trujillo Perdomo T de la C, Domínguez Bauta SR, Ríos Hernández M de los A, Menéndez MH. Prevalencia del virus del papiloma humano en mujeres con citología negativa. Rev Cuba Obstet y Ginecol. 2017;43(1):1–13. Available from: http://revginecobstetricia.sld.cu/index.php/gin/article/view/161 | spa |
dcterms.references | Millones Abanto J, Vega-Gonzales E. Papanicolaou and Visual Inspection With Acetic Acid in the Detection of Intraepithelial Injuries of High Grade of the Cervix. 2017;2(2):8– 13. Available from: http://ojs.revistamaternofetal.com/index.php/RISMF/article/view/29/29 | eng |
dcterms.references | Jesús M, Flores R, Elías R, Roncal O, Javier P, Mejía N, et al. ARTÍCULO ORIGINAL Utilidad de la citología e inspección visual con ácido acético en la detección de lesiones neoplásicas de cuello uterino Centro Médico Oncomujer 2013-2014 . Usefulness of cytology and visual inspection with acetic acid in the detection o. 2017;15–8. DOI: 10.24265/horizmed.2017.v17n4.03 | spa |
dcterms.references | Rojas-Zumaran V, Moya-Salazar J. The ecologization of the Papanicolaou stain in the diagnosis of cervical cancer. Rev Med Inst Mex Seguro Soc. 2018;56(3):217–25. Available from: https://pubmed.ncbi.nlm.nih.gov/30365481/ | eng |
dcterms.references | Schlichte MJ, Guidry J. Clinical Medicine Current Cervical Carcinoma Screening Guidelines. J Clin Med [Internet]. 2012;4:918–32. Available from: www.mdpi.com/journal/jcm | eng |
dcterms.references | Gray E, Butler HJ, Board R, Brennan PM, Chalmers AJ, Dawson T, et al. Health economic evaluation of a serum-based blood test for brain tumour diagnosis: Exploration of two clinical scenarios. BMJ Open. 2018;8(5). Doi: 10.1136/bmjopen2017-017593 | eng |
dcterms.references | Bellisola G, Sorio C. Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res. 2012;2(1):1–21. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236568/ | eng |
dcterms.references | Bhat AI, Rao GP. Real-Time Polymerase Chain Reaction. In 2020. p. 347–56. Available from: https://experiments.springernature.com/articles/10.1007/978-1-0716-0334-5_36 | eng |
dcterms.references | Bester R, Jooste AEC, Maree HJ, Burger JT. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafrollassociated associated virus 3 variant groups I, II, III and VI. Virol J. 2012;9. Available from: DOI: 10.1186/1743-422X-9-219 | eng |
dcterms.references | Zlotogorski-Hurvitz A, Dekel BZ, Malonek D, Yahalom R, Vered M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J Cancer Res Clin Oncol. 2019 Mar 13;145(3):685–94. DOI: 10.1007/s00432-018-02827-6 | eng |
dcterms.references | Canfell K. Towards the global elimination of cervical cancer. Papillomavirus Res [Internet]. 2019;8(March):100170. Available from: https://doi.org/10.1016/j.pvr.2019.100170 | eng |
dcterms.references | Andree KB, Fernández-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N, Garcés E, et al. Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the northwestern Mediterranean Sea. Appl Environ Microbiol. 2011;77(5):1651–9. | eng |
dcterms.references | Conte J, Potoczniak MJ, Tobe SS. Using synthetic oligonucleotides as standards in probe-based qPCR. Biotechniques. 2018;64(4):177–9. DOI: 10.2144/btn-2018-2000 | eng |
dcterms.references | Cousins MM, Donnell D, Eshleman SH. Impact of mutation type and amplicon characteristics on genetic diversity measures generated using a high-resolution melting diversity assay. J Mol Diagnostics [Internet]. 2013;15(1):130–7. Available from: http://dx.doi.org/10.1016/j.jmoldx.2012.08.008 | eng |
dcterms.references | Prado A. Evaluación de la técnica de análisis de fusión de alta resolución para la detección y genotipificación de los genogrupos humanos de sapovirus [Internet]. UNIVERSIDAD PERUANA CAYETANO HEREDIA; 2017. Available from: http://repositorio.upch.edu.pe/bitstream/handle/upch/713/Evaluacion_PradoMantilla_Ale xandra.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G, Botezat D, et al. Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials (Basel). 2019;12(18):1–40. DOI: 10.3390/ma12182884. | eng |
dcterms.references | Butler HJ, Brennan PM, Cameron JM, Finlayson D, Hegarty MG, Jenkinson MD, et al. Development of high-throughput ATR-FTIR technology for rapid triage of brain cancer. Nat Commun [Internet]. 2019;10(1):1–9. Available from: http://dx.doi.org/10.1038/s41467-019-12527-5 | eng |
dcterms.references | Downes A, Mouras R, Elfick A. Optical spectroscopy for noninvasive monitoring of stem cell differentiation. J Biomed Biotechnol. 2010;2010. DOI: 10.1155/2010/101864. | eng |
dcterms.references | Elliott DA, Nabavizadeh N, Seung SK, Hansen EK, Holland JM. Radiation therapy [Internet]. Oral, Head and Neck Oncology and Reconstructive Surgery. Elsevier Inc.; 2017. 268–290 p. Available from: http://dx.doi.org/10.1016/B978-0-323-26568-3.00013- 0 | eng |
dcterms.references | Macho S. METODOLOGÍAS ANALÍTICAS BASADAS EN ESPECTROSCOPIA DE INFRARROJO Y CALIBRACIÓN MULTIVARIANTE. APLICACIÓN A LA INDUSTRIA PETROQUÍMICA. Departamento de Química Analítica y Química Orgánica. Universidad Rovita I Virgili [Internet]. UNIVERSITAT ROVIRA I VIRGILI; 2002. Available from: https://www.tdx.cat/bitstream/handle/10803/8981/tesis_smacho.pdf;jsessionid=0063E5 43D30134F73B9672014241E0E7.tdx1?sequence=1 | spa |
dcterms.references | Purandare NC, Trevisan J, Patel II, Gajjar K, Mitchell AL, Theophilou G, et al. Exploiting biospectroscopy as a novel screening tool for cervical cancer: towards a framework to validate its accuracy in a routine clinical setting. Bioanalysis. 2013;5(21):2697–711. https://doi.org/10.4155/bio.13.233. | eng |
dcterms.references | Olea O. CARACTERIZACION POR FTIR Y TECNICAS ANALITICAS NUCLEARES DE PELICULAS DE CNx ELABORADAS POR ABLACION LASER. Universidad Autónoma del Estado de México; 2003. Available from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/35/057/35057949.pdf | eng |
dcterms.references | Ghomi M, Letellier R, Taillandier E. Particular behavior of the adenine and guanine ringbreathing modes upon the DNA conformational transitions. Biochimie. 1988;70(6):841– 6. Available from: https://doi.org/10.1016/0300-9084(88)90116-2 | eng |
dcterms.references | Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Vol. 8, Infrared Spectroscopy: Fundamentals and Applications. 2005. 1–224 p. Available from: https://www.wiley.com/enus/Infrared+Spectroscopy%3A+Fundamentals+and+Applications-p-9780470854280 | eng |
dcterms.references | Khanmohammadi M, Garmarudi AB. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. TrAC - Trends Anal Chem [Internet]. 2011;30(6):864–74. Available from: http://dx.doi.org/10.1016/j.trac.2011.02.009 | eng |
dcterms.references | Piqué TM, Vázquez A. Concreto y cemento: Investigación y desarrollo. Concreto y Cem Investig y Desarro [Internet]. 2012;3(2):62–71. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007- 30112012000100004&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Sahu RK, Argov S, Salman A, Huleihel M, Grossman N, Hammody Z, et al. Characteristic absorbance of nucleic acids in the Mid-IR region as possible common biomarkers for diagnosis of malignancy. Technol Cancer Res Treat. 2004;3(6):629–38. Available from: https://doi.org/10.1177/153303460400300613 | eng |
dcterms.references | Ghimire H, Venkataramani M, Bian Z, Liu Y, Perera AGU. ATR-FTIR spectral discrimination between normal and tumorous mouse models of lymphoma and melanoma from serum samples. Sci Rep [Internet]. 2017;7(1):1–9. Available from: http://dx.doi.org/10.1038/s41598-017-17027-4 | eng |
dcterms.references | Roy S, Perez-Guaita D, Bowden S, Heraud P, Wood BR. Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy. Clin Spectrosc [Internet]. 2019;1(December 2019):100001. Available from: https://doi.org/10.1016/j.clispe.2020.100001 | eng |
dcterms.references | Tipos de papilomavirus humanos y sus asociaciones con otras enfermedades [Internet]. [cited 2020 Aug 14]. Available from: https://www.elsevier.com/eses/connect/medicina/tipos-de-papilomavirus-humanos-y-sus-asociaciones-con-otrasenfermedades | spa |
dcterms.references | De Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol. 2018;47:2–13. DOI: 10.1016/j.bpobgyn.2017.08.015 | eng |
dcterms.references | Salazar C. GENOTIPIFICACIÓN DE 23 CEPAS DE HPV EN MUJERES DE 25 A 65 AÑOS QUE ACUDIERON AL HOSPITAL GINECO OBSTÉTRICO PEDIÁTRICO DE NUEVA AURORA LUZ ELENA ARISMENDI (HGOPNA) DURANTE EL PERIODO DE ENERO A DICIEMBRE DE 2018. PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR; 2020. Available from: http://repositorio.puce.edu.ec/handle/22000/17507 | spa |
dcterms.references | Santos-López G, Márquez-Domínguez L, Reyes-Leyva J, Vallejo-Ruiz V. Temas de actualidad Aspectos generales de la estructura, la clasificación y la replicación del virus del papiloma humano [Internet]. [cited 2020 Aug 14]. Available from: http://viralzone.expasy.org/. | spa |
dcterms.references | Biología del Virus del Papiloma Humano y técnicas de diagnóstico | Medicina Universitaria [Internet]. [cited 2020 Aug 14]. Available from: https://www.elsevier.es/esrevista-medicina-universitaria-304-articulo-biologia-del-virus-del-papiloma- X1665579610901659 | spa |
dcterms.references | Perez Jiménez JM. Detección y Genotipificación del Virus Papiloma Humano (VPH) en población masculina del departamento de Sucre [Internet]. Universidad de Sucre; 2017. Available from: http://unisucre-repositorio.metabiblioteca.org/handle/001/579 | spa |
dcterms.references | Guan J, Bywaters SM, Brendle SA, Lee H, Ashley RE, Christensen ND, et al. The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-electron Microscopy. J Virol. 2015;89(23):12108–17. Doi: 10.1128/JVI.02020-15 | eng |
dcterms.references | González F, Carbonell Z, Vergara C, Ochoa D. PREVALENCIA Y CARACTERIZACIÓN GENOTÍPICA DEL VIRUS DEL PAPILOMA HUMANO EN ALTERACIONES POTENCIALMENTE MALIGNAS Y CÁNCER ORAL EN CARTAGENA. ESTUDIO MULTICENTRO. [Internet]. Vol. 1. UNIVERSIDAD DE CARTAGENA FACULTAD; 2017. Available from: https://pdfs.semanticscholar.org/81d2/788065860c038457934f723aaf004a71a99f.pdf | spa |
dcterms.references | Alvarez Paredes L. Caracterización de la infección cervical por el virus papiloma humano. Aplicación de nuevas técnicas de microbiología molecular en el estudio de la infección por el genotipo 16 [Internet]. UNIVERSITAS MIGUEL HERNANDEZ DE ELCHE; 2017. Available from: https://dialnet.unirioja.es/servlet/tesis?codigo=136350 | spa |
dcterms.references | Villafuerte Reinante J, Hernández Guerra Y, Ayala Reina ZE, Naranjo Hernández L, González Alonso JÁ, Brito Méndez M. Aspectos bioquímicos y factores de riesgo asociados con el cáncer cervicouterino. Rev Finlay [Internet]. 2019;9(2):138–46. Available from: http://www.revfinlay.sld.cu/index.php/finlay/article/view/635 | spa |
dcterms.references | De Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur Hausen H. Classification of papillomaviruses. Virology [Internet]. 2004;324(1):17–27. Available from: https://pubmed.ncbi.nlm.nih.gov/15183049/ | eng |
dcterms.references | Trujillo E, Morales N, Buitrago O, Posso H, Bravo MM. Distribución de los genotipos del virus del papiloma humano en mujeres de Bogotá con anomalías en la citología cervicouterina. Rev Colomb Cancerol [Internet]. 2016;20(1):3–9. Available from: https://www.elsevier.es/es-revista-revista-colombiana-cancerologia-361-articulodistribucion-genotipos-del-virus-del-S0123901515000955 | spa |
dcterms.references | Lara Peñaranda R. “Estudio de la profundidad de conización mediante LLETZ y la persistencia de lesión precursora de cáncer de cérvix y de infección por VPH postconización” [Internet]. Universidad Católica San Antonio; 2020. Available from: http://repositorio.ucam.edu/handle/10952/4487 | spa |
dcterms.references | Diaz N. DETERMINACIÓN Y ANÁLISIS DE LA INTEGRACIÓN DEL VIRUS DEL PAPILOMA HUMANO 16 EN EL GENOMA DE PACIENTES DIAGNOSTICADOS CON CÁNCER Y SU POSIBLE RELACIÓN CON LA ETIOLOGÍA DE LA ENFERMEDAD. UNIVERSIDAD ICESI FACULTAD; 2016. Available from: http://repository.icesi.edu.co/biblioteca_digital/handle/10906/81095 | spa |
dcterms.references | Lozano L. Diagnóstico de los Carcinomas Orofaríngeos Relacionados con el Virus del Papiloma Humano (VPH): Detección Viral mediante Técnicas Comerciales de uso Clínico y Análisis de su Valor Pronóstico [Internet]. All rights reserved. IJES. UNIVERSIDAD DE MURCIA; 2019. Available from: http://hdl.handle.net/10201/72623 | spa |
dcterms.references | Santos JMO, da Silva SP, Costa NR, Gil da Costa RM, Medeiros R. The role of microRNAs in the metastatic process of high-risk HPV-induced cancers. Cancers (Basel). 2018;10(12):1–15. Doi: 10.3390/cancers10120493 | eng |
dcterms.references | Guerrero A, Guerrero M. MicroRNAs asociados al Cáncer de Cuello Uterino y sus lesiones precursoras: Una revisión sistemática MicroRNAs associated with Cervical Cancer and its precursor lesions: A systematic Review. Rev Univ y Salud. 2016;28(2):1–26. Available from: http://www.scielo.org.co/pdf/reus/v18n2/v18n2a15.pdf | spa |
dcterms.references | Melo IM, Ribeiro E, Canevari R. Potential Diagnostic Techniques for Cervical Cancer Prevention - Review. J Cancer Treat Diagnosis. 2018;2(6):10–6. Available from: https://www.cancertreatmentjournal.com/articles/potential-diagnostic-techniques-forcervical-cancer-prevention--review.html | eng |
dcterms.references | Overbergh L, Vig S, Coun F, Mathieu C. Quantitative Polymerase Chain Reaction [Internet]. Molecular Diagnostics: Third Edition. Elsevier Ltd; 2017. 41–58 p. Available from: http://dx.doi.org/10.1016/B978-0-12-802971-8.00004-3 | eng |
dcterms.references | Varga A, James D. Real-time RT-PCR and SYBR Green I melting curve analysis for the identification of Plum pox virus strains C, EA, and W: Effect of amplicon size, melt rate, and dye translocation. J Virol Methods. 2006 Mar 1;132(1–2):146–53. DOI: 10.1016/j.jviromet.2005.10.004 | eng |
dcterms.references | Maddocks S, Jenkins R. Quantitative PCR: Things to Consider. Underst PCR [Internet]. 2017;45–52. Available from: https://www.sciencedirect.com/science/article/pii/B9780128026830000046 | eng |
dcterms.references | Hernández L, García S, Nataren H, Espinoza L, Carmen L, Oliva C, et al. Near infrared spectroscopy (NIRS) in following the maturity of cultivation of sugar cane (Saccharum spp.). Agro Product. 12:107–13. Available from: https://www.cabdirect.org/cabdirect/abstract/20203345294 | eng |
dcterms.references | Ling S, Moebs W, Sanny J. 16.2 Plane Electromagnetic Waves - University Physics Volume 2 | OpenStax [Internet]. OpenStax. 2016 [cited 2020 Sep 10]. Available from: https://openstax.org/books/university-physics-volume-2/pages/preface | eng |
dcterms.references | López Veloza JD. Estudio comparativo para la selección del detector de un prototipo de espectrofotómetro de luz visible [Internet]. UNIVERSIDAD CENTRAL DEL ECUADOR; 2019. Available from: http://www.dspace.uce.edu.ec/handle/25000/18787 | spa |
dcterms.references | Ventura JF. Desarrollo de métodos analíticos medioambientales sostenible por espectrofotometría FTIR [Internet]. Vol. 21, Univerisdad de Valencia. 2006. 1–49 p. Available from: https://doi.org/10.1080/00102208008946937 | spa |
dcterms.references | Tsakogiannis D, Papacharalampous M, Toska E, Kyriakopoulou Z, Dimitriou TG, Ruether IGA, et al. Duplex Real-time PCR assay and SYBR green I melting curve analysis for molecular identification of HPV genotypes 16, 18, 31, 35, 51 and 66. Mol Cell Probes [Internet]. 2015;29(1):13–8. Available from: http://dx.doi.org/10.1016/j.mcp.2014.09.003 | eng |
dcterms.references | Tajmir-Riahi HA, N’Soukpoé-Kossi CN, Joly D. Structural analysis of protein-DNA and protein-RNA interactions by FTIR, UV-visible and CD spectroscopic methods. Spectroscopy. 2009;23(2):81–101. Available from: https://doi.org/10.3233/SPE-2009- 0371 | eng |
dcterms.references | Garip S, Bayari SH, Severcan M, Abbas S, Lednev IK, Severcan F. Structural effects of simvastatin on rat liver tissue: Fourier transform infrared and Raman microspectroscopic studies. J Biomed Opt. 2016;21(2):025008. DOI: 10.1117/1.jbo.21.2.025008 | eng |
dcterms.references | Palencia M. Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions. J Adv Res [Internet]. 2018;14:53–62. Available from: https://doi.org/10.1016/j.jare.2018.05.009 | eng |
dcterms.references | De Oviedo U, Capel LJ. Máster En Ciencias Analíticas Y Bioanalíticas Estudio Del Grado De Madurez Y/O Conservación De Tomates Empleando Técnicas Espectroscópicas Moleculares. 2012. Available from: https://digibuo.uniovi.es/dspace/bitstream/handle/10651/4196/TFM_LauraJuradoCapel. pdf?sequence=6 | eng |
dcterms.references | Cascant M. Nuevos desafíos en espectroscopia vibracional. Universitat De Valencia; 2017. Available from: https://dialnet.unirioja.es/servlet/tesis?codigo=180554 | spa |
dcterms.references | Avila R. “USO DE LAS ESPECTROSCOPIAS ÓPTICAS Y MÉTODOS MULTIVARIANTES APLICADOS AL ANÁLSIS DE MUESTRAS BIOLÓGICAS.” UNIVERSIDAD AUTÓNOMA DE SAN LUÍS POTOSÍ; 2010. Available from: http://ciep.ing.uaslp.mx/electrica/egresados.php | spa |
dcterms.references | Milosevic M. Internal reflection and ATR spectroscopy. Vol. 39, Applied Spectroscopy Reviews. 2004. 365–384 p. Available from: https://doi.org/10.1081/ASR-200030195 | eng |
dcterms.references | MESA TÉLLEZ C. Aplicaciones De La Espectroscopía Infrarroja En El Análisis De Alimentos. Trab Fin Grado [Internet]. 2019;5. Available from: https://idus.us.es/bitstream/handle/11441/91690/TÉLLEZ MESA%2C CLARA.pdf?sequence=1&isAllowed=y | spa |
dcterms.references | Córsico B, Falomir Lockhart LJ, Franchini GR, Scaglia N. Análisis estructural y funcional de macromoléculas. Primera ed. Plata E de la U de La, editor. Análisis estructural y funcional de macromoléculas. La Plata; 2013. 1–413 p. Available from: https://libros.unlp.edu.ar/index.php/unlp/catalog/book/74 | spa |
dcterms.references | Mudunkotuwa IA, Minshid A Al, Grassian VH. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst. 2014;139(5):870–81. Available from: https://pubs.rsc.org/en/content/articlelanding/2014/an/c3an01684f#!divAbstract | eng |
dcterms.references | Douglas A. Skoog. Principios de Análisis Instrumental. SEXTA EDIC. Cervantes S, editor. México, D.F; 2008. 1063 p. Available from: https://www.academia.edu/37326567/Principios_de_an%C3%A1lisis_instrumental_6ta_ Edici%C3%B3n_Douglas_A_Skoog_LIBROSVIRTUAL | spa |
dcterms.references | Pretsch E, Bühlmann P, Badertscher M. Structure determination of organic compounds: Tables of spectral data. Structure Determination of Organic Compounds: Tables of Spectral Data. 2009. 1–433 p. Available from: https://www.springer.com/gp/book/9783540938101 | eng |
dcterms.references | Field LD, Sternhell S, Kalman JR. Organic Structures from Spectra. Vol. 40, Angewandte Chemie International Edition. 2001. 9823 p. Available from: https://www.wiley.com/en-us/Organic+Structures+from+Spectra%2C+4th+Edition-p9781119964612 | eng |
dcterms.references | McHale J. Molecular Spectroscopy, Second Edition [Internet]. Second edi. McHale J, editor. Molecular Spectroscopy, Second Edition. London: CRC press Taylor & Francis group; 2017. 1–477 p. Available from: http://www.taylorandfrancis.com | eng |
dcterms.references | Yong-Cheng N. Interpretation of infrared spectra. In: Yong-Cheng N, editor. Interpretation of organic spectra. first edit. Asia: John Wiley & Sons; 2011. p. 412. Available from:https://www.wiley.com/en-us/Interpretation+of+Organic+Spectra-p9780470825167 | eng |
dcterms.references | Lee LC, Jemain AA. Predictive modelling of colossal ATR-FTIR spectral data using PLS-DA: Empirical differences between PLS1-DA and PLS2-DA algorithms. Analyst. 2019;144(8):2670–8. Available from:https://doi.org/10.1039/C8AN02074D | eng |
dcterms.references | Theophilou G, Lima KMG, Martin-Hirsch PL, Stringfellow HF, Martin FL. ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: Classifying subtypes of human cancer. Analyst. 2016 Jan 21;141(2):585–94. DOI: 10.1039/c5an00939a | eng |
dcterms.references | Anal AS, Basadas T, Espectroscopia EN, Petroqu LAI. Metodologías analíticas basadas en espectroscopia de infrarrojo y calibración multivariante. aplicación a la industria petroquímica. 2002. Available from: https://www.tdx.cat/bitstream/handle/10803/107974/dzz1de1.pdf;jsessionid=7240920B8 44D19070EE392CC7954D7E8?sequence=1 | spa |
dcterms.references | Zontov Y V., Rodionova OY, Kucheryavskiy S V., Pomerantsev AL. PLS-DA – A MATLAB GUI tool for hard and soft approaches to partial least squares discriminant analysis. Chemom Intell Lab Syst [Internet]. 2020;203(March):104064. Available from: https://doi.org/10.1016/j.chemolab.2020.104064 | eng |
dcterms.references | Zhang SU. Classifying thermal degradation of polylactic acid by using machine learning algorithms trained on fourier transform infrared spectroscopy data. Appl Sci. 2020;10(21):1–13. Available from: https://doi.org/10.3390/app10217470 | eng |
dcterms.references | Ochoa Sosa MP, Polo Rivero KE. PREVALENCIA DE GENOTIPOS DE VIRUS DEL PAPILOMA HUMANO EN MUJERES DE LA POBLACIÓN ESTUDIANTIL DE LA UNIVERSIDAD SIMÓN BOLÍVAR DURANTE EL PERIODO 2017-1. Universidad Simón Bolívar; 2017. Available from: https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=0000000000 9567 | eng |
dcterms.references | Mathlouthi M, Seuvre AM. FTIR AND LASER-RAMAN SPECTRA OF ADENINE AND ADENOSINE. Carbohydr Res. 1984;131:1–15. Available from: https://doi.org/10.1016/0008-6215(84)85398-7 | eng |
dcterms.references | Mathlouthi M, Seuvre AM, L. Koenig J. F.t.-i.r. and laser-Raman spectra of Guanine and Guanosine. Carbohydr Res. 1984;134(1):23–38. Available from: https://www.academia.edu/23439499/F_T_I_R_and_laser_raman_spectra_of_guanine_ and_guanosine | eng |
dcterms.references | Mathlouthi M, Seuvre AM, Koenig JL. F.T.-I.R. and laser-raman spectra of cytosine and cytidine. Carbohydr Res. 1986;146(1):1–13. DOI: 10.1016/0008-6215(86)85019-4 | eng |
dcterms.references | Talari ACS, Martinez MAG, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2017;52(5):456–506. Available from: https://doi.org/10.1080/05704928.2016.1230863 | eng |
dcterms.references | Mathlouthi M, Seuvre AM KJ. F.T.-I.R. AND LASER-RAMAN SPECTRA OF THYMINE AND THYMIDINE. Carbohydr Res. 1984;134:23–38. DOI: 10.1016/0008- 6215(86)85019-4 | eng |
dcterms.references | Movasaghi Z, Rehman S, Rehman IU. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–79. Available from: https://doi.org/10.1080/05704920701829043 | eng |
dcterms.references | Seuvre AM, Mathlouthi M. F.T.-I.R. spectra of oligo- and poly-nucleotides. Carbohydr Res [Internet]. 1987 [cited 2020 Aug 3];83–103. Available from: https://www.researchgate.net/publication/19727928_FT-IR_spectra_of_oligo- _and_poly-nucleotides | eng |
dcterms.references | Shimanouchi T, Tsuboi M, Kyogoku Y. Infrared Spectra of Nucleic Acids and Related Compounds. 2007;VII:435–98. Available from: https://doi.org/10.1002/9780470143537.ch12 | eng |
dcterms.references | Etzion Y, Linker R, Cogan U, Shmulevich I. Determination of protein concentration in raw milk by mid-infrared fourier transform infrared/attenuated total reflectance spectroscopy. J Dairy Sci [Internet]. 2004;87(9):2779–88. Available from: http://dx.doi.org/10.3168/jds.S0022-0302(04)73405-0 | eng |
dcterms.references | Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai). 2007;39(8):549–59. DOI: 10.1111/j.1745-7270.2007.00320.x | eng |
dcterms.references | Parachalil DR, Bruno C, Bonnier F, Blasco H, Chourpa I, Baker MJ, et al. Analysis of bodily fluids using vibrational spectroscopy: A direct comparison of Raman scattering and infrared absorption techniques for the case of glucose in blood serum. Analyst. 2019;144(10):3334–46. Available from: https://doi.org/10.1039/C9AN00125E | eng |
dcterms.references | Pavia D, Lampman G, George K, Vyvyan J. Introduction to Spectroscopy. Fifth Edit. MPS Limited, editor. Vol. 28, American Journal of Physics. Bellingham, Washington: Cengage Learning WCN:; 2015. 786 p. Available from: | eng |
dcterms.references | Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, et al. Developing and understanding biofluid vibrational spectroscopy: A critical review. Chem Soc Rev. 2016;45(7):1803–18. Available from: http://dl.iranchembook.ir/ebook/organicchemistry-2753.pdf | eng |
dcterms.references | Komal Kumar J, Devi Prasad AG. Fourier transform infrared spectroscopy an advanced technique for identification of biomolecules. Drug Invent Today. 2012;4(12):616–8. Available from: https://doi.org/10.1039/C5CS00585J | eng |
dcterms.references | Stuart BH. Infrared Spectroscopy of Biological Applications: An Overview. Encycl Anal Chem. 2012; Available from: https://doi.org/10.1002/9780470027318.a0208.pub2 | eng |
dcterms.references | Han Y, Han L, Yao Y, Li Y, Liu X. Key factors in FTIR spectroscopic analysis of DNA: The sampling technique, pretreatment temperature and sample concentration. Anal Methods. 2018;10(21):2436–43. Available from: https://doi.org/10.1039/C8AY00386F | eng |
dcterms.references | Dovbeshko GI, Gridina NY, Kruglova EB, Pashchuk OP. FTIR spectroscopy studies of nucleic acid damage. Talanta. 2000;53(1):233–46. Available from: DOI: 10.1016/s0039- 9140(00)00462-8 | eng |
dcterms.references | El-Mahdaoui L, Neault JF, Tajmir-Riahi HA. Carbohydrate-nucleotide interaction. The effects of mono- and disaccharides on the solution structure of AMP, dAMP, ATP, GMP, dGMP, and GTP studied by FTIR difference spectroscopy. J Inorg Biochem. 1997;65(2):123–31. Available from: https://doi.org/10.1016/S0162-0134(96)00097-9 | eng |
dcterms.references | Kotanen CN, Moussy FG, Carrara S, Guiseppi-elie A. Encyclopedia of Biophysics [Internet]. Encyclopedia of Biophysics. Springer, Berlin, Heidelberg; 2013. Available from: https://link.springer.com/referenceworkentry/10.1007%2F978-3-642-16712-6_112 | eng |
dcterms.references | Dovbeshko GI, Chegel VI, Gridina NY, Repnytska OP, Shirshov YM, Tryndiak VP, et al. Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolym - Biospectroscopy Sect. 2002;67(6):470–86. | eng |
dcterms.references | Missailidis S, Hester RE. FTIR spectra of deoxyoligonucleotide-nogalamycin complexes. Biospectroscopy [Internet]. 1995 Jan 1 [cited 2020 Aug 3];1(2):91–9. Available from: http://doi.wiley.com/10.1002/bspy.350010202 | eng |
dcterms.references | Chiavarino B, Crestoni ME, Fornarini S, Lanucara F, Lemaire J, Maitre P, et al. Infrared spectroscopy of isolated nucleotides. 1. The cyclic 3′,5′-adenosine monophosphate anion. Int J Mass Spectrom. 2008 Mar 1;270(3):111–7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851243/ | eng |
dcterms.references | Hollas M. MODERN SPECTROSCOPY Fourth Edition. Fourth Edi. John Wiley & Sons, Ltd. England; 2004. 452 p. Available from: https://www.wiley.com/enaf/Modern+Spectroscopy%2C+4th+Edition-p-9780470844168 | eng |
dcterms.references | Tiernan H, Byrne B, Kazarian SG. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim Acta A Mol Biomol Spectrosc [Internet]. 2020 Jun 22 [cited 2020 Aug 4];241:118636. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32610215 | eng |
dcterms.references | Santamaria R, Charro E, Zacarías A, Castro M. Vibrational spectra of nucleic acid bases and their Watson-Crick pair complexes. J Comput Chem. 1999;20(5):511–30. Available from: https://doi.org/10.1002/(SICI)1096-987X(19990415)20:5<511::AIDJCC4>3.0.CO;2-8 | eng |
dcterms.references | Taillandier E, Liquier J. Infrared spectroscopy of DNA. Methods Enzymol. 1992;211(C):307–35. DOI: 10.1016/0076-6879(92)11018-e | eng |
dcterms.references | Taillandier E, Liquier J. Vibrational Spectroscopy of Nucleic Acids. Handb Vib Spectrosc. 2006; Available from: https://doi.org/10.1002/0470027320.s8204 | eng |
dcterms.references | Lucio Gutiérrez JR. Aplicación de Métodos Quimiométricos para la Caracterización y Control de Calidad de Plantas Medicinales. Universitat Autonoma de Barcelona; 2012. Available from: https://www.tdx.cat/handle/10803/96257#page=1 | spa |
dcterms.references | Montaño D, Vargas J. ESTUDIO SOBRE LA UTILIZACION DE ESPECTROSCOPIA INFRARROJO PARA MEDIR LA CONCENTRACIÓN DE GLUCOSA EN SANGRE. UNIVERSIDAD AUTONOMA DE OCCIDENTE; 2009. Available from: https://red.uao.edu.co/bitstream/handle/10614/1150/TBM00278.pdf;jsessionid=655B19 B63B56E7A826CC8B721AAF8C87?sequence=3 | spa |
dcterms.references | Melo A A, Roa E I, Montenegro H S, Capurro V I, Roa S JC. Estudio comparativo de detección del virus papiloma humano (VPH) en muestras citológicas y biopsias de cuello uterino. Rev Med Chil. 2005;133(6):639–44. Available from: http://dx.doi.org/10.4067/S0034-98872005000600003 | spa |
dcterms.references | Liu P, Lu L, Xu M, Zhong H, Jia R, Su L, et al. A novel multiplex PCR for virus detection by melting curve analysis. J Virol Methods. 2018 Dec 1;262:56–60. DOI: 10.1016/j.jviromet.2018.09.010 | eng |
dcterms.references | Munoz M, Camargo M, Soto-De Leon SC, Sanchez R, Parra D, Pineda AC, et al. Human Papillomavirus Detection from Human Immunodeficiency Virus-Infected Colombian Women’s Paired Urine and Cervical Samples. PLoS One. 2013;8(2). | eng |
dcterms.references | Sultani M, Azad TM, Eshragian M, Shadab A, Naseri M, Eilami O, et al. Multiplex SYBR green real-time PCR assay for detection of respiratory viruses. Jundishapur J Microbiol [Internet]. 2015 Aug 1 [cited 2020 Nov 20];8(8). Available from: https://sites.kowsarpub.com/jjm/articles/59885.html | eng |
dcterms.references | Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for realtime PCR: Effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res [Internet]. 2007 Oct [cited 2020 Nov 20];35(19):e127. Available from: /pmc/articles/PMC2095797/?report=abstract | eng |
dcterms.references | Mamedov TG, Pienaar E, Whitney SE, TerMaat JR, Carvill G, Goliath R, et al. A fundamental study of the PCR amplification of GC-rich DNA templates. Comput Biol Chem. 2008;32(6):452–7. DOI: 10.1016/j.compbiolchem.2008.07.021 | eng |
dcterms.references | Keatley S, Botero A, Fosu-nyarko J, Pallant L, Northover A, Thompson RCA. International Journal for Parasitology : Parasites and Wildlife Species-level identification of trypanosomes infecting Australian wildlife by High-Resolution Melting - Real Time Quantitative Polymerase Chain Reaction ( HRM-qPCR ). Int J Parasitol Parasites Wildl [Internet]. 2020;13(August):261–8. Available from: https://doi.org/10.1016/j.ijppaw.2020.11.003 | eng |
dcterms.references | Smith CJ, Osborn AM. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol. 2009;67(1):6–20. Available from: https://doi.org/10.1111/j.1574-6941.2008.00629.x | eng |
dcterms.references | Burk RD, Harari A, Chen Z. Human papillomavirus genome variants. Virology [Internet]. 2013 Oct [cited 2020 Aug 4];445(1–2):232–43. Available from: /pmc/articles/PMC3979972/?report=abstract | eng |
dcterms.references | Albawardi A, Quddus MR, Al Awar S, Almarzooqi S. Frequency of rare and multi viral high-risk HPV types infection in cervical high grade squamous intraepithelial lesions in a non-native dominant middle eastern country: A polymerase chain reaction-based pilot study. Diagn Pathol. 2018;13(1):1–8. DOI: 10.1186/s13000-018-0716-x | eng |
dcterms.references | Zapata S, Mosquera D, Mejía L, Cruz L, Sánchez S, García M, et al. Estudios sobre el virus del papiloma humano en el Ecuador , parte II : memorias del simposio sobre el VPH y cáncer cervical , PUCE 2018. Rev científica Digit INSPILIP. 2019;3(1):1–15. DOI: https://doi.org/10.31790/inspilip.v3i1.70 | spa |
dcterms.references | Tazreiter M, Christian P, Schennach R, Grießer T, Coclite AM. Simple method for the quantitative analysis of thin copolymer films on substrates by infrared spectroscopy using direct calibration. Anal Methods. 2017;9(36):5266–73. https://doi.org/10.1039/C7AY01748K | eng |
dcterms.references | Mann D, Höweler U, Kötting C, Gerwert K. Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy. Biophys J. 2017 Jan 10;112(1):66–77. DOI: 10.1016/j.bpj.2016.11.3195 | eng |
dcterms.references | Paraskevaidi M, Morais CLM, Lima KMG, Ashton KM, Stringfellow HF, Martin-Hirsch PL, et al. Potential of mid-infrared spectroscopy as a non-invasive diagnostic test in urine for endometrial or ovarian cancer. Analyst. 2018;143(13):3156–63. DOI: 10.1039/c8an00027a | eng |
dcterms.references | Pereira Viana MR, Martins Alves Melo I, Pupin B, Raniero LJ, de Azevedo Canevari R. Molecular detection of HPV and FT-IR spectroscopy analysis in women with normal cervical cytology. Photodiagnosis Photodyn Ther [Internet]. 2020;29(November 2019):101592. Available from: https://doi.org/10.1016/j.pdpdt.2019.101592 | eng |
dcterms.references | Neves ACO, Silva PP, Morais CLM, Miranda CG, Crispim JCO, Lima KMG. ATR-FTIR and multivariate analysis as a screening tool for cervical cancer in women from northeast Brazil: A biospectroscopic approach. RSC Adv. 2016;6(102):99648–55. | eng |
dcterms.references | Pereira Viana MR, Martins Alves Melo I, Pupin B, Raniero LJ, de Azevedo Canevari R. Molecular detection of HPV and FT-IR spectroscopy analysis in women with normal cervical cytology. Photodiagnosis Photodyn Ther. 2020;29(November 2019):101592. DOI: 10.1016/j.pdpdt.2019.101592 | eng |
dcterms.references | Ildiz GO, Bayari S, Karadag A, Kaygisiz E. Complementary Diagnosis Tool for Autism Spectrum Disorder in Children and Adolescents. Molecules. 2020;25:2079–91. DOI: 10.3390/molecules25092079 | eng |
dcterms.references | Gautam R, Vanga S, Ariese F, Umapathy S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech Instrum [Internet]. 2015;2(1). Available from: http://dx.doi.org/10.1140/epjti/s40485-015-0018-6 | eng |
dcterms.references | Tafintsev D. Multivariate Classification Methods for Spectroscopic Data with Multiple Class Structure. Norwegian University of Life Sciences NMBU; 2016. https://nmbu.brage.unit.no/nmbuxmlui/bitstream/handle/11250/2449832/Tafintsev_2016.pdf?sequence=1&isAllowed=y | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |