Importance of high triglycerides levels between novel coronary risk factors

dc.contributor.authorBermúdez, Valmore
dc.contributor.authorSalazar, Juan
dc.contributor.authorCalvo, María
dc.contributor.authorMartínez, María
dc.contributor.authorAñez, Roberto
dc.contributor.authorRivas-Ríos, José
dc.contributor.authorChacín, Maricarmen
dc.contributor.authorHernández, Juan
dc.contributor.authorGraterol, Modesto
dc.contributor.authorRojas, Joselyn
dc.date.accessioned2018-03-13T15:33:45Z
dc.date.available2018-03-13T15:33:45Z
dc.date.issued2017-11
dc.description.abstractIntroduction: The analysis of new cardiovascular risk factors is under an extensive debate in the cardiology and metabolic research fields. Objective: To determine the main factors that contribute to the classification of individuals with higher coronary risk in the adult population from Maracaibo, Venezuela. Methods: A descriptive, cross-sectional study with multistage random sampling in 1379 individuals belonging to the Maracaibo City Metabolic Syndrome Prevalence Study (MMSPS) was performed. They were classified according to the coronary risk by Framingham-Wilson equation adapted to our population. The association between various risk factors was evaluated by ordinal logistic regression models. Results: 1,379 subjects (females 55.9%; n = 771) were evaluated, 66.2% (n = 913) were classified with low coronary risk. In univariate ( 2 = 112.35; p < 0.00001) and multivariate analysis [OR: 3.98 (2.39-6.63); p < 0.01], the main factors associated to be classified as the highest risk category were hypertriglyceridemia. Conclusion: There are several factors that should be included in predictive models use worldwide. The most important in our population were dyslipidemia such as hypertriglyceridemia, hyperlipoproteinemia (a) and insulin resistance.eng
dc.description.abstractIntroducción: El análisis de nuevos factores de riesgo cardiovascular constituye un tema de amplio debate en la investigación cardio-metabólica. Objetivo: Determinar los principales factores que contribuyen a la clasificación de sujetos en las categorías de mayor riesgo coronario en individuos adultos de la ciudad de Maracaibo, Venezuela. Métodos: Estudio descriptivo, trasversal con muestreo aleatorio multietapas en 1.379 individuos pertenecientes al Estudio de Prevalencia de Síndrome Metabólico de la Ciudad de Maracaibo (EPSMM). Estos fueron clasificaron de acuerdo con el riesgo coronario mediante la fórmula Framingham-Wilson adaptada para nuestra población. Se evaluó la asociación entre diversos factores de riesgo mediante un modelo de regresión logística ordinal. Resultados: Se evaluaron 1.379 sujetos (mujeres: 55,9%; n = 771), de los cuales un 66,2% (n = 913) fueron clasificados en riesgo coronario bajo. Tanto en el contexto univariante ( 2 = 112,35; p < 0,00001) como multivariante [OR: 3,98 (2,39-6,63); p < 0,01] el principal factor asociado para ser clasificado en las categorías de riesgo más elevado fue la hipertrigliceridemia. Conclusión: Existen numerosos factores que deberían ser incluidos en los modelos de predicción empleados en el mundo, en cuyo caso las dislipidemias: hipertrigliceridemia, hiperlipoproteinemia (a), e insulinorresistencia son las más importantes en nuestra población.spa
dc.identifier.issn23573260
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1861
dc.language.isoengspa
dc.publisherSociedad Colombiana de Cardiología y Cirugía Cardiovascular.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceRevista Colombiana de Cardiologíaspa
dc.sourceVol. 24, No.6 (2017)spa
dc.source.urihttp://www.elsevier.es/es-revista-revista-colombiana-cardiologia-203-articulo-importance-high-triglycerides-levels-between-S0120563317300396
dc.subjectLipidseng
dc.subjectInsulineng
dc.subjectRisk factorseng
dc.subjectPreventioneng
dc.subjectLípidosspa
dc.subjectInsulinaspa
dc.subjectFactores de riesgospa
dc.subjectPrevenciónspa
dc.titleImportance of high triglycerides levels between novel coronary risk factorseng
dc.title.alternativeImportancia de niveles elevados de triglicéridos entre los factores de riesgo coronario nuevosspa
dc.typearticlespa
dcterms.referencesMozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131:e29---322.eng
dcterms.referencesCooney MT, Dudina A, D’Agostino R, Graham IM. Cardiovascular risk-estimation systems in primary prevention: do they differ? Do they make a difference? Can we see the future. Circulation. 2010;122:300---10.eng
dcterms.referencesWang TJ. New cardiovascular risk factors exist, but are they clinically useful. Eur Heart J. 2008;29:441---4.eng
dcterms.referencesvan Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14:9.eng
dcterms.referencesBermudez V, Salazar J, Bello L, Rojas J, A˜nez R, Roque W, et al. Coronary Risk Estimation According to a Recalibrated Framingham-Wilson Score in the Maracaibo City Metabolic Syndrome Prevalence Study. J Cardiology. Photon. 2014;107:160---70.eng
dcterms.referencesBermúdez V, Rojas E, Salazar JJ, Bello L, Chávez M, A˜nez R, et al. Coronary risk estimation according to the Framingham-Wilson score: epidemiologic behavior of innovative cardio metabolic risk factors in the Maracaibo City. Int J Cardiovasc Res. 2013;2:4.eng
dcterms.referencesBermudez V, Paris-Marcano R, Cano C, Arráiz N, Amell A, Cabrera M, et al. The Maracaibo City Metabolic Syndrome Prevalence Study: Design and Scope. Am J Therapeutics. 2010;17: 288---94.eng
dcterms.referencesMarrugat J, D’Agostino R, Sullivan L, Elosua R, Wilson P, Ordovas J, et al. An adaptation of the Framingham coronary heart disease risk function to European Mediterranean areas. J Epidemiol Community Health. 2003;57:634---8.eng
dcterms.referencesLiu J, Hong Y, D’Agostino RB Sr, Wu Z, Wang W, Sun J, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA. 2004;291:2591---9.eng
dcterms.referencesIcaza G, Nú˜nez L, Marrugat J, Mujica V, Escobar MC, Jiménez AL, et al. Estimation of coronary heart disease risk in Chilean subjects based on adapted Framingham equations. Rev Med Chil. 2009;137:1273---82.eng
dcterms.referencesMéndez-Castellano H, De Méndez MC. Estratificación social y biología humana: método de Graffar modificado. Arch Ven Pueric Pediatr. 1986;49:93---104.spa
dcterms.referencesBermudez V, Torres Y, Apruzzese V, Martínez MS, Chávez M, Morillo J, et al. Alcohol drinking patterns in the adult population from the Maracaibo municipality, Zulia---Venezuela. Revista Latinoamericana de Hipertensión. 2014;9:21---8.eng
dcterms.referencesBermudez VJ, Rojas JJ, Córdova EB, A˜nez R, Toledo A, Aguirre MA, et al. International Physical Activity Questionnaire Overestimation is Ameliorated by Individual Analysis of the Scores. Am J Ther. 2013;20:448---58.eng
dcterms.referencesNational Committee on Detection, Evaluation, and Treatment of High Blood Pressure The fifth report of the Joint National Committee on Detection. Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med. 1993;153:154---83.eng
dcterms.referencesNHANES III reference manuals and reports. Hyattsville, MD: Centers for Disease Control and Prevention, 1996. Retrieved from: http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/ nchs/manuals/anthro.pdf.[9/18/2016].eng
dcterms.referencesFriedewald WT, Levy RI. Fredrickson DS Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499---502.eng
dcterms.referencesLevy JC, Matthews DR. Hermans MP Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21:2191---2.eng
dcterms.referencesWorld Health Organization (2003) The World Health Report 2003. Retrieved from: http://www.who.int/topics/ obesity/en/. [9/18/2016].eng
dcterms.referencesBermudez V, Rojas J, Salazar J, A˜nez R, Chávez-Castillo M, González R, et al. Optimal waist circumference cut-off point for multiple risk factor aggregation: results from the Maracaibo City Metabolic Syndrome Prevalence Study. Epidemiology Research International. 2014;2014:718571.eng
dcterms.referencesChamberlain JJ, Rhinehart AS, Shaefer CF, Neuman A. Diagnosis and management of diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2016;164:542---52.eng
dcterms.referencesAlberti K, Eckel R, Grundy S, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention: National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Circulation. 2009;120:1640---5.eng
dcterms.referencesLeino A, Impivaara O, Kaitsaari M, Järvisalo J. Serum concentrations of apolipoprotein A-I, apolipoprotein B, and lipoprotein(a) in a population sample. Clin Chem. 1995;41:1633---6.eng
dcterms.referencesBermudez V, Rojas J, Martínez MS, Apruzzese V, Chávez-Castillo M, González R, et al. Epidemiologic behavior and estimation of an optimal cut-off point for homeostasis model assessment-2 insulin resistance: a report from a venezuelan population. Int Sch Res Notices. 2014;2014:616271.eng
dcterms.referencesBermúdez V, Cabrera M, Mendoza L, Chávez M, Martínez MS, Rojas J, et al. Epidemiological behavior of high---sensitivity C-Reactive Protein (hs-CRP) in adult individuals in the Maracaibo city, Venezuela. Revista Latinoamericana de Hipertensión. 2013;8:16---24.eng
dcterms.referencesRuwanpathirana T, Owen A, Reid CM. Review on cardiovascular risk prediction. Cardiovasc Ther. 2015;33:62---70.eng
dcterms.referencesLloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121:1768---77.eng
dcterms.referencesCortes-Bergoderi M, Thomas RJ, Albuquerque FN, Batsis JA, Burdiat G, Perez-Terzic C, et al. Validity of cardiovascular risk prediction models in Latin America and among Hispanics in the United States of America: a systematic review. Rev Panam Salud Publica. 2012;32:131---9.eng
dcterms.referencesConroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987---1003.eng
dcterms.referencesRidker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score. JAMA. 2007;297:611---9.eng
dcterms.referencesSchnell O, Cappuccio F, Genovese S, Standl E, Valensi P, Ceriello A. Type 1 diabetes and cardiovascular disease. Cardiovasc Diabetol. 2013;12:156.eng
dcterms.referencesde Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation. 2014;130:1110---30.eng
dcterms.referencesDhananjayan R, Malati T, Brindha G, Kutala VK. Association of family history of type 2 diabetes mellitus with markers of endothelial dysfunction in South Indian population. Indian J Biochem Biophys. 2013;50:93---8.eng
dcterms.referencesDu SM, Ma GS, Li YP, Fang HY, Hu XQ, Yang XG, et al. Relationship of body mass index, waist circumference and cardiovascular risk factors in Chinese adult. Biomed Environ Sci. 2010;23:92---101.eng
dcterms.referencesMittendorfer B, Peterson LR. Cardiovascular consequences of obesity and targets for treatment. Drug Discov Today Ther Strateg. 2008;5:53---61.eng
dcterms.referencesVan Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875---80.eng
dcterms.referencesMathieu P, Lemieux I, Després JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther. 2010;87:407---16.eng
dcterms.referencesGast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One. 2012;7:e52036.eng
dcterms.referencesReaven G. Insulin resistance and coronary heart disease in nondiabetic individuals. Arterioscler Thromb Vasc Biol. 2012;32:1754---9.eng
dcterms.referencesMalaguarnera M, Vacante M, Russo C, Malaguarnera G, Antic T, Malaguarnera L, et al. Lipoprotein(a) in cardiovascular diseases. Biomed Res Int. 2013;2013:650989.spa
dcterms.referencesAssmann G, Schulte H, Funke H, von Eckardstein A. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J. 1998;19 Suppl M:M8---14.eng
dcterms.referencesNordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626---35.eng
dcterms.referencesKim EH, Lee JB, Kim SH, Jo MW, Hwang JY, Bae SJ, et al. Serum triglyceride levels and cardiovascular disease events in koreans. Cardiology. 2015;131:228---35.eng
dcterms.referencesSchwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65:2267---75.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones