Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population [version 1; referees: awaiting peer review]

dc.contributor.authorSalazar, Juan
dc.contributor.authorBermúdez, Valmore
dc.contributor.authorCalvo, María
dc.contributor.authorOlivar, Luis
dc.contributor.authorLuzardo, Eliana
dc.contributor.authorNavarro, Carla
dc.contributor.authorMencia, Heysa
dc.contributor.authorMartínez, María
dc.contributor.authorRivas-Ríos, José
dc.contributor.authorWilches-Durán, Sandra
dc.contributor.authorCerda, Marcos
dc.contributor.authorGraterol, Modesto
dc.contributor.authorGraterol, Rosemily
dc.contributor.authorGaricano, Carlos
dc.contributor.authorHernández, Juan
dc.contributor.authorRojas, Joselyn
dc.date.accessioned2018-03-02T16:22:06Z
dc.date.available2018-03-02T16:22:06Z
dc.date.issued2017-08-07
dc.description.abstractBackground: Insulin resistance (IR) evaluation is a fundamental goal in clinical and epidemiological research. However, the most widely used methods are difficult to apply to populations with low incomes. The triglyceride-glucose index (TGI) emerges as an alternative to use in daily clinical practice. Therefore the objective of this study was to determine an optimal cutoff point for the TGI in an adult population from Maracaibo, Venezuela. Methods: This is a sub-study of Maracaibo City Metabolic Syndrome Prevalence Study, a descriptive, cross-sectional study with random and multi-stage sampling. For this analysis, 2004 individuals of both genders ≥18 years old with basal insulin determination and triglycerides < 500 mg/dl were evaluated.. A reference population was selected according to clinical and metabolic criteria to plot ROC Curves specific for gender and age groups to determine the optimal cutoff point according to sensitivity and specificity.The TGI was calculated according to the equation: ln [Fasting triglyceride (mg / dl) x Fasting glucose (mg / dl)] / 2. Results: The TGI in the general population was 4.6±0.3 (male: 4.66±0.34 vs. female: 4.56±0.33, p=8.93x10 ). The optimal cutoff point was 4.49, with a sensitivity of 82.6% and specificity of 82.1% (AUC=0.889, 95% CI: 0.854-0.924). There were no significant differences in the predictive capacity of the index when evaluated according to gender and age groups. Those individuals with TGI≥4.5 had higher HOMA2-IR averages than those with TGI <4.5 (2.48 vs 1.74, respectively, p<0.001). Conclusions: The TGI is a measure of interest to identify IR in the general population. We propose a single cutoff point of 4.5 to classify individuals with IR. Future studies should evaluate the predictive capacity of this index to determine atypical metabolic phenotypes, type 2 diabetes mellitus and even cardiovascular risk in our population.eng
dc.identifier.issn20461402
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1763
dc.language.isoengspa
dc.publisherF1000 Research Ltd.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceF1000 Researcheng
dc.sourceVol. 6, No.1337 (2017)eng
dc.source.urihttps://f1000research.com/articles/6-1337/v1
dc.subjectBlood pressureeng
dc.subjectBody mass indexeng
dc.subjectCholesteroleng
dc.subjectDiabetes mellituseng
dc.subjectGlucose metabolismeng
dc.subjectInsulin resistanceeng
dc.subjectObesityeng
dc.subjectType 2 diabeteseng
dc.titleOptimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A cross-sectional study in a Venezuelan population [version 1; referees: awaiting peer review]eng
dc.typearticlespa
dcterms.referencesWilcox G: Insulin and insulin resistance. Clin Biochem Rev. 2005; 26(2): 19–39.eng
dcterms.referencesMorigny P, Houssier M, Mouisel E, et al.: Adipocyte lipolysis and insulin resistance. Biochimie. 2016; 125: 259–66.eng
dcterms.referencesPatel TP, Rawal K, Bagchi AK, et al.: Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev. 2016; 21(1): 11–23.eng
dcterms.referencesLuchsinger J: Insulin resistance, type 2 diabetes, and AD: cerebrovascular disease or neurodegeneration? Neurology. 2010; 75(9): 758–759.eng
dcterms.referencesRojas J, Bermúdez V, Leal E, et al.: Insulinorresistencia E Hiperinsulinemia Como Factores De Riesgo Para Enfermedad Cardiovascular. AVTF. 2008; 27(1): 30–40.eng
dcterms.referencesGastaldelli A: Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2011; 93(suppl 1): S60–S65.eng
dcterms.referencesRandle PJ, Garland PB, Hales CN, et al.: The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963; 1(7285): 785–789.eng
dcterms.referencesShulman GI: Cellular mechanisms of insulin resistance. J Clin Invest. 2000; 106(2): 171–6.eng
dcterms.referencesBorai A, Livingstone C, Kaddam I, et al.: Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol. 2011; 11(1): 158.eng
dcterms.referencesDeFronzo RA, Tobin JD, Andres R: Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979; 237(3): E214–223.eng
dcterms.referencesSingh B, Saxena A: Surrogate markers of insulin resistance: A review. World J Diabetes. 2010; 1(2): 36–47.eng
dcterms.referencesMatthews DR, Hosker JP, Rudenski AS, et al.: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7): 412–9.eng
dcterms.referencesBermudez V, Salazar J, Martínez MS, et al.: Prevalence and Associated Factors of Insulin Resistance in Adults from Maracaibo City, Venezuela. Adv Prev Med. 2016; 2016: 9405105.eng
dcterms.referencesSimental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F: The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008; 6(4): 299–304.eng
dcterms.referencesGuerrero-Romero F, Simental-Mendía LE, González-Ortiz M, et al.: The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010; 95(7): 3347–51.eng
dcterms.referencesBermúdez V, Marcano RP, Cano C, et al.: The Maracaibo city metabolic syndrome prevalence study: design and scope. Am J Ther. 2010; 17(3): 288–294.eng
dcterms.referencesWorld Health Organization: Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. Geneva: The Organization; 2000; 894: i–xii, 1–253.eng
dcterms.referencesHealth Statistics: NHANES III reference manuals and reports (CDROM). Hyattsville, MD: Centers for Disease Control and Prevention, 1996.eng
dcterms.referencesBermúdez V, Rojas J, Salazar J, et al.: Optimal Waist Circumference Cut-Off Point for Multiple Risk Factor Aggregation: Results from the Maracaibo City Metabolic Syndrome Prevalence Study. Epidemiol Res Int. 2014; 2014: 718571.eng
dcterms.referencesBermúdez V, Rojas J, Martínez MS, et al.: Epidemiologic Behavior and Estimation of an Optimal Cut-Off Point for Homeostasis Model Assessment- 2 Insulin Resistance: A Report from a Venezuelan Population. Int Sch Res Notices. 2014; 2014: 616271.eng
dcterms.referencesUnger G, Benozzi SF, Perruzza F, et al.: Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinol Nutr. 2014; 61(10): 533–40.eng
dcterms.referencesAkobeng AK: Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007; 66(5): 644–7.eng
dcterms.referencesDemler OV, Pencina MJ, D'Agostino RB Sr: Misuse of DeLong test to compare AUCs for nested models. Stat Med. 2012; 31(23): 2577–87.eng
dcterms.referencesBöhning D, Böhning W, Holling H: Revisiting Youden’s index as a useful measure of the misclassification error in meta-analysis of diagnostic studies. Stat Methods Med Res. 2008; 17(6): 543–54.eng
dcterms.referencesPerkins NJ, Schisterman EF: The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006; 163(7): 670–5.eng
dcterms.referencesSamson SL, Garber AJ: Metabolic syndrome. Endocrinol Metab Clin North Am. 2014; 43(1): 1–23.eng
dcterms.referencesLyssenko V, Jonsson A, Almgren P, et al.: Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008; 359(21): 2220–2232.eng
dcterms.referencesMiller M, Stone NJ, Ballantyne C, et al.: Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011; 123(20): 2292–2333.eng
dcterms.referencesEr LK, Wu S, Chou HH, et al.: Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS One. 2016; 11(3): e0149731.eng
dcterms.referencesDu T, Yuan G, Zhang M, et al.: Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014; 13(1): 146.eng
dcterms.referencesGuerrero-Romero F, Villalobos-Molina R, Jiménez-Flores JR, et al.: Fasting triglycerides and glucose index as a diagnostic test for insulin resistance in Young adults. Arch Med Rev. 2016; 47(5): 382–387.eng
dcterms.referencesIrace C, Carallo C, Scavelli FB, et al.: Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract. 2013; 67(7): 665–672.eng
dcterms.referencesVasques AC, Novaes FS, de Oliveira Mda S, et al.: TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011; 93(3): e98–e100.eng
dcterms.referencesLee SH, Han K, Yang HK, et al.: A novel criterion for identifying metabolically obese but normal weight individuals using the product of triglycerides and glucose. Nutr Diabetes. 2015; 5(4): e149.eng
dcterms.referencesLee SH, Yang HK, Ha HS, et al.: Changes in Metabolic Health Status Over Time and Risk of Developing Type 2 Diabetes: A Prospective Cohort Study. Medicine (Baltimore). 2015; 94(40): e1705.eng
dcterms.referencesAbbasi F, Reaven GM: Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol. Metabolism. 2011; 60(12): 1673–1676.eng
dcterms.referencesHosseini SM: Triglyceride-Glucose (TyG) Index Computation and Cut-Off. Acta Endo (Buc). 2015; 11(1): 130–131.eng
dcterms.referencesNavarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, et al.: Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Prev Med. 2016; 86: 99–105.eng
dcterms.referencesCuda G, Lentini M, Gallo L, et al.: Fasting triglycerides and glucose index in an unselected consecutive Italian population of outpatients. Riv Ital Med Lab. 2011; 7(4): 226–227.eng
dcterms.referencesMonickaraj F, Aravind S, Nandhini P, et al.: Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J Biosci. 2013; 38(1): 113–122.eng
dcterms.referencesLee SH, Kwon HS, Park YM, et al.: Predicting the Development of Diabetes Using the Product of Triglycerides and Glucose: The Chungju Metabolic Disease Cohort (CMC) Study. PLoS One. 2014; 9(2): e90430.eng
dcterms.referencesLee SH, Han K, Yang HK, et al.: Identifying subgroups of obesity using the product of triglycerides and glucose: the Korea National Health and Nutrition Examination Survey, 2008–2010. Clin Endocrinol (Oxf). 2014; 82(2): 213–220.eng
dcterms.referencesNavarro-González D, Sánchez-Íñigo L, Fernández-Montero A, et al.: TyG Index Change Is More Determinant for Forecasting Type 2 Diabetes Onset Than Weight Gain. Medicine (Baltimore). 2016; 95(19): e3646.eng
dcterms.referencesLee DY, Lee ES, Kim JH, et al.: Predictive value of triglyceride glucose index for the risk of incident diabetes: A 4-year retrospective longitudinal study. PLoS One. 2016; 11(9): e0163465.eng
dcterms.referencesSalazar J, Bermúdez V, Calvo M, et al.: Dataset 1 in: Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: A crosssectional study in a Venezuelan population. F1000Research. 2017.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
752.59 KB
Formato:
Adobe Portable Document Format
Descripción:
Formato Pdf texto completo
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones