Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]

dc.contributor.authorChacón, Gerardo
dc.contributor.authorRodríguez, Johel E.
dc.contributor.authorBermúdez, Valmore
dc.contributor.authorVera, Miguel
dc.contributor.authorHernández, Juan Diego
dc.contributor.authorVargas, Sandra
dc.contributor.authorPardo, Aldo
dc.contributor.authorLameda, Carlos
dc.contributor.authorMadriz, Delia
dc.contributor.authorBravo, Antonio J.
dc.date.accessioned2018-11-13T22:04:48Z
dc.date.available2018-11-13T22:04:48Z
dc.date.issued2018-07
dc.description.abstractBackground: The multi–slice computerized tomography (MSCT) is a medical imaging modality that has been used to determine the size and location of the stomach cancer. Additionally, MSCT is considered the best modality for the staging of gastric cancer. One way to assess the type 2 cancer of stomach is by detecting the pathological structure with an image segmentation approach. The tumor segmentation of MSCT gastric cancer images enables the diagnosis of the disease condition, for a given patient, without using an invasive method as surgical intervention. Methods: This approach consists of three stages. The initial stage, an image enhancement, consists of a method for correcting non homogeneities present in the background of MSCT images. Then, a segmentation stage using a clustering method allows to obtain the adenocarcinoma morphology. In the third stage, the pathology region is reconstructed and then visualized with a three–dimensional (3–D) computer graphics procedure based on marching cubes algorithm. In order to validate the segmentations, the Dice score is used as a metric function useful for comparing the segmentations obtained using the proposed method with respect to ground truth volumes traced by a clinician. Results: A total of 8 datasets available for patients diagnosed, from the cancer data collection of the project, Cancer Genome Atlas Stomach Adenocarcinoma (TCGASTAD) is considered in this research. The volume of the type 2 stomach tumor is estimated from the 3–D shape computationally segmented from the each dataset. These 3–D shapes are computationally reconstructed and then used to assess the morphopathology macroscopic features of this cancer. Conclusions: The segmentations obtained are useful for assessing qualitatively and quantitatively the stomach type 2 cancer. In addition, this type of segmentation allows the development of computational models that allow the planning of virtual surgical processes related to type 2 cancer.eng
dc.identifier.issn20461402
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2350
dc.language.isoengeng
dc.publisherF1000 Research Ltda.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceF1000 Researcheng
dc.sourceVol. 7, No.1098 (2018)spa
dc.source.urihttps://f1000researchdata.s3.amazonaws.com/manuscripts/18013/b79a3338-adf4-4ee7-bdb2-6cde1e2e3ced_14491_-_gerardo_chacon_v2.pdf?doi=10.12688/f1000research.14491.2&numberOfBrowsableCollections=14&numberOfBrowsableGateways=22eng
dc.subjectStomach tumoreng
dc.subjectType 2 cancereng
dc.subjectMedical imagingeng
dc.subjectMulti–slice computerized tomographyeng
dc.subjectImage enhancementeng
dc.subjectRegion growing methodeng
dc.subjectMarching cubeseng
dc.subjectThree-dimensional reconstructioneng
dc.titleComputational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]eng
dc.typearticleeng
dcterms.referencesRubin GD: Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology. 2014; 273(2 Suppl): S45–S74.eng
dcterms.referencesFlohr TG, Schaller S, Stierstorfer K, et al.: Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005; 235(3): 756–773.eng
dcterms.referencesGinat DT, Gupta R: Advances in computed tomography imaging technology. Annu Rev Biomed Eng. 2014; 16(1): 431–453.eng
dcterms.referencesPark SR, Lee JS, Kim CG, et al.: Endoscopic ultrasound and computed tomography in restaging and predicting prognosis after neoadjuvant chemotherapy in patients with locally advanced gastric cancer. Cancer. 2008; 112(11): 2368–2376.eng
dcterms.referencesHallinan JT, Venkatesh SK: Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response. Cancer Imaging. 2013; 13(2): 212–227.eng
dcterms.referencesBankman I: Handbook of Medical Imaging: Processing and analysis. Academic Press, San Diego, 2000.eng
dcterms.referencesAngelini ED, Laine AF, Takuma S, et al.: LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography. IEEE Trans Med Imaging. 2001; 20(6): 457–469.eng
dcterms.referencesNelson TR, Elvins TT: Visualization of 3D ultrasound data. IEEE Comput Graph Appl. 1993; 13(6): 50–57.eng
dcterms.referencesField MJ: Telemedicine: A Guide to Assessing Telecommunications in Health Care. Institute of Medicine, National Academy Press, Washington, 1996.eng
dcterms.referencesDICOM: Digital imaging and communication in medicine DICOM. NEMA Standards Publication, 1999.eng
dcterms.referencesFu KS, Mui JK: A survey on image segmentation. Pattern Recognit. 1981; 13(1): 3–16.eng
dcterms.referencesDuda R, Hart P, Stork D: Pattern Classification. Wiley-Interscience, New York, 2000.eng
dcterms.referencesKervrann C, Heitz F: Statistical deformable model-based segmentation of image motion. IEEE Trans Image Process. 1999; 8(4): 583–588.eng
dcterms.referencesMitchell SC, Lelieveldt BP, van der Geest RJ, et al.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging. 2001; 20(5): 415–423.eng
dcterms.referencesBorrmann R: [Geschwulste des margens]. In Henke F, and Lubarsch O, editors, Handbuch spez pathol anat und hist, Springer-Verlag, 1926; 864–871.eng
dcterms.referencesJapanese Gastric Cancer Association: Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011; 14(2): 101–112.eng
dcterms.referencesKajitani T: The general rules for the gastric cancer study in surgery and pathology. Part I. Clinical classification. Jpn J Surg. 1981; 11(2): 127–139.eng
dcterms.referencesPlan of Action for the Prevention and Control of NCDs in the Americas 2013-2019. Technical Report Washington DC, Pan American Health Organization, 2014.eng
dcterms.referencesSeventieth World Health Assembly: Technical Report Geneva, World Health Organization, Resolutions and Decisions Annexes, 2017.eng
dcterms.referencesSierra MS, Soerjomataram I, Antoni S, et al.: Cancer patterns and trends in Central and South America. Cancer Epidemiol. 2016; 44 Suppl 1: S23–S42.eng
dcterms.referencesLucchesi FR, Aredes ND: Radiology Data from The Cancer Genome Atlas Stomach Adenocarcinoma [TCGA-STAD] collection, 2016. The Cancer Imaging Archive.eng
dcterms.referencesClark K, Vendt B, Smith K, et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013; 26(6): 1045–1057.eng
dcterms.referencesJaffe CC: Imaging and genomics: is there a synergy? Radiology. 2012; 264(2): 329–331.eng
dcterms.referencesBravo: An image enhancement approach. Zenodo. 2018.eng
dcterms.referencesJähne B: Digital Image Processing-Concepts, Algorithms, and Scientific Applications. Springer, Berlin, 2 edition, 1993.eng
dcterms.referencesRoa F, Bravo A, Valery A: Automated characterization of bacteria in confocal microscope images. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage AK, 2008; 1–8.eng
dcterms.referencesBravo A, Medina R, Garreau M, et al.: An approach to coronary vessels detection in x-ray rotational angiography. In Müller C, Wong S, and La Cruz A, editors, IV Latin American Congress on Biomedical Engineering, Springer, 2007; 254–258.eng
dcterms.referencesBravo A, Medina R, Díaz JA: A clustering based approach for automatic image segmentation: An application to biplane ventriculograms. In Martínez J, Carrasco J, and Kittler J, editors, Progress in Pattern Recognition, Image Analysis and Applications, Springer, 2006; 316–325.eng
dcterms.referencesSchroeder W: The visualization toolkit: an object–oriented approach to 3D graphics. Kitware Clifton Park, N.Y, 2006.eng
dcterms.referencesAvila L, Kitware: The VTK User’s Guide. Kitware Inc, 2010.eng
dcterms.referencesSalomon D: Computer Graphics and Geometric Modeling. Springer Publishing Company, Incorporated, 2013.eng
dcterms.referencesLorensen WE, Cline HE: Marching cubes: A high resolution 3d surface construction algorithm. Comput Graph. 1987; 21(4): 163–169.eng
dcterms.referencesDice L: Measures of the amount of ecologic association between species. Ecology. 1945; 26(3): 297–302.eng
dcterms.referencesBravo A, Chacón G, Rodriguez J, et al.: Dice coefficient in MatLab (Version V1). Zenodo. 2018.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.19 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones