Prediction of Epitopes in the Proteome of Helicobacter pylori

dc.contributor.authorNavarro-Quiroz, Elkin
dc.contributor.authorNavarro-Quiroz, Roberto
dc.contributor.authorEspaña-Puccini, Pierine
dc.contributor.authorVillarreal, José Luis
dc.contributor.authorDíaz Perez, Anderson
dc.contributor.authorFernandez Ponce, Cecilia
dc.contributor.authorBilbao, Jorge
dc.contributor.authorVasquez, Lucy
dc.contributor.authorMendoza, Dary Luz
dc.date.accessioned2018-06-12T19:32:48Z
dc.date.available2018-06-12T19:32:48Z
dc.date.issued2018-06
dc.description.abstractHelicobacter pylori (H. pylori) is classified by the World Health Organization (WHO) as a group I carcinogen and is one of the most efficient human pathogens with over half of the world's population colonized by this gram-negative spiral bacterium. H. pylori can cause a chronic infection in the stomach during early childhood that persists throughout life due to diverse mechanisms of immune response evasion. H. pylori has several factors strongly associated with increased risk of disease such as toxins, adhesins, and chemoattractants, some of which are highly polymorphic, phase variable, and have different functions. Conventional treatments involve the use of antibiotics. However, treatment frequently fails due to the resistance H. pylori has progressively developed to antibiotics. This creates the need for different treatments made possible by identifying new therapeutic targets in the pathogen’s genome. The purpose of this study was an in silico prediction of T- and B- epitopes in H. pylori proteins. Twenty-two external membrane proteins from H. pylori Strain 26695 (accession number NC_000915) were identified using the web tool Vaxign (http://www.violinet.org/vaxign/). A total of one-hundred epitopes (60 class I epitopes and 40 class II epitopes) that could be used to develop novel non-antibiotics drugs for an H. pylori infection were predicted.eng
dc.identifier.issn19169744
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2123
dc.language.isoengeng
dc.publisherCanadian Center of Science and Educationeng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceGlobal Journal of Health Scienceeng
dc.sourceVol. 10, No.7 (2018)eng
dc.source.urihttp://www.ccsenet.org/journal/index.php/gjhs/article/view/75881eng
dc.subjectHelicobacter pylorieng
dc.subjectEpitopeseng
dc.subjectChronic infection in the stomacheng
dc.titlePrediction of Epitopes in the Proteome of Helicobacter pylorieng
dc.typearticleeng
dcterms.referencesAyraud, S., Janvier, B., & Fauchère, J.-L. (2002). Experimental colonization of mice by fresh clinical isolates of Helicobacter pylori is not influenced by the cagA status and the vacA genotype. FEMS Immunology and Medical Microbiology, 34(3), 169-172. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12423767eng
dcterms.referencesBenson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2006). GenBank. Nucleic Acids Research, 34(Database issue), D16-20. https://doi.org/10.1093/nar/gkj157eng
dcterms.referencesChen, F., Mackey, A. J., Stoeckert, C. J., & Roos, D. S. (2006). OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research, 34(Database issue), D363-8. https://doi.org/10.1093/nar/gkj123eng
dcterms.referencesFallone, C. A., Chiba, N., van Zanten, S. V., Fischbach, L., Gisbert, J. P., Hunt, R. H., … Marshall, J. K. (2016). The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology, 151(1), 51-69.e14. https://doi.org/10.1053/j.gastro.2016.04.006eng
dcterms.referencesFord, A. C., & Axon, A. T. R. (2010). Epidemiology of Helicobacter pylori infection and Public Health Implications. Helicobacter, 15, 1-6. https://doi.org/10.1111/j.1523-5378.2010.00779.xeng
dcterms.referencesHe, Y., Xiang, Z., & Mobley, H. L. T. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010. https://doi.org/10.1155/2010/297505eng
dcterms.referencesHooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. https://doi.org/10.1053/j.gastro.2017.04.022eng
dcterms.referencesJemilohun, A. C., & Otegbayo, J. A. (2016). Helicobacter pylori infection: Past, present and future. Pan African Medical Journal. African Field Epidemiology Network. https://doi.org/10.11604/pamj.2016.23.216.8852eng
dcterms.referencesKabir, S. (2011). The Role of Interleukin-17 in the Helicobacter pylori Induced Infection and Immunity. Helicobacter, 16(1), 1-8. https://doi.org/10.1111/j.1523-5378.2010.00812.xeng
dcterms.referencesLiao, Y., Deng, J., Zhang, A., Zhou, M., Hu, Y., Chen, H., & Jin, M. (2009). Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiology, 9(1), 172. https://doi.org/10.1186/1471-2180-9-172eng
dcterms.referencesMégraud, F. (2012). The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therapeutic Advances in Gastroenterology, 5(2), 103-109. https://doi.org/10.1177/1756283X11432492eng
dcterms.referencesMoss, S. F., Moise, L., Lee, D. S., Kim, W., Zhang, S., Lee, J., … De Groot, A. S. (2011). HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine, 29(11), 2085–2091. https://doi.org/10.1016/j.vaccine.2010.12.130eng
dcterms.referencesNi, X. D., Wang, N., Liu, Y. J., & Lu, C. P. (2010). Immunoproteomics of extracellular proteins of the Aeromonas hydrophila China vaccine strain J-1 reveal a highly immunoreactive outer membrane protein. FEMS Immunology and Medical Microbiology, 58(3), 363–373. https://doi.org/10.1111/j.1574-695X.2009.00646.xeng
dcterms.referencesPilotto, A., & Franceschi, M. (2014). Helicobacter pylori infection in older people. World Journal of Gastroenterology, 20(21), 6364-6373. https://doi.org/10.3748/wjg.v20.i21.6364eng
dcterms.referencesPruitt, K. D., Tatusova, T., & Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(Database issue), D501-4. https://doi.org/10.1093/nar/gki025eng
dcterms.referencesRefaeli, R., Chodick, G., Haj, S., Goren, S., Shalev, V., & Muhsen, K. (2018). Relationships of H. pylori infection and its related gastroduodenal morbidity with metabolic syndrome: a large cross-sectional study. Scientific Reports, 8(1), 4088. https://doi.org/10.1038/s41598-018-22198-9eng
dcterms.referencesSachdeva, G., Kumar, K., Jain, P., & Ramachandran, S. (2005). SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics, 21(4), 483-491. https://doi.org/10.1093/bioinformatics/bti028eng
dcterms.referencesSpohn, G., & Scarlato, V. (2001). Motility, Chemotaxis, and Flagella. Helicobacter pylori: Physiology and Genetics. ASM Press. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21290725eng
dcterms.referencesXiang, Z., & He, Y. (2009). Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1(1), 23-29. https://doi.org/10.1016/j.provac.2009.07.005eng
dcterms.referencesXiang, Z., & He, Y. (2013). Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics, 14 Suppl 4(4), S2. https://doi.org/10.1186/1471-2105-14-S4-S2eng
dcterms.referencesYu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., … Brinkman, F. S. L. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 26(13), 1608-1615.eng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Prediction of Epitopes in the Proteome.pdf
Tamaño:
191.54 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones