Prediction of Epitopes in the Proteome of Helicobacter pylori
dc.contributor.author | Navarro-Quiroz, Elkin | |
dc.contributor.author | Navarro-Quiroz, Roberto | |
dc.contributor.author | España-Puccini, Pierine | |
dc.contributor.author | Villarreal, José Luis | |
dc.contributor.author | Díaz Perez, Anderson | |
dc.contributor.author | Fernandez Ponce, Cecilia | |
dc.contributor.author | Bilbao, Jorge | |
dc.contributor.author | Vasquez, Lucy | |
dc.contributor.author | Mendoza, Dary Luz | |
dc.date.accessioned | 2018-06-12T19:32:48Z | |
dc.date.available | 2018-06-12T19:32:48Z | |
dc.date.issued | 2018-06 | |
dc.description.abstract | Helicobacter pylori (H. pylori) is classified by the World Health Organization (WHO) as a group I carcinogen and is one of the most efficient human pathogens with over half of the world's population colonized by this gram-negative spiral bacterium. H. pylori can cause a chronic infection in the stomach during early childhood that persists throughout life due to diverse mechanisms of immune response evasion. H. pylori has several factors strongly associated with increased risk of disease such as toxins, adhesins, and chemoattractants, some of which are highly polymorphic, phase variable, and have different functions. Conventional treatments involve the use of antibiotics. However, treatment frequently fails due to the resistance H. pylori has progressively developed to antibiotics. This creates the need for different treatments made possible by identifying new therapeutic targets in the pathogen’s genome. The purpose of this study was an in silico prediction of T- and B- epitopes in H. pylori proteins. Twenty-two external membrane proteins from H. pylori Strain 26695 (accession number NC_000915) were identified using the web tool Vaxign (http://www.violinet.org/vaxign/). A total of one-hundred epitopes (60 class I epitopes and 40 class II epitopes) that could be used to develop novel non-antibiotics drugs for an H. pylori infection were predicted. | eng |
dc.identifier.issn | 19169744 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2123 | |
dc.language.iso | eng | eng |
dc.publisher | Canadian Center of Science and Education | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Global Journal of Health Science | eng |
dc.source | Vol. 10, No.7 (2018) | eng |
dc.source.uri | http://www.ccsenet.org/journal/index.php/gjhs/article/view/75881 | eng |
dc.subject | Helicobacter pylori | eng |
dc.subject | Epitopes | eng |
dc.subject | Chronic infection in the stomach | eng |
dc.title | Prediction of Epitopes in the Proteome of Helicobacter pylori | eng |
dc.type | article | eng |
dcterms.references | Ayraud, S., Janvier, B., & Fauchère, J.-L. (2002). Experimental colonization of mice by fresh clinical isolates of Helicobacter pylori is not influenced by the cagA status and the vacA genotype. FEMS Immunology and Medical Microbiology, 34(3), 169-172. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12423767 | eng |
dcterms.references | Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2006). GenBank. Nucleic Acids Research, 34(Database issue), D16-20. https://doi.org/10.1093/nar/gkj157 | eng |
dcterms.references | Chen, F., Mackey, A. J., Stoeckert, C. J., & Roos, D. S. (2006). OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research, 34(Database issue), D363-8. https://doi.org/10.1093/nar/gkj123 | eng |
dcterms.references | Fallone, C. A., Chiba, N., van Zanten, S. V., Fischbach, L., Gisbert, J. P., Hunt, R. H., … Marshall, J. K. (2016). The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology, 151(1), 51-69.e14. https://doi.org/10.1053/j.gastro.2016.04.006 | eng |
dcterms.references | Ford, A. C., & Axon, A. T. R. (2010). Epidemiology of Helicobacter pylori infection and Public Health Implications. Helicobacter, 15, 1-6. https://doi.org/10.1111/j.1523-5378.2010.00779.x | eng |
dcterms.references | He, Y., Xiang, Z., & Mobley, H. L. T. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010. https://doi.org/10.1155/2010/297505 | eng |
dcterms.references | Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. https://doi.org/10.1053/j.gastro.2017.04.022 | eng |
dcterms.references | Jemilohun, A. C., & Otegbayo, J. A. (2016). Helicobacter pylori infection: Past, present and future. Pan African Medical Journal. African Field Epidemiology Network. https://doi.org/10.11604/pamj.2016.23.216.8852 | eng |
dcterms.references | Kabir, S. (2011). The Role of Interleukin-17 in the Helicobacter pylori Induced Infection and Immunity. Helicobacter, 16(1), 1-8. https://doi.org/10.1111/j.1523-5378.2010.00812.x | eng |
dcterms.references | Liao, Y., Deng, J., Zhang, A., Zhou, M., Hu, Y., Chen, H., & Jin, M. (2009). Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiology, 9(1), 172. https://doi.org/10.1186/1471-2180-9-172 | eng |
dcterms.references | Mégraud, F. (2012). The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therapeutic Advances in Gastroenterology, 5(2), 103-109. https://doi.org/10.1177/1756283X11432492 | eng |
dcterms.references | Moss, S. F., Moise, L., Lee, D. S., Kim, W., Zhang, S., Lee, J., … De Groot, A. S. (2011). HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine, 29(11), 2085–2091. https://doi.org/10.1016/j.vaccine.2010.12.130 | eng |
dcterms.references | Ni, X. D., Wang, N., Liu, Y. J., & Lu, C. P. (2010). Immunoproteomics of extracellular proteins of the Aeromonas hydrophila China vaccine strain J-1 reveal a highly immunoreactive outer membrane protein. FEMS Immunology and Medical Microbiology, 58(3), 363–373. https://doi.org/10.1111/j.1574-695X.2009.00646.x | eng |
dcterms.references | Pilotto, A., & Franceschi, M. (2014). Helicobacter pylori infection in older people. World Journal of Gastroenterology, 20(21), 6364-6373. https://doi.org/10.3748/wjg.v20.i21.6364 | eng |
dcterms.references | Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(Database issue), D501-4. https://doi.org/10.1093/nar/gki025 | eng |
dcterms.references | Refaeli, R., Chodick, G., Haj, S., Goren, S., Shalev, V., & Muhsen, K. (2018). Relationships of H. pylori infection and its related gastroduodenal morbidity with metabolic syndrome: a large cross-sectional study. Scientific Reports, 8(1), 4088. https://doi.org/10.1038/s41598-018-22198-9 | eng |
dcterms.references | Sachdeva, G., Kumar, K., Jain, P., & Ramachandran, S. (2005). SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics, 21(4), 483-491. https://doi.org/10.1093/bioinformatics/bti028 | eng |
dcterms.references | Spohn, G., & Scarlato, V. (2001). Motility, Chemotaxis, and Flagella. Helicobacter pylori: Physiology and Genetics. ASM Press. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21290725 | eng |
dcterms.references | Xiang, Z., & He, Y. (2009). Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1(1), 23-29. https://doi.org/10.1016/j.provac.2009.07.005 | eng |
dcterms.references | Xiang, Z., & He, Y. (2013). Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics, 14 Suppl 4(4), S2. https://doi.org/10.1186/1471-2105-14-S4-S2 | eng |
dcterms.references | Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., … Brinkman, F. S. L. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 26(13), 1608-1615. | eng |